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Abstract – Driving simulators have been used to support the development of new vehicle systems for many years. 
The rise of electric vehicles (EVs) as a means of reducing carbon emissions has lead to the emergence of a 
number of new design challenges related to the performance of EV components and the flow of power under a 
variety of circumstances. In this paper we describe the integration of an EV drive train test system with a driving 
simulator to allow the performance of EV systems to be investigated while under the control of real drivers in 
simulated scenarios. Such a system offers several potential benefits. The performance of EV drive trains can be 
evaluated subjectively by real world users while the electrical and mechanical properties can be tested under a 
variety of conditions which would be difficult to replicate using standard drive cycles.  
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Introduction 

As the world faces ever growing pressures to reduce carbon emissions, Electric Vehicles (EVs) are seen as a 
potential replacement for conventionally fuelled vehicles. First generation mass produced or converted electric 
vehicles are now on the market and are receiving widespread recognition. Many drawbacks remain, however, and 
it is crucial that improvements are made to make the next generation of vehicles to suit the requirements of users. 
The driveability of vehicle as experienced by the user is a particular area of concern.  

 

Alongside the experience gathered from current EV models and trials, we believe that driving simulators have a 
major part to play in ensuring human factors are given appropriate consideration in the design process. The key 
technical requirements for future EV development include thermal management, range optimisation, control 
strategies and transmission design. Alongside these technical considerations Crolla et al [Cro1] have identified 3 
areas for additional research to ensure EVs are viable and attractive in real world conditions: 

  

1. Driveability – optimisation research should be based upon realistic driving conditions rather than standard 
patterns. 

2. Braking behaviour – regenerative braking means energy can be recovered but such systems should not 
compromise safety. 

3. Practical design – research currently done leaves many implementation issues; e.g. some methods for 
control are just too computationally intensive.  

 

Research and development in these areas makes extensive use of the hardware-in-the-loop (HIL) methodology 
where hardware can be combined with simulated elements to achieve HIL tests (c.f. [Bou1], [Ros1]). Zha and Zong 
[Zha1] describe the use of an electric motor to act as a dynamometer for simulating the inertia of an electric 
vehicle. Jun Liu et al [Jun1] describe the use of an electrical load for simulating the motor in drive train 
experiments. Such activities utilise drive cycles which consist of a pattern of use in terms of vehicle speed through 
time. At present much of the power system simulation and modelling work is based on standard drive cycles. This 
has the advantage of providing a snapshot of performance and allowing easy comparison. The usefulness of 
standard drive cycles is, however, restricted by the accuracy of the assumptions upon which it is based. In order to 
achieve greater realism it is necessary to look for more realistic drive cycles [Saj1][Ado1] and a variety of 
techniques are beginning to receive attention to address these [Wal1][Hiw1]. 
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In this paper we will describe an architecture for using a driving simulator as a control mechanism for HIL tests 
creating a new development platform capable of supporting Human-in-the-Loop (HuL) testing. A bespoke 
dynamometer developed at the University of Sunderland [Kno1] will be integrated with a Forum8 3D driving 
simulator to allow hardware to be tested under the direct control of a driver travelling around a real route.  

 

The remainder of the paper is structured as follows. The motivation for the test system is summarised in the 
following section. This is followed by a description of the two major system components: the dynamometer and the 
driving simulator. The integration strategy for these two components is then discussed followed by a section 
considering the ongoing work to realise such a system.  

Motivation 

 

An integrated hardware test system controlled by a realistic immersive driving simulator has many potential 
benefits. Electric vehicle (EV) design issues listed above can be evaluated and improvements developed using 
realistic driving patterns. Furthermore feedback can be obtained on the performance of traction system 
configurations by drivers without the need to create expensive test vehicles. The effect of control strategies on 
driver behaviour can also be investigated in real time using easily varied control systems. Finally, the driving 
simulator software can be used to create different test routes which can be either designed specifically to 
investigate certain aspects of performance or which recreate real road systems, the latter will also allow for cross 
validation with data captured from test vehicles driven around standard laps. It is our contention that the 
development of such a system has much to offer EV research and development programmes.  

Driving simulator 

 

The University of Sunderland driving simulator laboratory was established in 1999 and has been used to support 
research in a variety of areas relating to vehicle design and human factors (c.f.[Mid1][Mid2][Mid3]). The laboratory 
presently houses two driving simulators. The system which has been utilised for these experiments is the most 
recent system which has been used for a variety of work including eco-driver training [Sco1] and assessment of 
driving style [Kno2]. 

