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Abstract 
 

Nowadays, documents are increasingly being associated with multi-level 

category hierarchies rather than a flat category scheme. To access these 

documents in real time, we need fast automatic methods to navigate these 

hierarchies. Today’s vast data repositories such as the web also contain many 

broad domains of data which are quite distinct from each other e.g. medicine, 

education, sports and politics. Each domain constitutes a subspace of the data 

within which the documents are similar to each other but quite distinct from the 

documents in another subspace. The data within these domains is frequently 

further divided into many subcategories.  

Subspace Learning is a technique popular with non-text domains such as 

image recognition to increase speed and accuracy. Subspace analysis lends 

itself naturally to the idea of hybrid classifiers. Each subspace can be 

processed by a classifier best suited to the characteristics of that particular 

subspace. Instead of using the complete set of full space feature dimensions, 

classifier performances can be boosted by using only a subset of the 

dimensions. 

This thesis presents a novel hybrid parallel architecture using separate 

classifiers trained on separate subspaces to improve two-level text 

classification. The classifier to be used on a particular input and the relevant 

feature subset to be extracted is determined dynamically by using a novel 

method based on the maximum significance value. A novel vector 

representation which enhances the distinction between classes within the 

subspace is also developed. This novel system, the Hybrid Parallel Classifier, 

was compared against the baselines of several single classifiers such as the 

Multilayer Perceptron and was found to be faster and have higher two-level 

classification accuracies. The improvement in performance achieved was even 

higher when dealing with more complex category hierarchies.  
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Chapter 1 

 

Introduction 
 
 

 

 

1.1  Background & Motivation  
 

Documents today are often maintained in category hierarchies rather than a flat 

classification system. As the volume and diversity of documents grow, so do the 

size and complexity of the corresponding category hierarchies. Documents 

collected for a specific purpose such as collections of medical documents 

(MEDLINE), patent documents (WIPO) and news articles (RCV1) are all 

structured in a hierarchy. The Reuters Corpus (RCV1) has news articles 

classified in a hierarchy of up to five levels. For example, a Reuters news item 

has tags MCAT(Markets)/ M14(Commodity Markets)/ M141(Soft Commodities) 

to denote the three levels of categories associated with it. On the web, Yahoo! 

and  DMOZ  are  two  examples of systems which follow a structured document  
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catalogue. An exhaustive study conducted in 2004 found the Yahoo! directory 

at that time to contain 292,216 categories in a 16-level hierarchy. Traditional 

classifiers cannot take advantage of this hierarchical information. The hierarchy 

has to be flattened to a single level, either manually or through a program, for 

the application of these classifiers. Flattening results in a huge number of 

categories which have to be differentiated by a single classifier. This greatly 

degrades the performance of many classifiers. Furthermore, the information 

inherent in the hierarchy is lost during flattening and a single classifier is not 

able to focus on differences between categories at the lower levels of a 

hierarchy. To be able to access hierarchically-classified documents in real time, 

we need fast automatic methods to navigate these hierarchies. As data gets 

progressively sparser at deeper levels of a hierarchy, it is more appropriate to 

concentrate on two or three topic levels for classification. Instead of using a 

classification algorithm at the first level, methods which can directly point to a 

relevant main topic should be explored. Such methods will help in increasing 

the search/classification speeds. 

 

 

Subspace learning is an area popular with non-text domains such as image 

recognition to increase speed and accuracy. The vast data space in today’s 

world is divided into many subspaces which are quite different from each other, 

e.g. medicine and politics. Since each subspace can be viewed as an 

independent dataset, separate classifiers can be used to process separate 

subspaces. Instead of using the complete set of full space feature dimensions, 

classifier performances can be boosted by using only a subset of the 

dimensions. In this work we explore hybrid classifiers based on semantic data 

subspaces as a means to improve two-level classification of text documents. 

 

 

 



3 
 

1.2   Research Aims and Objectives 

1.2.1 The Aim 

The aim of our research is to improve the speed and accuracy of automatic 

document classification in the presence of category hierarchies. This will be 

done by developing novel hybrid machine learning techniques and novel vector 

representations based on the semantic content of news and text documents. 

 

1.2.2 The Objectives 

The objectives include the following research and experimental tasks: 

 

1. Conduct a literature review on the current state of multilevel text 

classification systems using machine learning methods with emphasis on 

hierarchical classification and subspace learning.  

2. Propose a new vector representation suitable for two-level learning. 

3. Conduct a literature review on the currently available methods of 

classifier combination. 

4. Research various classifier combination methods to improve two-level 

text classification. 

5. Propose a new hybrid architecture for improved two-level learning using 

the new proposed vector representation. 

6. Evaluate the performance of the new proposed hybrid architecture using 

various performance methods. 

 

1.3   Research Questions and Hypothesis 

1.3.1 Research Hypothesis 

• The use of separate classifiers for separate subspaces will improve 

overall subspace classification accuracy and learning time and lead to 

improved two-level classification of text documents. 
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1.3.2 Research Questions 

 

Research Question 1) Is it possible to devise a method to quickly direct 

the document search to a relevant document subspace by examining 

only a single input query vector? 

Research Question 2) Can we develop a classification method which 

directs the classification from all possible classes to a relevant subspace 

of classes? 

Research Question 3) Is it possible to have a vector representation that 
focuses on the relative importance of keywords within a data subspace? 

 

1.4  Novelty / Original Contributions of the Thesis 

  

• Subspace Detection using Maximum Significance Value: We developed 

a method of detecting the subspace (level 1 category) of a document 

from the document vector itself. The document was represented using 

significance vectors. The components of a significance vector are the 

categories present in the data. Since we considered a two level 

classification system, categories from both level 1 and level 2 were 

represented in the significance vector. Each entry in a document 

significance vector gives the significance of the document to that 

particular category. We proposed that the maximum numerical value 

entry among the level 1 categories indicated the level 1 category or the 

subspace that the document was most likely to belong to.  We called this 

the Maximum Significance Value. The relevant subspace of a new test 

document is thus detected from the document vector itself using the 

maximum significance value. This value can be calculated in O(k) time 

where k is the number of level 1 topics. Hence this is a very fast method 

of subspace detection. 
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• Conditional Significance Vector Representation: We developed this new 

vector representation which is based on term frequencies within a given 

subspace. This enhances the distinction between subcategories within a 

subspace when compared to a normal significance vector which uses 

term frequencies across the full data space. 

• Hybrid Parallel Classifier Architecture: We developed and tested this new 

architecture which takes advantage of the semantic subspaces present 

in the data and improves classification at subcategory level 

• Parallel Classifier Architecture: We also tested this special case of our 

hybrid parallel classifier architecture using the same type of classifier for 

all subspaces. This significantly reduces classifier training and test 

timings along with improving classification at subcategory level. 

• Subspace Based Dimensionality Reduction: We use only the vector 

components relevant to a document’s subspace in the hybrid classifiers 

and show that such dimensionality reduction improves subspace 

learning.  

 

 

We used the Reuters Headlines as well as Reuters Full Text (Headlines + Body 

Text) for our experiments showing that Reuters Headlines are better at 

classifying news items than Reuters Full Text. We also used a corpus (LSHTC) 

drawn from real web data showing that our methods are equally applicable to 

the web. Two different baselines, significance vectors and tf-idf, were used to 

provide a comparative evaluation of our proposed system. The performance 

metrics used for the comparisons were classification accuracy and training/test 

timings. We also ran statistical significance tests on these values. The results 

were shown to be statistically significant in all cases. We have applied our novel 

method to the field of text classification. Our thesis also discusses how these 

techniques can be applied to other domains. 
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1.5 Structure of the Thesis 
 

This thesis is divided into seven chapters including the current introduction 

chapter.   

 

Chapter 2 looks at the current state of text classification where the data is 

arranged in the form of multilevel hierarchies. It also presents subspace 

learning, a concept popular in pattern recognition to deal with high dimensions 

and discusses its application to text classification. Classifier combinations are 

also explored as a means to improve classification accuracies. 

 

Chapter 3 introduces the novel techniques of Maximum Significance Value, 

Conditional Significance Vectors and Hybrid Parallel Classifiers along with the 

experimental methodology. The explanation is divided into two phases 

representing the sequence of development of the novel techniques. The two 

test corpora, the Reuters Corpus (RCV1) and the Large Scale Hierarchical Text 

Classification (LSHTC) dataset are also discussed in detail in this chapter. 

 

Chapter 4 presents the results of Conditional Significance Vectors (Phase I). 

These results are compared with two different baselines vector formats – the tf-

idf vector and the standard Significance Vector. Experiments are conducted on 

two datasets, Reuters Headlines and Reuters Full Text, extracted from the 

Reuters Corpus and also on the LSHTC dataset using two levels of topic 

hierarchy. 

 

Chapter 5 presents the results of Phase II of the experiments conducted on the 

final novel architecture – the Hybrid Parallel Classifier. Here again, the results 

are compared with two different baselines, full data classification using tf-idf and 

significance vectors. Two sets of experiments are presented here. Experiment 

Set A presents the hybrid combination of the Multilayer Perceptron (MLP) with a 
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number of other classifiers while the Experiment Set B presents the hybrid 

combination of a wide variety of classifiers. 

 

Chapter 6 presents the results of a special case of the Hybrid Parallel Classifier 

– the Parallel Classifier which combines different classifiers of the same type in 

a parallel combination. These results are again compared with the baselines 

using tf-idf and significance vectors. This chapter presents the effect on 

classifier timings (both training and test) as well as classification accuracy. 

 

Chapter 7 concludes the thesis with a summary of the work undertaken. It 

discusses the outcomes of this research and its implication for the fields of text 

classification and classifier theory. It also discusses the applicability of this work 

to other domains and suggests the scope for future work in this area. 
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Chapter 2  

 

Multi-Level Text Classification 
 

 

 

2.1  Machine Learning in Multi-Level Text Classification 
 

Traditional methods of automatic text classification deal with a number of 

categories on a single level i.e. they implement a flat classification scheme. 

Category hierarchies, however, are a convenient way of arranging huge 

amounts of data in a manageable form. A large number of organisations are 

nowadays associating their data with multilevel category schemes. In this 

chapter we look at the traditional methods of text classification, the presence of 

multi-level data in today’s world, and various methods of extending traditional 

classifiers to deal with multi-level data.   
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2.1.1    Text classification with single level data 
 

Machine Learning techniques for text classification have been applied to 

document classification (Li & Jain, 1998), news classification (Bacan, Pandzic, 

& Gulija, 2005), spam filtering (Androutsopoulos, Koutsias, Chandrinos, 

Paliouras, & Spyropoulos, 2000), automatic essay grading (Larkey L. , 1998) 

and sentiment analysis (Pang & Lee, 2008) to name a few. 

