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a b s t r a c t

The simulation of delamination using the Finite Element Method (FEM) is a useful tool to
analyse fracture mechanics. In this paper, simulations are performed by means of two
different fracture mechanics models: Two Step Extension (TSEM) and Cohesive Zone (CZM)
methods, using implicit and explicit solvers, respectively.
TSEM is an efficient method to determine the energy release rate components GIc, GIIc and
GIIIc using the experimental critical load (Pc) as input, while CZM is the most widely used
method to predict crack propagation (Pc) using the critical energy release rate as input.
The two methods were compared in terms of convergence performance and accuracy to
represent the material behaviour and in order to investigate their validity to predict mode I
interlaminar fracture failure in unidirectional AS4/8552 carbon fibre composite laminates.
The influence of increasing the loading speed and using mass scaling was studied in order
to decrease computing time in CZ models.
Finally, numerical simulations were compared with experimental results performed by
means of Double Cantilever Beam specimens (DCB).
Results showed a good agreement between both FEM models and experimental results.

� 2011 Elsevier Ltd. All rights reserved.
1. Introduction

Delamination failure (separation of two adjacent plies in
composite laminates) is frequently found in composite
structures. This kind of damage is considered one of the
most critical in laminated fibre reinforced composites.

The delamination crack may propagate undetected
during inspection under the action of static or dynamic
loads. It can lead to the ultimate failure of the component,
inducing reduction in stiffness and compressive load-
carrying capacity of a structure. Consequently, the analysis
of the onset and propagation of the delamination continues
to be studied by composite technology researchers.
llón).

. All rights reserved.
The delamination process is characterized by means of
the energy release rate (G), which is a measurement of the
energy lost in the test specimen per unit of specimenwidth
for an infinitesimal increase in delamination length. In
mathematical form:

G ¼ �1
B
dU
da

(1)

The onset of delamination takes place when G reaches
a critical value Gc.

Finite Element (FE) analysis is a numerical procedure
commonly used to determine Gc in engineering problems
involving delamination failure. There are several mathe-
matical models developed in the scientific literature in
order to compute Gc and to predict crack propagation for
different loading modes by means of FE codes. Among
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Table 1
Laminate mechanical properties.

Property (MPa) AS4/8552

E11 (Longitudinal elastic modulus) 144,000
E22 (Transversal elastic modulus) 10,600
G12 (Shear elastic modulus) 5360
s11 (Longitudinal tensile strength) 1703
s22 (Transversal tensile strength) 30.8
ss (Shear strength) 67.7
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these methods, the Virtual Crack Closure Technique (VCCT)
and the Cohesive Zone Model (CZM) are extensively used.

The CZM method presents fracture as a gradual
phenomenon in which separation takes place across
a cohesive zone. Some of the first works in this field can be
attributed to Dugdale [1] and Barreblatt [2]. The crack onset
and growth will take place when the forces at the cohesive
zone overcome the cohesive tractions. Thus, cohesive zone
elements are used to describe the cohesive behaviour
between plies. Cohesive zone models are particularly
attractive when interfacial strengths are relatively weak
compared with the adjoining material, as is the case in
composite laminates [3].

CZM is available in all important commercial FE pack-
ages. Nevertheless, CZM models sometimes present
convergence problems with implicit solvers, so this model
is usually used with explicit solvers. This is because most
implicit solvers are not so efficient with discontinuous
functions.

It is also well known that explicit calculations with CZM
show spurious oscillations of computed forces leading to
undesirable results [4,5]. This problem is caused by an
instability which occurs just after the stress reaches the
peak strength of the interface. This problem can be
controlled by techniques such as using a very fine mesh
which, on the other hand, leads to very high computational
time. Other authors have proposed artificial damping
methods with additional energy dissipations such as those
proposed by Gao and Bower [6]. Some authors have
developed cohesive models specially designed to overcome
this problem. For example, Hu et al. [7] have developed
a model termed Adaptive Cohesive Model (ACM) with
a pre-softening zone ahead of the existing traditional
softening zone. In this zone, the initial stiffness and the
interface strengths at the integration points of cohesive
elements are gradually reduced as the relative displace-
ments at these points increase.

Regarding implicit solvers, the most extended method
to solve delamination problems is the VCCT method [8]
which was first formulated by Rybicki and Kanninen [9].
This method has been successfully used to predict delam-
ination initiation in flat laminates with an embedded
delamination [10]. The VCCT model has evolved from the
Finite Crack Extension Method and the Virtual Crack
ExtensionMethod [11] and is based on Irwin’s crack closure
integral [12].