  

The hardware component of the simulator is a Forum8 Driving Simulator and is illustrated in Figure 1.  The 
hardware is based around a vehicle cockpit comprising all the usual controls including steering wheel, transmission 
selector, parking brake, accelerator and brake. Instruments include speedometer and engine speed measurement. 
The display consists of three 32 inch LCD screens, each with a resolution of 1024x768 pixels and a fourth, smaller 
8.4 inch LCD TFT screen with a resolution of 800x600 pixels which can be used for display of navigational 
information or other data to the driver.  

 

 

Fig.1. Forum8 driving Simulator 
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This simulator has been selected for the work for the following reasons: 

 

• The ease with which simulated versions of real routes can be created using GPS or mapping data using 
the LandXML data format for import.  

• The provision of a plug-in based architecture allowing bespoke software components to be developed 
giving access to the appropriate internal data structures. 

Dynamometer 

 

The Dynamometer which will be used for the test system was rebuilt in 2011 to provide bespoke test facilities for 
EV drive train components. The system consists of a Froude Hofmann EC38TA (Eddy Current) dynamometer, 
shown in figure 2, which is controlled from a Texcel V4 ECE/HE controller, shown in figure 3. 

 

 
Fig. 2. Dynamometer hardware 

 

Fig.3. Dynamometer control and datalogging equipment 

 

The dynamometer is currently fitted with an EV drive train which consists of: 

 

• A 15kW (30kW peak) induction motor controlled through a Curtis motor controller. The Curtis motor 
controller can be programmed and controlled via CAN bus.  

• A Lithium-ion phosphate pack of 29 3.2V 90Ah cells (8.352 kWh 100% discharged) with individual battery 
management cell controllers and overall battery management monitoring module with CAN connector. 

 

These drive train components can be fully or partially replaced with any system which requires testing. Other 
components currently available for testing include alternative lithium-ion power cells and a variety of hydrogen fuel 
cells.  

 

In terms of instrumentation and control, the system features a Murphy Power View (PV)750 display which features 
3 separate CAN ports, 3 analogue I/O ports and internal memory for data logging. In its current configuration two 
options exist for controlling the system: 
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1. Manually through a linear actuator, much like a throttle pedal in a vehicle. This option is primarily used for 
testing purposes. 

2. Programmed operation via the Murphy display. The PV750 can be loaded with a drive cycle and when 
started it will control the motor controller and the dynamometer, while recording data. 

 

The data capture system currently consists of 4 parts: 

 

1. A 4 band digital oscilloscope which is connected to a computer for data logging. This system is used to 
record electrical transients in the motor power system with high speed recording.  

2. Two CAN connections allow for data logging from the motor controller (voltages, current, motor and 
controller temperature) and BMS (cell number of highest voltage, cell number of lowest voltage and 
temperatures of respective cells).  

3. A USB connection from the Battery Management System (BMS) to computer for capturing voltages, 
temperatures and state of charge (SoC) for cells within the battery pack.  

4. Analogue data capture from the dynamometer controller via the Murphy PV750 of torque and speed. 

 

Both the CAN connections (2) and analogue data capture (4) are done through the PV750 at a maximum speed of 
50Hz. 

 

The current system has been designed primarily to investigate the electrical behaviour of EV drive systems, 
however it should be emphasised that the instrumentation and data capture system can be easily customised using 
the reprogrammable nature of the Murphy display unit and the Curtis motor controller. 

Integration design 

 

Control of the test motor on the dynamometer will be achieved using data captured from the simulator controls. The 
mechanical load imposed by the dynamometer will be based around the mechanical characteristics of the vehicle 
as well as surface properties of the road and aerodynamic factors and the gradient upon which the simulated 
vehicle is travelling [Lar1]. The speed at which the motor turns under that load will be measured from the 
dynamometer and fed back via an inverse vehicle model to the simulator to control the speed of the simulated 
vehicle. The proposed system structure is illustrated in figure 4 below. 

 

 
Fig. 4 System structure illustrating data flow 
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A number of key requirements for the system have been determined. These will be discussed in the following 
sections.  

Data rate 
 

One of the key considerations for the system viability is the speed and latency of the system such that the 
dynamometer system reacts to changes in throttle position and feeds back speed changes fast enough to ensure 
that the driver feels the experience is realistic. The effect of ‘transport delays’ has been widely investigated over a 
number of years (c.f. [Lee1]). The frame update rate offered by the simulator is 20 Hz (under current development 
conditions) so the objective for this integration is for the total round trip communication time to be within the time 
period of the frame update i.e. 50ms. 