 

Comparative studies of text classifiers have been carried out by various 

researchers. 

 

Sebastiani (2002) compared 42 results on text classification published by 

various researchers and concluded that the best text classifiers were Support 

Vector Machines (SVM), regression based classifiers, example based 

classifiers and boosting methods. These were closely followed by Neural 

Networks and on-line classifiers. The worst performing classifiers were found to 

be the Naïve Bayes and Rocchio classifiers. He stated that it was difficult to 

draw any conclusions about decision trees though one of the results (Dumais et 

al) showed the performance of a decision tree to be very near that of the SVM.  

 

Yang (1999) compared some previously published results along with her new 

results on five different versions of the Reuters Corpus. She concluded that 

kNN was one of the best performing classifiers followed by tree-based and rule-

based classifiers. Naïve Bayes and Rocchio were determined to have poor 

performances. Joachims (Joachims, 1998) compared the performance of 

several SVMs based on polynomial and RBF kernels against that of four 

traditional baselines – Naïve Bayes, kNN, Rocchio and the C4.5 decision tree. 

He reported that all SVMs performed better than all the baselines with kNN 

being the best performer among the baselines. A subsequent paper by Yang & 

Liu (1999) disputed this finding of Joachims and compared five learning 

methods – Support Vector Machines (SVM), Neural Networks (NNet), LLSF (a 
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method developed by Yang), Naïve Bayes (NB) and their own version of k-

nearest neighbours (kNN). They concluded that SVM and kNN were the best 

text classifiers while NB was the worst. 

 

Dumais et al. (1998) compared five methods - Naïve Bayes, BayesNet, 

Decision trees, SVM and a variation of Rocchio’s algorithm on Reuters 21578. 

They concluded that SVM was the best text classifier with trees coming in 

second and Bayesian classifiers last. Among Bayesian classifiers, BayesNet 

performed better than Naïve Bayes. Basu et al. (2003) compared SVM with 

Neural Networks on the Reuters 21578 collection and concluded that the 

performance of SVM was significantly better than that of Neural Networks. 

Lewis et al. (2004) compared SVM, weighted kNN and Rocchio on the new 

Reuters RCV1 corpus using both micro and macro averaged effectiveness 

measures. They found that SVM performed the best followed by weighted kNN. 

Rocchio’s performance was below both SVM and kNN. 

 

Hence the general consensus in research seems to be that SVM is the best text 

classifier while Naïve Bayes is among the worst. However, Giorgetti & 

Sebastiani (2003) compared SVM and Naïve Bayes (the best and the worst text 

performers) with a dictionary based approach in a multiclass setting for 

automated survey coding. They reported that although both the methods 

outperformed the dictionary method, Naïve Bayes outperformed SVM by a 

small margin. This calls into question the capabilities of SVM in a multiclass 

setting. SVMs have originally been developed for binary classification and their 

applications to multiclass classification needs to be explored further. 

Meanwhile, interest in Naïve Bayes still continues unabated. Kim et al. (2006) 

suggested a Poisson Naive Bayes implementation with weight-enhancing 

method and tested it on the Reuters 21578 and 20 Newsgroups text corpora. 

They reported a performance approaching that of the SVM on the same 

corpora. 
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Text classification is intuitively a multiclass problem. However a lot of earlier 

work using SVMs has been done on binary text classification. SVMs are the 

best performers in binary classification but their logic of a separating hyperplane 

cannot be directly applied to a multiclass setting (Li, Zhu, & Ogihara, 2003). 

Multiclass problems are usually solved by decomposing them into a set of 

binary problems. Two approaches used for this are one-vs-rest and one-vs-one. 

The one-vs-rest approach has n binary classifiers to decide the classification for 

each of the n categories while the one-vs-one approach had nC2 or n(n-1)/2 

binary classifiers. The one-vs-one is the most exhaustive approach comparing 

each category with every other category. The outcomes of these classifiers are 

then combined to give the final result. Both these approaches have a significant 

bearing on the classifier training times. The training time for a binary SVM is 

O(nk) where 1.7<=k<=2.1 (Li, Zhu, & Ogihara, 2003) where n is the number of 

training instances. Multiclass classification using SVM would require training 

many SVMs resulting in a high overall classifier training time. 

 

To bypass multiple binary classifications, Li et al. (2003) propose an algorithm 

called GDA based on Generalised Singular Value Decomposition (GSVD) for 

direct multiclass classification. They compare their GDA algorithm with Naïve 

Bayes, kNN and one-vs-rest SVM on a number of datasets including Reuters 

top10 which is a subset of Reuters 21578 consisting of the ten most frequently 

occurring categories. Naïve Bayes and kNN can directly handle multiclass 

classification and do not need multiple binary classifiers for this task. They 

report that Naïve Bayes was the best performing classifier on Reuters top10. 

 

A recent report by Henderson (2009) compares four algorithms, Naïve Bayes, 

SVM, kNN and multiclass Rocchio (also called Centroid) for multiclass 

classification on a subset of data from the open directory project (ODP/DMOZ). 

The SVM implemented uses the comprehensive one-vs-one approach in a fast 

implementation called sequential minimal optimization (SMO). He reports that 

SVM and NB were the best performers on classification accuracy with SVM 
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performing slightly better with larger training sets. However, his study on 

training times with respect to training set size showed that Naïve Bayes showed 

a relatively constant training time whereas SVM initially shows an exponential 

increase which levels off at a training time which is 100 times that of the Naïve 

Bayes training time. The classification time (testing time) of SVM also increases 

greatly with the training set size whereas Naïve Bayes shows small variations. 

The kNN classifier also has a very high classification time. Thus SVM and kNN 

do not scale well with increasing training set sizes whereas NB and Rocchio 

perform well on this metric. 

 

Several researchers have compared various classifiers without specifically 

targeting the text domain. 

 

Kiang (2003) studied the effects of data characteristics on classifier 

performances. She performed controlled experiments with synthetic data to 

observe the effects of various data imperfections. The classifiers used for 

comparisons were neural networks (multilayer perceptron), C4.5 decision tree, 

logistic regression, linear discriminant analysis (LDA) with Bayes classification, 

and the k-nearest neighbor (kNN). The different data characteristics studied 

were base case, nonnormality, nonlinearity, dynamic scenario, high correlation, 

multimodal distribution, unequal sample proportion, unequal covariance and 

sample size. In all cases the neural network method performed the best except 

for large sample size in which case kNN performed the best. The performance 

of logistic regression followed that of neural networks with C4.5 and 

LDA_Bayes being far behind. Sample size had a large influence on kNN and 

C4.5 which showed significant improvement with increasing sample sizes. 

 

Kotsiantis (2007) presented a review of classification techniques for supervised 

learning. He compared several techniques on many relevant criteria such as 

training times, storage requirements, robustness and transparency. According 

to this paper, kNN requires zero training time while Naive Bayes and decision 



13 
 

trees train quickly. The training times of neural networks and SVMs are larger 

than these by several orders of magnitude. kNN has the maximum storage 

requirement for both training and testing as it stores all training instances for 

comparison during testing. For other classifiers memory required during testing 

is much less than that required during the training phase. Naïve Bayes requires 

very little memory for both training and testing. Naïve Bayes can handle missing 

values and along with rule-based and tree-based classifiers is resistant to 

noise. kNN is most susceptible to noise as noise can easily distort its similarity 

measures leading to wrong classifications. Transparency is defined as the ease 

of being understood by human beings. On this index, Naïve Bayes, decision 

trees, rule-based classifiers are the best followed by kNN which is quite good. 

SVM and Neural networks are deemed to be the least transparent. 

 

The analysis by Kotsiantis shows that Naïve Bayes has some very desirable 

qualities i.e. very small training and test timings, low memory storage 

requirements, transparency, resistance to noise and the capacity to handle 

missing values. Furthermore, Naïve Bayes can also work as an incremental 

classifier. Thus we can expect that the application of Naïve Bayes will continue 

to be explored for text classification despite the earlier negative reports. 

 

Kiang’s analysis shows that neural networks are the best classifiers and that 

increasing the training sample size significantly increases the performance of 

both kNN and C4.5 decision tree. Since in the text domain, large training 

sample sizes are easily available, these two classifiers cannot be removed 

entirely from consideration. One major concern with kNN is the large 

classification/test time which increases with increasing training data and thus it 

may not be a suitable classifier especially for web-based applications where 

speed is an essential characteristic. kNN is also very susceptible to noise. 

Hence even though kNN has been found to be a very good text classifier in the 

past, its further application in the web domain may be limited due to the 

requirement for fast classification and the presence of large training data sets. 



14 
 

Decision trees, on the other hand, require less time for training as well as 

classification. Therefore we can expect to continue seeing their application in 

text classification. 

  
2.1.2    Multilevel Data in Today’s World 
 

The advent of internet and its increasing popularity has resulted in an 

overwhelming amount of documents presently available along with a very wide 

variation in their content. To structure this content for easier accessibility, these  

documents are often arranged at multiple levels along a concept hierarchy. 

Hierarchies are not unique to the web. Documents collected for a specific 

purpose e.g. collection of medical documents (MEDLINE), patent documents 

(WIPO) and news articles (RCV1) are all structured along a hierarchy. Similarly 

on the web, Yahoo! and DMOZ are two examples of systems which follow a 

structured document catalogue. The size and depth of data taxonomies is 

increasing with the current explosion of data. Taxonomies now consist of 

thousands of categories. An exhaustive study in 2004 found the Yahoo! 

directory to contain 292,216 categories in a 16-level hierarchy. Single classifiers 

discussed in the earlier section do not take advantage of this hierarchical 

information. The hierarchy has to be flattened to a single level for the 

application of these classifiers. Flattening results in a huge number of 

categories which have to be differentiated by a single classifier. Single 

classifiers are not able to handle such a large number of categories. For 

example, the time complexity if an SVM is directly proportional to the number of 

categories. This training time soon reaches unacceptable levels with the 

amount of categories available in current systems. Furthermore, the information 

inherent in the hierarchy is lost during flattening and a single classifier is not 

able to focus on differences between categories at the lower level of a 

hierarchy. Therefore text classifiers which use this hierarchical information 

present with the data are needed for further improvement in classification 

performance. 
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2.1.3    Hierarchical Text Classification 
 

Koller & Sahami (1997) presented one of the earliest works on hierarchical 

classification of documents using Naïve Bayes and KDB which is a more 

complex Bayesian classifier. They used the Reuters 22173 dataset and 

extracted three hierarchical data sets from it. These datasets consisted of three 

levels each with different number of features and documents. Text documents 

were successively applied to classifiers at the first and second levels for a final 

decision to be made. Errors made at the first level could not be corrected at the 

second level thus propagating them down the hierarchy. The baselines were 

the corresponding flat representations of these three sets. They initially applied 

aggressive feature selection which significantly improved the performance of 

both the flat as well as the hierarchical classifier. The comparison between flat 

and hierarchical classifiers was inconclusive with Naïve Bayes. For two 

hierarchies, the hierarchical Naïve Bayes classifier performed better whereas 

for the third hierarchy, flat Naïve Bayes performed better. However, hierarchical 

classifier using the more complex KDB showed considerable improvement over 

the corresponding flat KDB classifier. With an optimized number of features, the 

hierarchical KDB showed an 80% reduction in error over the flat KDB for one of 

the hierarchical datasets. They conclude that the use of a structured topic 

hierarchy along with the use of aggressive feature selection and more complex 

classifiers would lead to significantly better classification of text documents. 