In this work the Two Step Extension Method (TSEM) has
been used as an alternative to the VCCT method. The TSEM
is based on the calculation of the forces and displacement
at the crack tip in two steps. Irwin’s formulation is applied
without any simplification [12,13]. Other studies have
demonstrated that TSEM is a good candidate, similar to
VCCT, to model the delamination process [14].

In this paper, mode I delamination tests have been
modelled by means of TSEM (implicit solver) and CZM
(explicit solver) in order to compare both procedures.
Finally, an experimental program has been performed in
order to obtain GIc experimentally by means of Double
Cantilever Beam (DCB) specimens. Numerical results were
compared with experimental results in order to demon-
strate the validity of both methods in terms of convergence
performance and accuracy to represent the material
delamination behaviour.

2. Experimental and numerical methods

2.1. Experimental procedure

Five samples of Hexcel AS4/8552 laminates were tested
in mode I interlaminar fracture test following the ASTM
Standard D 5528-01 [15]. This material is a unidirectional
carbon fibre-epoxy composite that has been modified in
order to improve toughness. Table 1 shows the mechanical
properties of this laminate. Fig. 1 shows the DCB specimen.

As it can be seen in Fig. 1, opening forces are applied to
the Double Cantilever Beam (DCB) specimens to produce
mode I delamination fracture. The DCB specimen is
composed of 32 unidirectional plies and it contains a non-
adhesive insert at the midplane to act as a delamination
starter. The structure of the laminates was [0�

16/insert/
0�

16].
The DCB specimen was 150 mm in total length, 50 mm

in crack length, 25mmwidth and 6mm thickness (nominal
dimensions).

The specimens were tested on a MTS testing machine
with a 5 kN load cell, applying a constant displacement
velocity of 1 mm/min. The load-displacement responsewas
obtained and a travelling optical microscope (100�) was
used to measure the crack length during the test.

The Modified Beam Theory (MBT) Eq. (2) and the
Compliance Calibration (CC) Eq. (3) data reductionmethods
were used to calculate the strain energy release rate, GIc:

GIc ¼ 3PCd
2Bðaþ jDjÞ (2)

GIc ¼ nPd
2Ba

(3)

where Pc is the critical load, d, B, h and a are the load point
displacement, specimen width, specimen thickness and
delamination length respectively while D and n are cali-
bration parameters [15].

According to ASTM Standard D 5528-01 [15], the critical
value of P (Pc) is calculated from the load-displacement
curve (see Fig. 2) as the onset of the crack growth. This
parameter may be calculated as the point of deviation from
linearity (NL), the point at which delamination is visually
observed (VIS) and the point at which the compliance has
increased by 5% or the load has reached a maximum value
(5%/max).



Fig. 1. DCB specimen.
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2.2. Numerical methods

In this work, simulations of mode I interlaminar fracture
toughness tests of composite material were conducted by
means of two different fracture mechanics methods: Two
Step Extension and Cohesive Zone methods, using ANSYS�

(implicit) and LS-DYNA� (explicit) packages respectively.

2.2.1. Two Step Extension Method
In this numerical method, the crack path is modelled

using pairs of coincident nodes. The forces at the crack tip
are calculated in a first step when the load reaches the
critical value. The imposed displacement in the sample is
then held and the coupled DOFs (degrees of freedom) of the
nodes at the crack tip are released in a second step.
Displacements are then calculated in this second step (see
Fig. 3a and b).

This procedure can be analytically described as follows:

GI ¼ 1
2BDa

Xn
i¼1

Fy1iðv1i � v10 iÞ (4)

GII ¼ 1
2BDa

Xn

i¼1

Fx1iðu1i � u10 iÞ (5)
Fig. 2. Mode I test. Critical load calculation.
GIII ¼ 1 Xn
Fz1iðw1i �w10 iÞ
2BDa

i¼1

where:

� B: sample width
� Da: crack length increment
� v1i: vertical displacement of nodes at the crack tip
� u1i: horizontal displacement of nodes at the crack tip
� Fy1i: vertical nodal force at the crack tip
� Fx1i: horizontal nodal force at the crack tip x-axis
� Fz1i: horizontal nodal force at the crack tip z-axis

The suffix i takes into account the extension to a 3D
system, where n nodes are placed along the crack front.

The DCB specimens were modelled by means of four
node 2D solid elements in plane strainwith two degrees of
freedom at each node (translations in the nodal x and y
directions). The element length was set to 0.33 mm near
the crack tip, so the ratio of the crack increment length
over the initial crack length was Da/a0 ¼ 0.0066. Fig. 4
shows the final mesh used to perform the calculations.
GIc was calculated by means of Eq. (4). Finite element
calculations were performed by means of an ANSYS�

implicit package.
Material behaviour was implemented as transversely

isotropic (i.e. the mechanical properties perpendicular to
the laminate plane, have been made equal to the in-plane
transversal properties).