 

Safety 
 

The primary safety concern for the dynamometer is a stall condition since this will be detrimental to the motor and 
controller potentially causing extensive, costly to repair damage. Also, sudden stall could lead to a break in the 
drive shaft. Such a condition should therefore be avoided at all times. In addition to standard safety features 
already installed on the dynamometer such as cut out switches and temperature monitoring, the following 
additional safety protocols have been identified as being necessary: 

 

 Upon detection of both a brake and a throttle signal, the brake signal will be passed on to the controller 
while the throttle signal will be set to zero. This practise is used inside the Curtis motor controller as well. 

 All values sent to the motor and dynamometer controller will be capped at their respective minimum or 
maximum values 

 Upon switching off the simulator or if the connection with the simulator is lost the control signals to the 
motor will be set to zero. 

 

Simulator control 
 

As discussed previously, a plug-in software component is under development for the driving simulator. This will 
fulfil a dual role: 

 Data will be extracted from the simulation regarding the throttle and brake controls, as well as the gradient 
on which the vehicle sits.  

 Data from the dynamometer will be used to control the speed of the simulated vehicle. 

 

The plug-in is under development in the Delphi programming language using the Forum8 UC-Win Road SDK 
version 5.02.04. 

 

Dynamic model 
 

The dynamic model of vehicle properties is based upon that proposed by Larminie and Lowry [Lar1]. This model is 
used in the first instance to determine the mechanical torque which must be applied to the motor to simulate the 
tractive effort required to propel the vehicle. This will depend on a number of factors including the gradient of the 
road – if the vehicle is travelling uphill more effort is required.  

 

The tractive effort Fte is the sum of four distinct factors: 

                     (1) 

The four factors are: 

 

1.  Rolling road resistance. This is caused by the effect of frictional forces acting at the wheel/road interface and is 
dependent on the coefficient of rolling friction  µrr: 
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             (2) 

 

Where m is the mass of the vehicle and g is the acceleration due to gravity. 

 

2. Aerodynamic drag. This is the frictional effect of the vehicle moving through the air: 

    
 

 
           (3) 

 

Where ρ is the density of air, A is the vehicle frontal area and Cd is the drag coefficient, a value based on A. 

 

3. Hill climbing force. This is the mechanical effort required to overcome a gradient, expressed as an angle, α. If the 
vehicle is travelling downhill then this will become negative: 

 

                 (4) 

 

4. Lateral Force. This force represents the inertia of the vehicle and its rotating components and is estimated on the 
basis the inertia as a percentage of the vehicle mass, I and the vehicles acceleration a. 

 

           (5) 

 

Since the dynamometer is not connected to the motor by a final drive gearbox it is necessary to account for this. 
Therefore the torque to be applied at the dynamometer is give by τ: 

 

      
 

 
  (6) 

 

Where r represents the vehicle’s wheel radius and G is the overall gear ratio between the motor and the wheels.  

 

The throttle/brake demand is communicated directly from the control position in the simulator to the motor 
controller. This throttle / brake command will cause the motor to respond which results in a speed measured by the 
dynamometer. The controller manages the throttle and brake inputs and allows for tweaking of input response. 
Based on the above model a new torque value is calculated and sent to the dynamometer. The start torque is 
derived directly from the rolling resistance since this is the only force at no speed. 

 

The power applied to the motor will cause it to work against the torque applied by the dynamometer. The speed of 
the resultant rotation will be recorded and used to update the dynamic model and will be converted to vehicle 
speed which will be communicated back to the simulator.  

System Implementation 

Implementation of the system is underway. The following activities have been completed: 

 Communications between the simulator and the dynamometer control systems is achieved via a TCP 
connection operating over a Local Area Network.  

 Dynamometer control is achieved using National Instruments’ PCI-MIO-16E-4 real-time data acquisition 
card. This card operates its own operating system and Virtual Instruments (VI’s) can be downloaded to the 
card through LabVIEW 7 RT. 

 Bi-directional communication has been achieved with 2 computers running LabVIEW software. The first 
computer contains the I/O card and runs the real-time VI. The second computer runs as a TCP/IP server 
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and sends required data to the first computer and receives the data sent from the first computer. This 
Setup allows simple testing and improves development speed.  

 Communications between Simulator and Dynamics computer have been tested and validated  

 

The Dynamic Model has been implemented in LabVIEW as a VI running on the I/O card. A screenshot of the 
interface where the model properties are configured is shown in figure 5.  

 

 
Fig.5. Dynamic model screenshot 

 

Conclusions and future work 

The benefits and difficulties involved in connecting a driving simulator to an EV hardware test system to allow 
human control of hardware tests have been described. Work is ongoing to achieve successful integration and proof 
of the concept of human-in-the-loop hardware testing. Once the concept is proved it will be necessary to develop 
suitable test strategies to ensure the maximum benefit is achieved from the system. 
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