 

McCallum et al. (1998) attempted to improve the accuracy of a Naïve Bayes 

classifier by using class hierarchies of the UseNet and Yahoo datasets along 

with a set of corporate web pages. They asserted that large hierarchies often 

have sparse training data per class especially at leaf nodes. They applied a 

method called “shrinkage” which improves the maximum likelihood (ML) 

estimate of a leaf node by taking a weighted sum of the ML estimates of all the 

nodes on the path from the root to that leaf node. They reported a 29% 

reduction in classification error using this method. They used mutual information 
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to select relevant words for feature selection at each internal node of the tree 

but their experiments showed that maximum accuracy was achieved with no 

feature selection. To increase computational efficiency, the tree was pruned 

dynamically during classification. They showed that pruning improved efficiency 

with only a slight reduction in classification accuracy. Their experiments also 

showed that using even a partial hierarchy had a better performance than that 

of a flat classifier. 

 

Weigend et al. (1999) experimented with a two-level hierarchy on the Reuters-

22173 corpus using neural networks. Using cluster analysis, they manually 

grouped the topics into several meta-topics. They claimed that a large number 

of wrong assignments in a flat classification model are made on topics which 

are semantically close to the actual topic and thus fine grained distinctions are 

necessary to improve classification. In their model, a test document was given 

to each of the topic classifiers as well as to the meta-topic classifier. The final 

result was obtained by multiplying the individual topic classifier and meta-

classifier outputs. They used two techniques for dimensionality reduction. The 

first one used Latent Semantic Indexing (LSI). For input to the meta-topic 

classifier, LSI was done on the entire corpus documents whereas for input to 

the classifiers on the second level, LSI was done on documents belonging only 

to a particular meta-topic. The second technique used chi-squared term 

selection to choose a small subset of important terms for vector dimensions. 

They reported that the performance of the two-level system was better than that 

of a flat system especially on lower frequency topics. They experimented with 

both global and local LSI representations as well as global and local term 

selection methods and reported that while local LSI outperformed global LSI, 

global term selection gave the best performance. They achieved a 5% 

improvement for averaged precision with the maximum improvement on rare 

topics. 
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Fukumoto & Suzuki (2002) built a hierarchical classifier using a combination of 

Naïve Bayes (NB) and SVM on the 1996 Reuters Corpus which has 126 

categories in a four-level hierarchy. The one-vs-rest model of SVMs was used 

for multiway classification. A separate classifier was learned for each internal 

node of the hierarchy tree. Each classifier thus selected the path to be followed 

until a leaf node was reached. NB classifiers were trained using 10-fold cross 

validation. SVMs were trained on the held out test data (or evaluation data) 

which could not be classified correctly by the NB classifiers. This process was 

repeated for classifiers at all nodes. During the test phase, first the NB classifier 

was applied using a threshold determined during the training phase. If the test 

instance could not be classified by NB, it was given to the corresponding SVM 

for classification. They compared their NB/SVM combination hierarchy results 

with those obtained by a hierarchy of only NB and hierarchy of only SVM along 

with that of flat NB and SVM classifiers. Their results showed that hierarchical 

NB and hierarchical NB/SVM performed better than the flat classifiers. 

However, the hierarchical SVM performed worse than the flat SVM with its F1 

measure value dropping to half of the flat SVM’s F-measure. 

 

Yang et al. (2003) experimented with hierarchical organisations using SVM as 

well as kNN on the OHSUMED corpus with 14,321 categories on 10 levels. 

They found that the training time of flat SVM was 102 hours whereas the 

corresponding time for hierarchical SVM was only 26.3 minutes. In kNN 

however, the main time complexity is in the classification (testing) phase. This is 

almost same for each level in the hierarchy and hence this multiplies with the 

number of levels used.  kNN is therefore not suitable for a hierarchical 

organization. These experiments did not compare the classification 

performance (accuracy/F-measure) of flat and hierarchical organisations and 

only show that the time complexity of SVM is improved by using a hierarchy.  

 

In a subsequent paper, Liu et al. (2005) reported an evaluation of a hierarchy of 

SVMs on the complete Yahoo! taxonomy along with an analysis of the Yahoo! 
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taxonomy itself. They collected their data in 2004 and at that time the Yahoo! 

directory had 292,216 categories organized in a 16-level hierarchy. They 

reported that the category distribution was skewed and that 76% of the 

categories had less than 5 labeled documents. These categories were called 

rare categories and their incidence increased at deeper hierarchy levels. The 

performance of the hierarchical SVM organization was compared with that of a 

flat SVM on both time complexity and effectiveness (using both micro- and 

macro-averaged F-measures). Flat SVM was found to be very unsuitable as it 

took 13 days with a parallel combination of 10 powerful machines for training 

while the average classification (test) time per document was 0.69 seconds. 

The best hierarchical combination, on the other hand, took only 2.1 hours for 

training and an average of 0.0016 seconds for classification. The study of 

classification performance with respect to the depth of the hierarchy however 

showed that increasing the number of levels actually decreased the 

effectiveness. Using categories at the deepest (16th level) for both flat and 

hierarchical SVMs showed a very low performance though the hierarchical SVM 

performed better than flat SVM. Even with the best settings, Hierarchical SVM 

showed a Micro-F1 of 0.24 and a Macro-F1 of 0.12. Liu et al attribute this to 

data sparseness in the lower level rare categories and suggest that increasing 

the number of training examples for these categories would improve 

classification. They compared the performance of the hierarchical SVM with the 

number of training examples per category and found that increasing the number 

of training samples per category beyond 100 significantly increased 

classification performance levels. 

 

Wetzker et al. (2008) studied the effects of taxonomy size on the classification 

performance of a Naïve Bayes classifier. They used the RCV1 corpus with the 

topics hierarchy which had 104 categories. They applied a greedy algorithm to 

find an optimal subset of the full category set using four utility measures – 

utilities by Occurrence, Graph Entropy, SVD and expected F-Measure. They 

reported that the expected F-measure gave the best performance and that only 
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about 20% of the categories were required to achieve near to optimal 

classification performance. They concluded that reduction in the number of 

categories was very important in the face of continuously expanding datasets in 

current times. 

 

Ghazi et al. (2010) compared a flat SVM with two-level and three-level 

hierarchy of SVMs for classification of emotions in text. They used two different 

corpora – blog sentences and children’s stories both annotated with emotion 

labels. They reported the hierarchical approach improved the classification 

results and was also better at handling data imbalances. 

 

All the above approaches use a divide and conquer strategy with successive 

refinements and the use of many classifiers at different levels. One major 

drawback of this method is error-propagation. An error made at any level of a 

hierarchy cannot be rectified at lower levels. Some researchers have explored 

alternate methods to bypass this problem.  

 

Cai & Hoffman (2004) presented a method of modifying a multi-class SVM for 

classification using hierarchy information. A single classifier is learnt instead of 

multiple classifiers at different levels of the hierarchy. Their experiments were 

conducted on the WIPO – alpha collection. This is a collection of patent 

documents structured in a four-level hierarchy and is published by the World 

Intellectual Property Organization (WIPO). A class attribute representation was 

used which encoded the relationship between classes in the data hierarchy. A 

discriminant function was developed which took the contribution of all nodes on 

the path leading to the leaf node. They reasoned that predicting a class near to 

the original class was less costly than predicting a class which was far away 

from it. They defined a loss function based on this idea and the classification 

process worked on minimizing this loss. They also evaluated their system on 

the parent accuracy measure and argued that a higher parent accuracy would 

confine misclassifications into the original category’s siblings rather than into far 
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away nodes. This would be useful in automatic systems which are designed to 

assist human experts. They reported that their hierarchical SVM outperforms 

the flat SVM on the loss function and in most cases performed better on the 

evaluation measures of accuracy, precision and parent accuracy. The 

performance gains were higher in cases with fewer training documents. 

 

Qiu et al. (2009) also built only one SVM classifier for the entire hierarchy. They 

used the global margin maximization method which attempted to separate all 

nodes in a hierarchy from their sibling nodes. They tested their model on the 

WIPO-alpha collection which consists of 1372 training and 358 test instances 

with 188 categories divided into 3 levels. Again, the classifier used was a multi-

class SVM. They compared their implementation with two other hierarchical 

models based on a single SVM and showed that in their system the hierarchical 

losses were reduced. 

 

Gao et al. (2009) proposed a classifier independent framework to deal with the 

problems of data skew and error propagation in earlier hierarchical classification 

methods. This framework consisted of two stages – one to limit errors at the 

current level and the other to correct errors made by a previous level. The 

dataset used was the top 10 levels of the ODP web pages dataset. They 

developed a path semantic vector which incorporated the semantic information 

from a category hierarchy. They introduced category probability and subtree 

probability as means to reduce classification errors at higher levels. Correction 

of classification errors was done using co-occurrence probability which was the 

probability of any two given categories being assigned to a document. The prior 

information was generated offline. They tested their architecture using the SVM 

and Bayesian classifiers and showed performance improvement over the 

corresponding classifiers. They compared the classification performance across 

different levels of the hierarchy and show that more improvement occurred at 

lower levels. The evaluation metric used was the micro F-measure. 
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Chuang et al. (2000) focused on the speed of hierarchical classification and 

conducted their experiments on a collection of web pages consisting of 200 

news items on professional baseball and basketball. They used a concept 

hierarchy where each node was represented by a TFIDF feature vector. These 

TFIDF feature vectors were derived from the collection of all documents 

belonging to that node. The documents set of a parent node was taken as the 

union of the document sets of its child nodes. During the training period, a 

threshold distance was calculated for each node within which a document was 

considered to belong to the node’s category. During the testing phase, a node’s 

TFIDF vector and threshold together acted as a classifier. A new test document 

started its comparison with the root node using the cosine measure. If the 

cosine distance was less than the threshold, the new document was considered 

to belong to that node’s category and was filtered down to the child nodes for 

further comparison. A document was assigned all categories whose node 

TFIDFs fell within the corresponding threshold values. The number of filtered 

documents reduced with the depth of the hierarchy. Accuracy was calculated as 

the fraction of the correctly classified documents out of the total number of 

documents filtered to that node. The results showed an accuracy around 90% 

at the top two levels and a progressive drop in accuracy from level 3 (75%) to 

level 5 (45%). They further experimented with reducing words in the feature 

vector by retaining the top TFIDF feature values and reported that a 40-50% 

reduction in features hardly affected classification accuracy. They also 

experimented with a method of introducing background knowledge and showed 

that it improved classification accuracy. They further applied this method to TV 

closed caption data along with 15% web pages and showed promising results. 