2.2.2. Cohesive Zone Method (CZM)
These calculations were performed by means of LS-

DYNA� explicit software.
The main solution methodology is based on explicit

time integration. This code is one of the most widely used
to model impact and crash situations in layered compos-
ites. Cohesive elements are implemented in the code.

In this method, the delamination surface is modelled
between individual laminas by interface elements of cohe-
sive strengths which exhibit the approximate behaviour of
delamination cracks (see Fig. 5).

Compared to VCCT, CZM has the advantage of being able
to predict the onset and propagation of a crack without the
need to implement a pre-existing crack [16].

The combined effects of the damage processes are well
defined by unique models called Cohesive Zone Models. By
implementing these models, one may take the delamina-
tion into account by finite element analysis.

In a cohesive element, a maximum opening normal
stress is associated with an initial crack opening and
a maximum crack length is associated with zero bond
strength (see Fig. 6).

The fracture toughness of the bond between plies (a
material input) is equal to the integral of the element
traction versus crack opening.

GIc ¼
Z dFI

0
sdd (6)

One of the most widely used constitutive equations is
the bilinear law [17] as shown in Fig. 6. The initial slope



Fig. 3. a) DOFs at coincident nodes are coupled. The corresponding forces are computed. (b) DOFs of the nodes at the crack front are released. The corresponding
displacements are computed.

Fig. 4. Mesh for TSE model near the crack tip.
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of the curve is the penalty stiffness (k). This value is usually
high in order to reproduce the crack behaviour. In pure
modes I or II, when the normal or shear traction reach the
critical value (s0 or s0) the stiffness is progressively reduced
to zero.

The discontinuity at maximum load shown by the
bilinear law can be avoided bymeans of a smooth nonlinear
law (Fig. 7).

Different laws developed in the scientific literature can
be reviewed in Ref. [18].

In a real structure, more than one pure load mode is
usually present at the crack front, so it is necessary to
define a general formulation for mixedmode delamination.

For puremodes I and II, the onset of delamination can be
determined by comparing GI or GII with their critical values
(GIc or GIIc).

However, under mixed mode loading, the onset of
delamination may occur before any of the energy release
rate values reach their respective critical values.

There are several failure criteria developed in the
scientific literature for the onset of delamination as the
Power Law [19–21] and the Benzeggagh and Kenane [22]
Law.

Nevertheless, in this work this issue is not relevant as
only pure mode I is developed in DCB specimens.

The DCB model was performed by two beams or sub-
laminates. Every sub-laminate was modelled by means of
fully integrated S/R-8 node solid elements, with two
elements across the thickness. Material behaviour was
simulated as orthotropic by means of the MAT_002
(*MAT_ORTHOTROPIC_ELASTIC) option.

On the other hand, a cohesive interface was performed
between the beams with one element across the thickness.
The cohesive element thickness was 0.01 mm. This layer
was implemented by means of the MAT_138 (*MAT_CO-
HESIVE_MIXED_MODE) model, based on the bilinear law.
This option requires the independent material parameters
shown in Table 2.

GIc and GIIc values have been obtained from previous
numerical studies [23]. There is no general agreement in
the scientific literature about the stiffness of the cohesive
zone and interfacial strength s for carbon/epoxy
composites. Turon et al. [24] have proposed the following
equation to calculate the interfacial stiffness:

k ¼ aE3
t

(7)

where a [ 1 (Turon et al. proposed a > 50), E3 is the
transverse elastic modulus and t the sublaminate thickness.
Other authors have proposed values between 104 and 107

[25,26]. Regarding the interfacial strength, Alfano and
Crisfield [27] have found that variations in this parameter
do not affect too much the final results, and a decrease in
the interfacial strength tended to improve convergence.
Even more, the reduction of the interfacial strength has the
effect of enlarging the cohesive zone so the softening
behaviour ahead the crack tip could be better captured for
a given mesh [24].

In this work, a value of kI¼ kII¼ 3�104 and s0¼ 45MPa
has been taken according to [7].

The mode mixity is defined as:

b ¼ dII
dI

(8)

In this model, the mixed mode damage initiation
displacement (d0m) is given by:

d
0
m ¼ d

0
I d

0
II

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ b

2

�
d
0
II

�2
þ
�
bd

0
I

�2

vuuut (9)

where d
0
I and d

0
II are the single mode damage initiation

separations:



Fig. 5. Cohesive model. Fig. 7. Smooth nonlinear law.
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d
0
I ¼ s0

kI
(10)

d
0
II ¼ s0

kII
(11)

The cohesive element fails when the ultimate mixed
mode displacement (dFm) is reached.