TV captions can thus be used in video and multimedia classification. Their 

timing analysis showed a low training time of O(n log n) where n was the total 

number of documents. 
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2.1.4    Conclusion 
 

A study of traditional text classifiers shows that kNN is a very good classifier 

and that SVM is the best text classifier in a binary setting. However document 

classification often involves many classes or categories. This led to the 

development of the multi-class SVM whose time complexity was proportional to 

the number of classes present. This caused the training time of SVMs to rise 

rapidly. kNN is a lazy classifier which stores all training instances for 

comparison during the testing phase. This causes a high test time complexity 

which soon becomes impractical with large training sets. The Naïve Bayes 

classifier which was earlier reported not to be suitable for text classification is 

seeing a renewed interest due to its very low training/test timings and other 

beneficial characteristics. Decision trees also have low training and testing 

times and continue to be used in classification systems. Neural networks are 

scalable and have low classification (test) times. In the present day, 

classification speed is an important aspect of document classification along with 

classification accuracy. Thus, there is no clear winner on both counts in a multi-

class classification setup. 

 

In the present day, the web has resulted in a huge amount of data along with 

taxonomies consisting of thousands of categories. Traditional single level 

classifiers are now unable to handle the extent and complexity of this data. 

Classifiers are which utilize this hierarchical information are thus required to 

further improve classification performances. Literature shows that the use of 

existing topic hierarchies can drastically improve the timing efficiency of a 

classifier and also improve classification accuracies especially of rare classes. 

In a hierarchical classifier, individual classifiers deal with smaller datasets, less 

categories and a lower number of features. This improves the efficiency of the 

concerned classifier and also improves fine grained distinction between closely 

related topics. However using many levels of hierarchy actually degrades 

performance. The main reason for this is error propagation where errors made 
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at higher levels of the hierarchy cause further errors at lower levels. Another 

reason is the sparse number of training documents at lower levels. Hierarchical 

representations with the SVM classifier have been studied extensively but have 

not shown any major advantages over hierarchical representations with other 

classifiers such as Naïve Bayes and Neural Networks. On the other hand, the 

kNN classifier has been shown to be totally unsuitable for a hierarchical setting. 

 

A few researchers have proposed implementations of a single SVM multiclass 

classifier to deal with hierarchical information. However these studies were 

conducted on a very small dataset with few levels of hierarchy. This method 

seems inappropriate for scaling to very large datasets with large number of 

categories and many hierarchy levels. A method for error reduction and 

correction has also been proposed for a hierarchical arrangement of classifiers. 

This method involves a lot of prior information and computations at each node 

which would affect training times adversely.  

 

This suggests that the popular divide and conquer strategy of text classification 

with the use of successive classifiers at different levels along with feature 

reduction is best suited for scaling to a large number of documents as well as to 

a large number of categories. Training time is also significantly reduced in this 

method. To reduce the effect of error propagation, a small number of levels (two 

or three levels) should be used. These levels need not be the top two/three 

levels. The given hierarchy structure can be optimized by removing some 

intermediate levels between the root and the leaf nodes to create a two/three 

level category hierarchy. Unlike the case of SVM for binary text classification, 

the current research on hierarchical text classification does not throw up any 

specific classifier as a clear winner. As such, an extensive experimental study 

involving classifiers of different kinds is needed to assess whether any 

particular type of classifier is more appropriate for exploiting the concept 

hierarchies inherent in today’s datasets and which classifiers, if any, benefit 

more from a hierarchical organisation. 
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2.2     Subspace Learning in Multi-Level Text Classification 
 

As the volume and diversity of data increases, the number of dimensions 

required to represent the data also increases drastically. Such high dimensions 

adversely affect classifier performances. Subspace Learning is a technique 

used in many fields to bring down the number of dimensions. Application areas 

of subspace learning include image processing, pattern recognition, computer 

vision, robotic vision, human gait analysis, object classification, document 

classification and multimedia classification to name a few. Research in 

subspace learning is broadly divided into two main areas – Feature subspace 

learning which focuses on finding a reduced set of dimensions to represent the 

entire dataset and Data subspace learning which tries to find an optimal data 

subspace along with features corresponding to that subspace to improve overall 

classification performance. 

 

2.2.1 Feature Subspace Learning 
 

Linear Discriminant Analysis (LDA) (Fukunaga, 1990) and Principal Component 

Analysis (PCA) (Joliffe, 1986) are two traditional methods of feature reduction. 

LDA is a statistical method of transforming a high dimensional space to lower 

dimensions. It uses the class information present in the data and is thus a 

supervised method. PCA, on the other hand, is an unsupervised method which 

is very popular in the field of pattern recognition and computer vision.  

 

Szepannek and Luebke (2004) introduced the concept of characteristic regions 

and presented their Different Subspace Classification (DiSCo) method to 

simultaneously visualize as well as classify multiple categories in presence of 

high dimensions. They used the IRIS dataset and compared their method with 

CART decision trees and LDA showing it to outperform CART and approaching 

the performance of LDA. 
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Li (2004) proposed an incremental version of PCA to deal with large datasets. 

He claimed that it was better suited to real-time applications than the 

computationally expensive standard PCA. He applied it successfully to dynamic 

background modeling and multi-view face modeling showing its superiority to 

standard PCA. 

 

Cao et al. (2007) presented a method using a subset of the kernel space to 

extract the most informative features for classification. They used the IDA 

Benchmark repository (medical diseases data) with the SVM and kNN 

classifiers. They showed that their method had lower computational complexity 

compared to the baselines (Generalized Discriminant Analysis(GDA) and 

Kernel Fisher Discriminant Analysis(KFD)) and that the classifier performance 

of SVM was better than that of kNN. 

 

Chen et al. (2008) constructed an optimal subspace kernel with an eigenvalue 

solution. They proposed a method to simultaneously learn the kernel subspace 

as well as the kernel classifier and showed that it was effective. The SVM 

classifier was used with the seven datasets. Five datasets were from the UCI 

Machine Learning Repository (satimage, waveform, segment, wine, and USPS) 

while two were gene expression data sets. 

 

Cohen and Paliwal (2008) constructed a subspace for each class using class 

dependent PCA. They implemented the nearest subspace classifier and 

compared it with the nearest neighbor and the nearest centroid algorithms on 

microarray cancer data showing that it performed better than the baselines. 

 

He and Cai (2009) proposed an active subspace learning algorithm for 

relevance feedback driven image retrieval. Each iteration of the algorithm 

presented the user with five images for labeling. The user provided labels were 

then used for tuning the system. Four iterations were used for each query. They 

used 7900 images from the COREL dataset and compared their algorithm with 
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two other active learning algorithms, a semi-supervised algorithm and the SVM 

which is a passive learning algorithm and showed their algorithm performed the 

best. 

 

Yang et al. (2009) proposed a ubiquitously supervised subspace learning 

prototype to deal with image misalignments in computer vision. They claimed 

that most of the existing supervised as well as unsupervised subspace learning 

algorithms could be considered as special cases of their prototype. This 

prototype was then used to generate misalignment-robust versions of PCA and 

LDA along with two other feature reduction techniques (MFA and NPET). They 

used the CMU PIE (Pose, Illumination and Expression) database and the 

FRGC image database with the nearest neighbor classifier for their 

experiments. Their results showed that all the misalignment-robust versions 

perform better than their original counterparts for face recognition. 

 

Kwak and Lee (2010) proposed their own versions of PCA and LDA called 

WPCA and LDAr to extract features for regression problems. They compared 

the performance of these with some other feature extraction methods on the 

Housing dataset from the UCI machine learning repository and the Orange juice 

dataset from the UCL machine learning database using the weighted kNN 

regressor with k=5. They reported that while WPCA performed slightly better 

than PCA, LDAr outperformed all other methods. 

 

Yaslan and Cataltepe (2010) used the mutual information between class labels 

and features to produce relevant random subspaces for semi-supervised 

ensemble learning. They compared their method with random subspaces on 

five datasets (three datasets from the UCI machine learning repository along 

with a text dataset and an audio genre dataset). The classifiers used were kNN, 

Linear Bayes and J48 (C4.5). Their experiments showed that their method 

performed significantly better in the presence of many irrelevant features, a 

smaller ensemble and a smaller number of features. 
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Hu et al. (2010) suggested a spatiotemporal subspace learning algorithm for 

gait recognition. Unlike the two-dimensional image data, gait data has third time 

dimension. They proposed a gait feature vector (GFV) using PCA and 

Discriminative Locality Alignment (DLA) and used the USF HumanID gait 

database for their experiments. They reported that their vector showed good 

discriminative power for recognition of individuals. 

 

Chatpatanasiri and Kijsirikul (2010) presented a general feature reduction 

framework for semi-supervised learning using the nearest neighbor classifier 

and apply it to three subspace learning algorithms. Their experiments were 

conducted on the Ionosphere (radar pulses), Balance (psychological), BCI 

(EEG graphs), USPS (handwritten digits) and M-Eyale (face recognition) 

datasets. They asserted that their algorithms achieve very good performances 

for the semi-supervised setting. 

 

Calabuig et al. (2010) proposed a Fast Hopfield Neural Network (F-HNN) using 

subspace projections. It confined the direction of movement of the neural 

network to a subspace of constraints. They compared their F-HNN with two 

other HNNs on the N-queens problem with N=16 and showed that their F-HNN 

was 20 times faster than the two baselines.  

 

Xu et al. (2011) proposed a fast kernel subspace learning method (TAKES) and 

conducted their experiments on medical data using the kNN classifier. They 

showed that their method was faster than the other kernel methods. 