Two alternative formulations are implemented for
MAT_138:

The Power Law (for values of h > 0):

d
F
m ¼ 2ð1þ bÞ2

d
0
m

��
s0

GIc

�h

þ
�
s0b2

GIIc

�h��1
h

(12)

The Benzeggagh-Kenane Law: (for values of h < 0):

d
F
m¼

2

d
0
m

�
1

1þb
2s

0þ b
2

1þb
2s

0

�$
�
GIcþðGIIc�GIcÞ$

�
b
2s0

s0þb
2s0

�jhj�

(13)

In this work, the power law with h ¼ 1 has been used. As
stated before, in DCB tests only pure mode I takes place at
the crack tip, so these parameters are not so relevant.

Several models were performed in order to obtain
a successful FEM simulation.

First of all, the element size in the different parts of the
model had to be set. As is well known, the usage of small
Fig. 6. Mode I bilinear law.
elements gives rise to a more accurate solution. Never-
theless, as element number increases the total CPU time to
solve the problem increases. This effect is particularly
important with explicit solvers where the critical time step
depends on the dimensions of the smallest element. In this
way, the selection of the gap thickness between both sub-
laminates (cohesive element thickness) must be also care-
fully fixed.

In this work, a previous study was developed in order to
determine the optimum size of the elements in the cohe-
sive zone ahead of the crack front in order to optimize the
CPU time while maintaining the accuracy of the results. It
was found out that cohesive element length about 2 mm
near the crack front was small enough to obtain results
with a good approximation to the experimental values and
leads to a reasonable computational cost. The final mesh
density used in the subsequent runs is shown in Fig. 8.

3. Results and discussion

3.1. Experimental results

Five specimens were tested following the experimental
procedure described in point 2.1. Experimental curves were
linear up to failure, so the critical load was taken as the
maximum load. Table 3 shows the critical load (Pc) and
displacement (dc) obtained in the experimental tests. This
table also shows the energy release rate GIc calculated by
means of MBT and CC procedures. The CC reduction
method has been selected as a reference for subsequent
comparisons as this was the procedure that gave the lowest
standard deviation. The coefficient of variation (CV) of the
experimental results was 11%. Other authors have found
Table 2
Cohesive parameters.

Symbol LS-DYNA
parameter

Value

Initial stiffness in mode I kI EN 3 � 104 N/mm
Initial stiffness in shear kII ET 3 � 104 N/mm
Mode I critical energy

release rate
GIc GIC 0.250 N.mm/mm2

Mode II critical energy
release rate

GIIc GIIC 0.791 N.mm/mm2

Peek traction in mode I s0 T 45 N/mm2

Peek traction in mode II s0 S 45 N/mm2

Mixed mode parameter h XMU 1



Fig. 8. Mesh used in the explicit analysis.

Table 4
TSEM results.

Specimen GIc (J/m2)

1 242.6
2 259.9
3 341.3
4 227.2
5 226.0
Mean (x) 259.4
Standard deviation (s) 47.8

Table 5
Influence of the loading speed on the results.

Velocity (mm/s) Mass Scale Pc (N)

0.25 �5 � 10�6 137.7
0.50 �5 � 10�6 138.7
5 �5 � 10�7 137.7
10 �5 � 10�7 137.8
100 0 138.7
200 0 137.9
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similar experimental dispersion in interlaboratory round
robin tests [28].

3.2. Numerical results

3.2.1. Two-Step Extension Method
Each experimental specimen tested as described in 3.1

was modelled by means of an ANSYS� package. Each
model was prepared as stated in 2.2.1 and loaded with the
corresponding experimental load shown in Table 3. The
Two Step Extension Method was used as described in 2.2.1
in order to calculate the critical energy release rate. The
results obtained in these runs can be seen in Table 4.

As we can see comparing Tables 3 and 4, there is good
agreement between experimental results and ANSYS� runs
as the difference between GIc mean values obtained from
both procedures were of the order of 5%. This error is low,
taking into account the observed experimental dispersion.

3.2.2. Cohesive Zone Method (CZM)
As the experimental tests were performed at low

velocity (1 mm/min ¼ 0.017 mm/s), the experimental time
to maximum load was about 1.5 min. This time is too long
for explicit software, resulting in very high computational
cost. In order to reduce the computing time, two strategies
can be used. On one hand, the loading speed can be
increased. On the other hand, mass scaling can be applied
for the lowest velocities. In both cases a sensitivity study
must be developed in order to assess the validity and
accuracy of the results.

In this work, the influence of the loading speed on the
critical load has been studied in order to prove the validity
of increasing that parameter. Mass scaling was also used to
obtain faster solutions with the lowest velocities.

Mass scaling refers to a technique whereby non-
physical mass is added to a structure in order to achieve
a larger explicit time step. Mass scaling reduces the simu-
lation time, but it may affect the results. This procedure is
justifiable when the effect on the results is negligible. This
is the case of quasi-static analysis where the velocity is low
Table 3
Experimental results.

Specimen Critical
load (N)

Critical
displacement (mm)

GIc (J/m2)
(MBT)

GIc (J/m2)
(CC)

1 138.0 1.47 267.88 266.28
2 130.6 1.73 293.67 281.91
3 167.0 1.41 352.78 318.24
4 123.2 1.50 247.71 238.76
5 134.1 1.51 275.79 265.83
Mean (x) 138.6 1.52 287.6 274.2
Standard

deviation (s)
16.8 0.12 40.0 29.1
and so the kinetic energy is very small relative to the peak
internal energy [29]. The effect of the mass scaling can be
addressed changing this parameter and observing the
sensitivity on the obtained results.

The critical loads (Pc) obtained in these runs are shown
in Table 5. The mass scaling factors shown in this table have
been selected in order to reduce CPU time without having
any significant influence on the results.

As can be seen in Table 5, Pc remains almost constant for
loading speeds up to 100–200 mm/s.

This means that, when simulating a quasi-static mode I
test, the loading speed can be increased from quasi-static
values up to about 100 mm/s in order to speed up the
solution procedure, without affecting the accuracy of
results.

Following these results, the critical load obtained with
the lowest velocity (0.25 mm/s) was taken as quasi-static
and used to compare with the experimental and TSEM
methods. Good agreement was found between experi-
mental and CZM models (see Tables 3 and 5) as the
difference between critical loads were in the order of 1%
(Pcexp ¼ 138.6 N/PcCZM ¼ 137.7 N) (see Fig. 9).
Fig. 9. Experimental and CZM load-displacement curves.
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As can be seen in Fig. 9, the CZM curve shows linear
behaviour up to maximum load. As stated before, at this
point instabilities began to occur due to the suddenly
change in stiffness after the stress reaches the peak
strength of the interface. This behaviour is not relevant for
this study as only results at maximum load are compared.

In order to study the propagation behaviour bymeans of
CZM, other procedures should be implemented in LS-
DYNA� as smooth traction-separation laws or the adaptive
cohesive model (ACM) with pre-softening zone [7]. By
using these methods, smooth propagation behaviour
would be obtained.

4. Conclusions

The TSEM is averyefficientmethod toworkwith implicit
solvers. It is easy to implement and useful to support
experimental results. This method, as presented in this
work, uses as input the critical load obtained from experi-
mental results and furnishes the energy release rate GIc GIIc

and GIIIc in a generalized load state by means of simple
calculations. Regarding the accuracy of the method, good
agreementwas foundbetween experimental andnumerical
results as errors between both procedures were below 5%.

On the other hand, CZM running on explicit solvers also
furnishes very accurate results (the critical loads obtained
from experimental and numerical results differs only by
1%). This method is very useful to study the onset and
propagation of cracks. The material model uses the critical
energy release rate obtained in pure modes I, II and III as
input parameters and furnishes the critical load needed to
initiate or propagate the crack. Nevertheless, in order to
reduce CPU times in quasi-static tests, some issues must be
taken into account, such as introducing mass scaling and
increasing the loading speed. These parameters should be
carefully adjusted to avoid any influence on the results.

It was found that the loading speed can be increased up
to 100–200 mm/min with no significant influence on the
obtained results, on the other hand, mass scaling of the
order of 5 � 10�7 was successfully used with the lowest
velocities to decrease computing time.

If the critical load is known, the TSE method is better
than CZM to analyse and solve mixed mode problems. This
is because the decomposition of modes is directly obtained
without the need of any criterion, via Eqs. (4)–(6) and the
solution is more stable near the maximum load. Never-
theless, if the critical energy release rates in pure modes I
and II are known and the critical load unknown, the
preferred method to calculate the initiation (critical load)
and crack propagation would be the CZM.

Finally, if crack propagation needs to be studied, any
action should be taken in order to avoid spurious oscilla-
tions after maximum load as implementing a smooth law
or an adaptative cohesive model.
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