 

Other application areas of feature subspace learning include Multispectral 

Remote Sensing Image Classification (Bagan & Yamagata, 2010), Robot Vision 

(Nayar, Nene, & Murase, 1996), Tensor Data Learning (Lu, Plataniotis, & 

Venetsanopoulos, 2011), Face Recognition (Liu, Chen, Zhou, & Tan, 2007), 

Image Segmentation (Law, Lee, & Yip, 2010), Multiple Feature Fusion (Fu, 
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Cao, Guo, & Huang, 2008) and Music Genre Classification (Panagakis, 

Benetos, & Kotropoulos, 2008), (Chen, Gao, Zhu, & Sun, 2006) 

 

2.2.2 Data Subspace Learning 
 

A lot of research in this area concentrates on subspace clustering (also called 

projected clustering). Subspace clustering tries to find clusters present in 

different subspaces of a dataset. It is therefore a combination of a search 

method (to find the subspace) and a learning method (to find the clusters within 

the located subspace).  

 

Parsons et al. (2004) categorised subspace methods into two groups – top 

down and bottom up based on search methods. The top down approach starts 

with the complete feature space where all dimensions have equal weights. An 

approximation of the clusters is made at this stage and each dimension is 

weighted for different clusters. At each subsequent iteration, clusters are 

regenerated using the updated weights. Top down approaches generate  

disjoint partitions of similar sizes. Bottom up algorithms, on the other hand, start 

by creating histograms for each dimension and then selecting only those 

dimensions with densities above a threshold. Clusters are then formed by 

combining dense units. Bottom up approaches can generate overlapping 

clusters. They compared the performance of a top-down algorithm (FINDIT) 

with a bottom-up algorithm (MAFIA) on synthetic datasets. They show that while 

MAFIA outperformed FINDIT on smaller datasets, the top-down FINDIT 

eventually outperformed the bottom-up MAFIA on huge datasets. 

 

Wang et al. (2004) presented a grid density based subspace clustering 

algorithm. They used Region quadtrees which are spatial data structures that 

use binary subspace division. Two dimensional clustering was implemented 

using quadtrees. They asserted that high density units represent cluster 

centers. Their algorithm repeatedly divided the non-empty data spaces. Empty 
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data spaces were not processed resulting in higher speeds. They compared 

their algorithm with the K-Means algorithm on a synthetic dataset as well as the 

KDD CUP’99 dataset and showed it to give better results. 

 

Yiu and Mamaulis (2005) proposed the branch and bound method to find 

projected clusters by mining frequent itemsets. They used synthetic as well as 

real world data (Image Segmentation Data from the UCI Machine Learning 

Repository and the BioID Face Database). They compared their methods with 

some existing projected clustering methods and show that their method was 

faster and produced clusters of high quality. 

 

Moise et al. (2006) proposed an algorithm called P3C – Projected Clustering via 

Cluster Cores. They started by defining cluster cores which were areas 

containing a very high number of data points. These cores were then repeatedly 

refined to produce the final subspace clusters. They used the EM algorithm to 

calculate membership for each data point. Their experiments were run on 

synthetic data as well as real world cancer data and housing data sets. They 

compared their results with those some other subspace clustering algorithms 

and showed them to be better. A further comparison with the full space 

clustering produced by the k-means algorithm showed that full space clustering 

did not produce the same clusters. 

 

Zaki et al. (2007) presented an algorithm called CLICKS which produced 

subspace clusters for discrete valued data. They claimed that most of the 

earlier subspace clustering techniques worked only with numeric data. They 

represented the discrete valued dataset as a k-partite graph and used the 

strongly connected property of graphs to find the set of all k-partite cliques. 

Subspace clusters were taken as all cliques where k < n (total number of data 

dimensions). They used synthetic datasets to compare their algorithm with a 

few other subspace clustering methods which work on discrete-valued data and 

showed their algorithm to be superior. They then applied their algorithm on two 
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real world datasets – the Mushroom dataset and the Congressional votes 

dataset from the UCI machine learning repository and showed that their 

subspace clustering results were better than full dimensional clustering results 

 

Zhou et al. (2008) explored the use of a Bayesian Network for projected 

clustering. They proposed that adjacent cells identified by a Bayesian network 

could be merged together to form a projected cluster. They performed their 

experiments on the Chest-Clinic dataset of 1000 records and showed that their 

method was feasible because it gave the same number of subspaces as 

detected by a traditional density-based clustering algorithm. 

 

Boutemedjet et al. (2010) presented a subspace clustering method for non-

Gaussian (non-normally distributed) data. They applied minimum message 

length, which is a data compression technique, to model selection. They 

defined a message length objective function to select both the subspace as well 

as the subspace features. They evaluated their method on a dataset containing 

images from eight categories. They compared their method with a clustering 

method on non-Gaussian data without subspace clusters and showed it to be 

superior. 

 

Hotho et al. (2001) claimed that clusters which are deemed to be of good 

quality based on statistical measures are often not suitable for real world 

applications such as document search in a large dataset. They further claimed 

that the usefulness of document clustering depends on the user’s view i.e. 

different documents may fall in different categories depending on the task for 

which they are required. They proposed the incorporation of background 

knowledge or ontology in the preprocessing step to produce useful clusters and 

showed that preprocessing based on different ontologies produced different 

clustering outputs. Their method of preprocessing was based on concept 

selection and aggregation (COSA). They claimed that k-means clustering based 
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on COSA produced better clusters than a baseline k-means clustering which 

used tf-idf with the top d terms. 

 

The incorporation of domain knowledge in subspace clustering has also been 

explored. Liu et al. (2004) developed a framework to generate clusters involving 

ontology information. They proposed an ontology relevant cluster tree using 

ontology based pruning. They used the Gene Ontology (GO) to cluster 

biologically related genes. They claimed that their ontology based clustering 

outperformed normal clustering and ontology based pruning reduced the search 

space of the clustering algorithm. 

 

2.2.3  Subspace Learning in the Text Domain 
 

An early paper by Schutze and Silverstein (1997) stated that standard 

clustering algorithms were too slow for real-time applications. They proposed 

projection via truncation of the feature vector as a method of speeding up the 

clustering process. Using a subset of the TREC-4 text collection, they 

compared the performance of a centroid based clustering algorithm with and 

without projection using both LSI and Term Frequency and reported that 

truncating upto 50 terms had no effect on cluster quality. They also reported 

that clustering after projection was much faster than full data clustering. 
 

Torkkola (2001) reported the first application of Linear Discriminant Analysis 

(LDA) to document classification using the Reuters-21578 dataset and the SVM 

classifier. He argued that LDA was better suited to document classification than 

PCA, another dimensionality reduction method which ignores class labels. His 

results showed that reducing the number of feature dimensions from 5718 

(complete set) to just 12 actually reduced the error rate from 11.2% to 8.9% 

while also reducing the computation time to one-fifth of the full feature 

computation time. 
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Yan et al. (2005) presented an incremental supervised subspace learning 

algorithm called IIS to optimize the inter-class scatter. They used the SVM 

classifier to show that their algorithm performed better than the baselines 

(Incremental PCA and Information Gain). The experimental dataset was the 

Reuters RCV1 Corpus using the four highest topic codes.  

 

Jing et al. (2005) presented their own feature weighting K-Means algorithm for 

subspace clustering. They assigned large weights to features that formed the 

subspaces and used the 20-Newsgroups text data to evaluate their algorithm. 

They compared their algorithm with standard K-Means and bisection K-Means 

and showed it to be superior. 

 

Yan et al. (2006) proposed a scalable algorithm called Supervised Kampong 

Measure (SKM) which assigned each data point close to its class mean while 

maintaining the maximum distance from other class means. Their experiments 

were performed on the complete Reuters RCV1 dataset using the four highest 

topic codes with the SVM classifier. They evaluated performance using the F1 

measure and showed that their SKM performed much better than the 

incremental PCA and Information Gain (IG) methods. They asserted that it is 

very hard to compute LDA on the complete Reuters dataset and thus it was not 

used in the comparison. For comparison of SKM with LDA and PCA, they used 

six subsets of the UCI machine learning repository using the kNN classifier and 

showed that SKM was better than both LDA and PCA. 

 

Salakhutdinov and Hinton (2009) presented Semantic Hashing as a way to 

speed up document retrieval using the 20-Newsgroups and the Reuters RCV II 

datasets. They used 128-bit codes to map similar documents to nearby memory 

addresses. Semantic Hashing mapped documents directly to the hardware, 

making retrieval very fast and independent of the size of the document set. 

They also used semantic hashing to extract a relevant subset of documents for 

TF-IDF calculation. They reported that applying TF-IDF to a subset of 
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documents gave higher accuracy than applying TF-IDF to the full dataset. They 

used the Restricted Boltzmann Machine (RBM) for their experiments. 

 

Gangeh et al. (2010) applied the Random Subspace Method (RSM) to text 

classification using a subset of the Brown Corpus. The feature space was very 

large (22244 terms) compared to the number of documents (495). They 

performed feature selection in two steps – first by document frequency (DF) and 

then by Information Gain (IG). They showed that feature reduction upto 25% 

had no effect on classification performance. The Random Subspace Method 

works by randomly dividing the feature space into subspaces and applying the 

base classifier to each subspace. The final classification result is obtained by 

combining the outputs of all the base classifiers usually by a majority vote. The 

performance of their RSM method using SVM as the base classifier was 

compared to single SVM and kNN classifiers on both full and reduced feature 

spaces. The RSM method using SVM performed the best followed by SVM with 

two-step feature reduction. kNN was the worst performing classifier here. 

 

2.2.4  Conclusion 
 

A majority of the subspace learning work in Pattern Recognition, Image 

Processing, Computer Vision, etc deals with the creation of feature subspaces 

with transformed features which can be used to distinguish between objects in 

the complete data space. While these methods might be appropriate for the 

pattern/image domain with high dimensions but few categories, they would not 

be suitable for the currently emerging web text data with a very large number of 

categories. In the text domain, we now need to differentiate between similar 

subcategories within a larger category.  As such, we need to focus more on 

smaller differences which would not be possible with a reduced feature set on 

the complete data. Subspace Clustering, which works by extracting a data 

subspace along with features relevant to that data subspace, intuitively seems 

to be more appropriate for our problem domain of text with a large number of 
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categories. A number of researchers have applied subspace clustering to 

uncategorised documents. However there are large datasets available with 

associated category information. This information should therefore be used for 

text classification. The current state of subspace research indicates that 

classification is more popular with feature subspace learning while clustering is 

more popular with data subspace learning. The analysis of our problem domain, 

however, suggests classification to be more appropriate due the presence of 

class labels. There is therefore a need to develop classification methods which 

work on data subspaces. While two-level hierarchical classification may seem 

analogous to this situation, a major difference is the use of a classifier at the top 

level to detect the first level of categories in hierarchical classification. Data 

subspace methods, on the other hand, use search techniques to detect 

subspaces. This is very useful for the speed of classification/retrieval. Hence 

the need of the hour is to have a search based method to detect the subspace 

(first level category) followed by classification within the subspace with reduced 

dimensions to detect the second level of categories. The study of hierarchical 

classification earlier has shown that error propagates down the hierarchy and 

that methods of error correction are computationally very expensive. In order to 

keep retrieval speeds high, error correction has to be avoided. The number of 

levels has to be kept small (2-3 levels) to minimize error propagation. Thus a 

two-level classification system with a search based method to detect categories 

at the first level seems to be most appropriate for classification of text 

documents with large taxonomies. Literature has also shown SVM and kNN to 

be the most widely used classifiers in subspace learning. Our earlier analysis 

on text classification has however shown that while SVM is the best binary 

classifier, the same does not hold true for multi-class problems and that kNN is 

not suitable at all for large training sets as it postpones all computation to the 

run-time classification phase. Therefore, a comparative analysis of many types 

of classifiers is required to determine which classifiers are best suited to 

subspace classification. Furthermore, as preprocessing based on ontologies 

has been shown to produce better clusters, the use of background knowledge 
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in the search method for the detection of appropriate subspaces (first level 

categories) should also be explored. 

 

2.3  Classifier Combinations in Multi-Level Text Classification 
 

The combination of two or more classifiers has been used in many fields to 

improve classification results. Classifiers combinations can be of two types – 

classifier ensembles and parallel classifiers. In classifier ensembles, a number 

of classifiers of different types are applied on the complete dataset using full 

feature space and the final result is obtained by combining the results of the 

individual classifiers. Parallel classifiers, on the other hand, are combinations of 

classifiers which work in parallel on different portions of the feature/data space. 

Parallel classifiers can be either of same or different types. 

 

2.3.1  Classifier Ensembles 
 

Classifier ensembles are based on the reasoning that strengths and 

weaknesses of various classifiers can compensate each other. An instance 

which is misclassified by one classifier may be classified correctly by another 

classifier thus pushing up the combined classification performance. Combining 

diverse classifiers is an essential characteristic for a successful combination. 

Kittler et al. (1998) state that different classifiers within a combination should 

never agree on a misclassification i.e. the same incorrect class should not be 

assigned to a test instance by two or more constituent classifiers. Different 

classifiers can be trained either by using different input representations for the 

data, different parameters for the same type of classifier (e.g. different k values 

for the kNN classifier; different weights for an MLP classifier) or different 

classifiers altogether (e.g. Naïve Bayes and Decision Trees). There are also a 

number of rules for combining the outputs of various classifiers within a 

combination. The most popular one is the majority vote rule where the category 

receiving the most votes is assigned as the category for the test instance. Other 
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rules are based on mathematical functions such as product, sum, min, max and 

median.  

 

Xu et al. (1992) applied classifier combinations for the recognition of 

handwritten numerals. They defined three levels of output information produced 

by single classifiers – abstract level (a unique label), rank level (a ranked list of 

all labels) and measurement level (a numeric value for each label showing the 

test instance’s degree of association with that label). They asserted that the 

highest information was contained in the measurement level. Depending on 

these levels, they defined three types of classifier combinations: Type 1, Type 2 

and Type 3 which combined the output information in the abstract, rank and 

measurement levels respectively. They stated that the measurement level could 

be used to combine classifiers such as Bayesian, k-nearest neighbor and other 

distance-based classifiers. They suggested two versions of voting for Type 1 

combinations. They used 6000 handwritten samples from the U.S. Zipcode 

database and four classifiers using different types of features extracted from the 

handwritten numerals. Their results showed that the combination of several 

classifiers had a much better recognition performance than the corresponding 

single classifiers. They concluded that the focus of future research should 

change from building a single good classifier with input feature reduction to 

building a number of classifiers using different and complementary vectors of 

low dimensions.    

 

Kittler et al. (1998) also tackled the problem of handwritten character 

recognition using classifier combinations. Scanned images of single handwritten 

numeric digits served as the data. The four classifiers used were Hidden 

Markov Model (HMM), Neural Network, Gaussian and Structural classifiers. 

Four different representations of the characters were used as input for the four 

classifiers. The outputs of these classifiers were then combined with different 

combining rules. Their experiments showed the sum rule and the median rule to 

be the best performers which were closely followed by the majority vote rule. 
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These rules performed better than the best individual classifier (HMM). The max 

rule performed better than all the other classifiers (except HMM). They also 

performed an error sensitivity analysis and showed the sum rule to be most 

resilient to errors.  

 

Duin and Tax (2000) conducted a large set of experiments with various types of 

classifier combinations using different classifiers as well as different feature sets 

along with many types of combining rules. Their data consisted of six different 

feature sets for 2000 handwritten numerals. Their classifiers included two 

Bayesian classifiers, three nearest neighbor classifiers, a decision tree, two 

neural networks and two versions of support vector machines. Their results 

showed that combination of different feature sets on one classifier was much 

better than the combination of different classifiers on one feature set and that 

the best performance was observed by the combination of both different feature 

sets and different classifiers. 

 

Al-Ani and Deriche (2002) experimented with classifier combinations for the 

classification of texture images and speech segments and also for speaker 

identification. They used N different feature sets to train a single type of 

classifier – thus generating N different classifiers. The Neural Network 

classifiers were used in these experiments. Each classifier produced an output 

vector with K components showing the degree to which the input vector 

matched the K label categories. They used the Dempster-Shafer (D-S) theory of 

evidence which can represent uncertainties to produce a numeric value 

representing belief in a class label k produced by a classifier cn. The 

combination method then combined these belief values. Their results showed 

that combined classifiers worked better than single classifiers and that their 

combination technique was superior to the other standard techniques. However, 

their technique was also very computationally expensive. 
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Jordan and Jacobs (1993) introduced a tree structured architecture called the 

Hierarchical Mixture of Experts for combining results of several classifiers. 

The tree contained gating networks at non-terminal nodes and the classifiers or 

experts at the leaf nodes. The input test vector was applied to all classifiers 

which produce corresponding output vectors. The output vectors were blended 

with the gating network outputs to produce weighted outputs of experts which 

then proceeded upwards in the tree. The root level gave the final output of the 

classification system. 

 

2.3.2  Parallel Classifiers 
 

Parallel classifiers are based on the premise that reducing the number of 

features and the data variation that a single classifier has to handle can greatly 

improve its performance and that this would lead to enhanced overall 

performance. Duin (2002) presented a theoretical discussion on classifier 

combinations and suggested that the use of a combining classifier would be 

better than the use of fixed combination rules such as sum, product, etc. He 

suggested that the training set could be used to partition the feature space into 

different regions and decide the base classifier for each region. For each test 

instance, the combining classifier would have to find its relevant region after 

which actual classification would be done by the base classifier chosen for that 

region. He suggested that the training set should be divided into two parts – one 

for training the base classifier and one for training the combining classifier. 

 

Tulyakov et al. (2008) presented a review of classifier combination methods 

from the perspective of pattern classification. They categorised combination 

methods according to complexity, output, etc. They asserted that while there 

were many methods of generating different classifiers such as the use of 

different training sets, different input feature vectors, random feature subsets 

and different initialisations, the ideal method would be to partition the feature 

space into regions related to different categories. They concluded that most 
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classifier combination research was limited to using low complexity 

combinations such as the sum rule, majority voting, etc. They suggested the 

use of more complex combination methods and the use of locality property of 

classifiers for future research. 

 

Qi et al. (2011)  applied the locality property to develop a locally sensitive SVM 

(LSSVM) for image retrieval. They applied locally sensitive hashing (LSH) to 

divide the whole feature space into a number of regions and constructed a local 

SVM on each of the regions. They asserted that local regions had smaller 

within-class variance. This corresponded to higher between-class variance 

leading to easier separability of classes. Thus, in local regions, simple 

classifiers could achieve a performance comparable to the more sophisticated 

classifiers but with faster speeds. Their experiments showed that their locally 

sensitive SVM outperformed the simple full space SVM. Their algorithms were 

compared on a real-world image dataset collected from Flickr.com 

 

A number of researchers have used a random selection of features to create 

feature subsets. Ho (1998) used a pseudorandom method to select of subset of 

feature dimensions. A decision tree was then constructed using the complete 

training set with only the selected dimensions. Multiple trees were thus 

constructed using different random feature subsets. A test instance was given 

to all the trees for classification and the individual classification decisions were 

then combined to generate the final result. They claimed that their method could 

take advantage of high dimensions. The experiments were conducted on 14 

datasets from the UCI machine learning repository. Their results were better 

than the results obtained by using a single decision tree of the same type with 

complete data and full feature set.  

 

Kotsiantis (2009) presented a Local Random Subspace Method to generate 

localized decision stumps. The experiments were carried out on 27 datasets 

from the UCI machine learning repository. Decision stumps are one level 
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decision trees that classify instances based on a single feature value. 

Pseudorandom subsets of the original feature vector were used. Local learning 

was done by only taking the training points which were close to the test point. 

These were identified by using the euclidean distance metric. Fifty neighbouring 

points were used in this case. A random feature vector was then generated and 

a decision stump trained using these points. The final prediction for a test 

instance was based on the averaged result of all decision stumps. They showed 

that their technique worked better than normal K-nearest neighbor method with 

k=3 as well as k=50 in addition to being better than other methods using 

decision stumps such as Bagging, Boosting and Multiboost. 

 

2.3.3 Classifier Combinations in the Text Domain 
 

Larkey and Croft (1996) experimented with different combinations using three 

classifiers: K-nearest neighbor, relevance feedback and the Bayesian 

Independence Classifier. The single classifiers were used as baselines. The 

text corpus was a collection of patient discharge summaries with 15 ICD9 

codes. Their results on various two-classifier combinations as well as the three-

classifier combination showed that all the combinations performed better than 

the individual classifiers and that the three-classifier combination performed the 

best. On the measure used for combination, normalized scores performed 

better than label ranks. 

 

Ruiz and Srinivasan (1999) used the hierarchical mixture of experts to 

implement a text classification system. They used backpropagation neural 

networks to implement experts as well as gates and evaluated their system on 

the UMLS metathesaurus and the OHSUMED test set. The document vector 

was applied to each of the experts as well as each of the gates. In their system, 

the gates represented high level concepts and gate outputs were set to 1 or 0 

depending on whether the document had the corresponding gate’s concept or 

not. They compared their system with flat neural networks as well as the 
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Rocchio classifier. They showed that the hierarchical neural structure performed 

better than flat neural network which in turn performed better than the Rocchio 

classifier. 

 

Estabrooks and Japkowicz (2001) also presented a text classification scheme 

based on hierarchical mixture of experts. They designed it to deal with class 

imbalances and tested it on the Reuters-21578 corpus. They proposed a three 

level tree with individual classifiers at the leaf nodes, combining experts at the 

internal nodes and output level at the root node. The two combining experts 

were the oversampling expert and the undersampling expert which combined 

the results of 10 oversampling and 10 undersampling classifiers each. They 

compared their results with those of C5.0 with Adaboost  and showed that their 

scheme was more effective on both precision as well as recall. 

 

Al-Kofahi et al. (2001) applied classifier combinations to the problem of text 

classification using the American Law Reports (ALR) consisting of 13,779 

articles. They presented a Case Routing Program (CARP), a multi-classifier 

system consisting of two distance based classifiers and two probabilistic 

classifiers. They used article text and metadata to generated different 

representations of an article. They also experimented with the use of words, 

bigrams, nouns and noun-word pairs at the feature level and showed the last 

two (nouns and noun-word pairs) to be the most effective. They asserted that 

their system was deployed in January 2001 and that its performance was 

comparing favorably with the previous manual system. 

 

Florian et al. (2003) presented a classifier combination using four diverse 

classifiers for named entity recognition in both English and German language 

data. The classifiers used were Robust Risk Minimization (RRM), Maximum 

Entropy (ME), Transformation-Based Learning (TBL) and Hidden Markov Model 

(HMM). The outputs of these classifiers were combined using equal voting as 

well as three variations of weighted voting. The use of RRM as the combining 
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classifier was also studied. In all types of combination methods, the combined 

classifier performed better than the best individual classifier on the F-measure 

metric. The RRM classifier also showed a good performance as a combining 

classifier. Their results were much better on the English data than on the 

German data.  

 

Fradkin and Kantor (2005) used three classifiers (Bayesian Logistic Regression, 

kNN and Rocchio) with normalized scores and different combining rules on the 

Reuters RCV1 corpus. They used the T11SU (TREC-11) performance measure 

for comparison. On this measure, their experiments showed Bayesian-kNN and 

Bayesian-Rocchio to perform better than the 3-classifier Bayesian-kNN-Rocchio 

combination and the other 2-classifier combinations including kNN-Rocchio. 

They assert that as kNN and Rocchio are similar classifiers, their results 

confirm the fact that combining diverse classifiers results in better classification. 

Their experiments with a variety of combination methods were inconclusive and 

showed variation with different performance measures. 

 

2.3.4  Conclusion 
 

The origins of classifier combination research seem to be rooted in pattern 

recognition where the problem domain consists of high dimensions but small 

number of categories. As such most of the methods discussed are ensemble 

methods where each classifier is applied on the full data space. As discussed 

earlier, this is not suitable for the current text domain with a huge number of 

categories at single and multiple levels. Parallel classifiers, on the other hand, 

suggest a separation of feature/data space along with the use of a separate 

classifier for each subspace. The locality property of classifiers enables them to 

distinguish between small variations among topics within a subspace. As such 

parallel classifiers are more suited to the task of multilevel text classification 

than classifier ensembles.  
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The use of feature subsets has been proposed in literature to reduce classifier 

complexity and training time. However there are no clear pointers as to the way 

the original feature space can be partitioned.  Random projections of the feature 

space have been used but there is no guarantee that these projections contain 

necessary distinguishing characteristics. A partitioning of the feature space 

which corresponds to a partitioning of the underlying data is logically required. 

Tulyakov et al. (2008) have suggested that the ideal method would be to 

partition the feature space into regions related to different categories. This 

suggests that category information should be incorporated into feature vectors. 

Thus we have to look beyond the standard tf-idf vectors and even beyond 

simple semantic enhancements such as clubbing together of similar words 

based on some dictionary/thesaurus. A category based vector system would be 

further useful to accommodate the inherent category structure of the data and 

thus add useful semantic content to the vector representation. Positioning 

similar categories close together in the feature space can lead to a spatial 

representation of the category hierarchy within the feature vector. This would 

enable different types of partitioning to access different levels of information.  

Thus a parallel classifier system along with the use of a category based vector 

representation is needed to tackle today’s problem of multi-level data 

classification. 

 

Literature has not identified any specific classifier or set of classifiers which 

perform well in classifier combinations. The only fact that has come up is with 

reference to classifier ensembles. This states that the classifiers should be 

diverse. However, there has been no study across a wide variety of classifiers 

to determine which types of classifiers, if any, benefit more from being in a 

combination. Most of the work with parallel classifiers has been done using a 

single type of base classifier. Nowadays, there is a huge amount of data which 

can be divided into very diverse subspaces. These subspaces have widely 

differing characteristics. It is quite possible that best classifiers for different 

subspaces might belong to different types. Therefore there is a pressing need 
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to conduct a wide ranging evaluation of hybrid classifier combinations to 

determine which types of basic classifiers are best suited for parallel 

combinations in the problem domain of multi-level text classification.  

 

As the web data is continuously expanding, text classifiers need to be retrained 

regularly to keep up with the increasing variation. As such, classifier training 

times will play a prominent role in their usefulness. The speed of 

search/classification is also a very important requirement today. Memory 

requirements during the classification phase also need to be kept in mind for 

real-time applications. A tradeoff between classification effectiveness and 

timing/memory efficiency has to be considered to determine the best solution 

for our problem domain. 

 

2.4     Chapter Summary 
 

In this chapter we looked at various methods of single level text classification 

and methods of extending them to deal with multi-level text classification. A 

survey of basic classifiers showed that the Support Vector Machine (SVM) and 

the k-nearest neighbours (kNN) were designated as the best text classifiers. 

The SVM was undoubtedly the best binary classifier but it could not be directly 

applied to a multi-class setting which is the normal case in text classification. 

The k-nearest neighbours (kNN) method postponed all computation to 

classification run time and as such was not suitable with large training sets. 

Hierarchical classification schemes showed that using the complete hierarchy 

was not suitable for classification and that the use of 2 – 3 levels was sufficient 

to improve classification and minimize the error-propagation effect. Subspace 

Clustering with its use of a data subspace and reduced data dimensions seems 

quite relevant to multi-level text classification. However, unsupervised clustering 

can be replaced by supervised classification here to take advantage of existing 

category information. Hence subspace classification with a search method at 

level 1 to detect the subspace seems quite relevant to our problem. The use of 
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classifier combinations which are quite popular in other domains was also 

explored. Parallel classifiers, where a number of classifiers work on different 

data/feature subspaces, can be applied to multi-level text classification. Feature 

splits which mirror data splits in the category hierarchy are indicated as an area 

of future research. Thus a document vector scheme which incorporates the 

category hierarchy within it needs to be explored. Overall the best methodology 

seems to be a two-level scheme with a search based method operating on a 

single document vector to detect the first level category or the subspace. Hybrid 

combinations using separate classifiers for separate subspaces should be 

explored. A comprehensive study comparing various types of classifiers for their 

suitability to multi-level text classification should also be carried out. 
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Chapter 3   

 

Architecture & Methodology   
 

 

 

In this chapter, we introduce the novel techniques of Maximum Significance 

Value, Conditional Significance Vectors and Hybrid Parallel Classifiers along 

with the experimental methodology. The explanation is divided into two distinct 

phases which reflect the sequence of development of the novel techniques and 

their experimental confirmation. Phase I of the explanation discusses the 

concept of semantic subspace learning. It presents Maximum Significance 

Value as a technique for fast detection of the semantic subspace along with a 

novel vector representation, the Conditional Significance Vector, which 

enhances the distinction between subtopics within a subspace. It also 

introduces an initial architecture based on these concepts and explains the 

experimental methodology used for testing this initial architecture. Once these 

concepts have been understood, we proceed to Phase II which presents our 
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final Hybrid Parallel Classifier Architecture based on the concepts developed in 

Phase I.  In Phase II, we also present the experimental methodology for testing 

this final architecture. Towards the end of this chapter, we discuss the 

performance metrics and the statistical significance tests used to evaluate our 

final architecture. 

 

3.1 Phase I: Semantic Subspace Learning 
 

In this section we look at the presence of semantic subspaces in today’s data 

and the need for document learning within these subspaces. We also look at an 

existing method of incorporating category information in the document vector 

and present our proposed modification to extend this format to include a 

category hierarchy. We also present an intuitive method of subspace detection 

based on the semantic separation of data. We further introduce a general 

classifier independent semantic subspace learning architecture which can be 

implemented with any base classifier. 

 

3.1.1  Semantic Subspaces 
 

A vast data repository such as the web contains many broad domains of data 

which are quite distinct from each other e.g. medicine, education, sports and 

politics. Each of these domains constitutes a subspace of the data within which 

the documents are similar to each other but quite distinct from the documents in 

another subspace. The data within these domains is frequently further divided 

into many subcategories. While searching for a document in a huge data space, 

it will be very useful to accurately narrow the search at an initial stage. This will 

speed up the search as well as allow us to focus on small differences between 

similar documents. Subspace Learning is therefore receiving increased 

attention nowadays. Non-overlapping subspaces can be represented as first 

level topics in a tree structured category hierarchy. In the following sections, we 
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develop a method to encode the relevant subspace within a document vector 

for fast subspace detection and processing. 

 

 
Fig 3.1:  Semantic Subspaces in a Large Data Space 

 

 
3.1.2  Significance Vectors:  A Category Based Vector Format 
 

The Significance Vector (Wermter, 1995), (Wermter, Panchev, & Arevian, 1999) 

is an existing vector representation that incorporates category information. It 

represents the significance of the data and weighs different words according to 

their significance for different topics. Significance Vectors are determined based 

on the frequency of a word in different semantic categories. A modification of 

the significance vector called the semantic vector uses normalized frequencies 

where each word w is represented with a vector (c1,c2,..,cn) where ci represents 

a certain semantic category and n is the total number of categories. A value 

v(w, ci) is calculated for each element of the semantic vector as the normalized 

frequency of occurrences of word w in semantic category ci (the normalized 
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category frequency), divided by the sum of the normalized frequency of 

occurrences of the word w for all categories in the corpus 

  

{1..n}k  where
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For each document, the document semantic vector is obtained by summing the 

semantic vectors for each word in the document and dividing by the total 

number of words in the document. Henceforth it is simply referred to as the 

Significance Vector. This vector representation was designed for a flat 

classification system and the positioning of the categories as components of the 

word/document vector does not follow any specific structure. The following 

section addresses the need for a structural representation. 

 

3.1.3  Conditional Significance Vectors: A Proposed New Vector Format 
for Semantic Subspace Learning  
 

The Significance Vectors can be modified to represent a category hierarchy 

rather than a flat category structure. Consider the two-level hierarchy shown in 

Fig 3.2 with four level 1 topics (main topics) and 20 level 2 topics (subtopics). 

Two separate flat significance vectors will be generated for level 1 and level 2. 

The level 1 significance vectors will consist of 4 vector components 

representing the four level 1 categories whereas the level 2 significance vector 

will consist of 20 vector components representing the 20 level 2 categories. 

Concatenating these two vectors will give a combined vector with 24 

components out of which the first 4 represent the 4 level 1 (main) topics and the 

remaining 20 represent the 20 level 2 (sub) topics. The four level 1 topics can 

be considered as representing four subspaces of the full data space. Within the 

20 level 2 topics, the subtopics belong to the same main topic can be positioned 

consecutively in the vector space. This will lead to a semantic division of the 



50 
 

vector space into 4 groups, each group representing the subtopics of a specific 

main topic and therefore a subspace. 

 

 
Fig 3.2:  An Example Two Level Category Hierarchy 

 

Since the document significance vector represents the significance of the 

document for the different categories, the category with the maximum numerical 

significance value is most likely to be real the category of a given document. 

Hence we propose the Maximum Significance Value as a means to detect the 

relevant subspace (level 1 topic) of a new test document. 

 

  

 
Fig 3.3: Subspace Detection with Maximum Significance Value 

 

A D C B 

 
Root Node 

Level 1 Topics 
(Main Topics) 
[Total 
Number = 4] 

A1, A2, . . . . D1, D2, . . . . C1, C2, . . . . B1, B2, . . . .  

Level 2 Topics (Subtopics) 
[Total Number = 20] 

 

New Document   
Maximum Significance Value 

A      B 

      C    D 



51 
 

Here we first look at the significance vector entries of the first four components 

of the document vector. These represent the four main topics or the four 

subspaces of our example. The maximum numerical value among the four level 

1 category vector entries is then designated as the Maximum Significance 

Value. The level 1 category corresponding to this Maximum Significance Value 

is then most likely to be the main category of the given document. This category 

is then nominated the level 1 topic or subspace corresponding to that 

document. Once the subspace has been detected we need to consider only the 

subtopics present in that subspace for further classification. The subtopics 

belonging to the other subspaces can be removed from consideration by 

masking them i.e. setting their values to zero.  

 

The word significance vector values for the level 2 topics will normally be 

generated by considering all the 20 subtopics in equation (1) i.e. the 

significance is considered across the whole data space. Therefore we 

designate this vector as the Full Significance Word Vector. However, the 

importance or significance of a word depends on the subspace in which it 

occurs e.g. the word “bank” will have a much higher significance in the financial 

sector (Bank of England)  than in the sports sector (bank on a player). Therefor 

we propose that in the generation of significance values for a word according to 

equation (1), its occurrence only within the subtopics of a given main topic 

should be considered. Since this will reduce the value in the denominator of 

equation (1), the numerical significance value will increase. This will help in 

distinguishing between the subtopics of a given main topic. We designate this 

word vector as the Conditional Significance Word Vector.  The document 

vectors generated using these two different word vectors will now be called the 

Full Significance Document Vector and the Conditional Significance Document 

Vector respectively. 
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Fig 3.4:  The Concept of Full & Conditional Significance 
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subtopics of only a particular subspace (main topic) 
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Fig 3.5: Mapping of Conditional Significance Vector to relevant subspace 

 

 

Example of Conditional Significance Vector Generation  
 

a) Word Conditional Significance Vector 
 

Let us take the frequency of occurrence of a word w in the main topics and 

subtopics of the example category hierarchy in Fig. 3.2 as given in the following 

tables. For simplicity, we take non-normalised frequencies here (In actual 

experiments, normalised word frequencies are taken to accommodate different 

sized documents and different number of documents in each category). The 

corresponding semantic vector values are calculated according to equation (1) 

using the given non-normalised frequencies. Each of the tables is treated as 

independent for the purpose of semantic value calculation. The calculated 

semantic values are also shown in each table.  
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Main Topics: 

 A B C D Total Word Freq 

Word  
Frequency 

58 7 17 2 84 

Semantic  
Vector 

58/84 = 
0.690 

7/84 = 
0.083 

17/84 = 
0.202 

2/84 = 
0.024 

 

 

 

Subtopics of main topic A 

 A1 A2 A3 A4 A5 A6 A7 A8 

Word  
Freq 

4 8 6 10 12 6 4 8 

Semantic 
Vector 0.069 0.138 0.103 0.172 0.207 0.103 0.069 0.138 
 
 
Subtopics of main topic B 

 B1 B2 B3 B4 

Word 
Freq 

1 0 2 4 

Semantic 
Vector 0.143 0 0.286 0.571 
 
 
Subtopics of main topic C 

 C1 C2 C3 C4 C5 C6 

Word 
Freq 

4 6 2 1 0 4 

Semantic 
Vector 0.235 0.353 0.118 0.059 0 0.235 
 
 
Subtopics of main topic D 

 D1 D1 

Word 
Freq 

1 1 

Semantic 
Vector 0.5 0.5 
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The main topic table gives the Level 1 semantic word vector while the 

concatenation of the subtopic tables gives the Level 2 semantic word vector as 

follows: 

 
Level 1:  0.690 0.083 0.202 0.024 

 

Level 2:  0.069 0.138 0.103 0.172 0.207 0.103 0.069 0.138 0.143 0

  0.286 0.571 0.235 0.353 0.118 0.059 0 0.235 0.5 0.5 

 

The Level 1 and Level 2 semantic vectors are then further concatenated to give 

the final 24-component word conditional significance vector as follows: 

 
0.690 0.083 0.202 0.024 0.069 0.138 0.103 0.172 0.207 0.103  

0.069 0.138 0.143 0 0.286 0.571 0.235 0.353 0.118 0.059  

0 0.235 0.5 0.5 

 

b) Document Conditional Significance Vector 
 
The document significance vector is obtained by summing the significance 

vectors of all the words present in the document and then dividing by the total 

number of words in that document. Taking the very simplistic case of a 

document consisting of only one word w, the document significance vector is 

the same as the word conditional significance vector of word w above. As 

explained in section 3.1.3, the maximum significance value entry in the level 1 

vector defines the main topic which in this case is topic A. The level 2 entries 

belonging to other main topics (B, C and D) are set to zero. The first 4 vector 

entries denoting the 4 main topics are then deleted leaving a document vector 

with 20 components as follows: 

 
0.069 0.138 0.103 0.172 0.207 0.103 0.069 0.138 0 0  

0 0 0 0 0 0 0 0 0 0 

This vector is the final document conditional significance vector. 
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3.1.4  Semantic Subspace Learning Architecture 
 
Fig 3.6 shows a general classifier independent subspace learning framework. In 

this framework, a text document is converted to a two-level significance vector 

format using the pre-generated conditional significance word vectors. Subspace 

detection is done based on the Maximum Significance Value and the 

Conditional Significance Vectors are generated as described in the previous 

section.  

 
Fig 3.6:   Semantic Subspace Learning Architecture 

 

The training document vectors generated this way along with their actual labels 

are then used to train a base classifier. A test document then goes through the 

same procedure for the generation of its conditional significance vector. This 
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vector is then presented to the base classifier for category classification. This 

framework can be used to compare the performances of various classifiers by 

using them as base classifiers in the learning algorithm block. The vector 

lengths mentioned in Fig 3.6 correspond to the example two level category 

hierarchy shown in Fig 3.2. 

 

3.1.5 Test Data Corpora    
 

We tested our two proposed architectures (semantic subspace learning 

architecture and the hybrid parallel classifier architecture) with two different 

corpora each – the popular Reuters RCV1 benchmark and the LSHTC dataset 

drawn from the Open Directory Project (ODP) for the ECIR 2010 challenge. The 

experiments were conducted in WEKA - an open source machine learning 

environment.  

 

i) Reuters Corpus (RCV1): 
 

The Reuters Corpus (Rose, Stevenson, & Whitehead, 2002) is a well-known 

test bench for text classification experiments. We used the Reuters Corpus 

Volume 1 (RCV1) which is a collection of 806,791 news items written by 

Reuters journalists in 1996 - 1997. The news items are presented in an XML 

format which later evolved into the NewsML format used by the International 

Press Telecommunications Council (IPTC).   All the news items are tagged with  

category codes for three separate schemes - topic, region and industry sector. 

For our experiments, we used the topic classification scheme. For topics, the 

RCV1 corpus has a hierarchical organization with four major groups. This 

scheme is well suited to test the classification performance of subspace based 

architectures. We used the Reuters Corpus headlines as the main dataset for 

our experiments as they provide a concise summary of each news article. Each 

Reuters headline consists of one line of text with about 3 – 12 words. Some 

example Reuters headlines are given below: 



58 
 

"Healthcare Imaging Q2 loss vs profit."  

"Questar signs pact to buy oil, gas reserves."  

"Ugandan rebels abduct 300 civilians, army says."  

"Estonian president faces reelection challenge."  

"Guatemalan sides to sign truce in Norway  report."  

''CRICKET-Australia beat Zimbabwe by 125 runs in one-day match." 

"PRESALE - Akron, Ohio." 

 

The topic codes in the Reuters Corpus are organized into four hierarchical 

groups. These groups have the following main (top level) categories: 

Corporate/Industrial (CCAT), Economics (ECAT), Government/Social (GCAT) 

and Markets (MCAT). These four groups each have a hierarchy of codes and 

the length of the code represents a subcategory’s depth. As a representative 

test, ten thousand headlines along with their topic codes were extracted from 

the Reuters Corpus. These headlines were chosen so that there was no overlap 

at the first level classification. Each headline belonged to only one level 1 

category. According to the Reuters Classification scheme, the second level 

categories are defined as C1, C2, E1, M1, etc. (code length = 2). However, a 

study of the Reuters tagged news items shows that these codes are never used 

in practice. This fact is also confirmed by Rose et al. (2002). To define the 

subcategory of a news item, the Reuters news items have been tagged with 

codes such as C12, E21, M11, etc. which are actually third level categories with 

code length equal to 3. We therefore considered these topics as the direct 

subtopics of CCAT, ECAT and MCAT. While the subtopics of CCAT, ECAT and 

MCAT follow a coherent alphanumeric scheme, the sub-categorisation of GCAT 

(Government/Social) seems to have been done in a more ad-hoc manner. Most 

of the subcategories of GCAT have abbreviations like GDEF (Defence), GEDU 

(Education), GSPO (Sports), etc. Hence we took these abbreviations as the 

direct subtopics of GCAT.  
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Since most headlines had multiple level 2 subtopic categorisations, the first 

subtopic was taken as the assigned subtopic. Our assumption here was that the 

first subtopic used to tag a particular news item was the one most relevant to it. 

Thus each headline had two labels associated with it – the main topic (Level 1) 

label and the subtopic (Level 2) label. A total of 50 subtopics were used in our 

dataset. Headlines were then pre-processed to separate hyphenated words to 

avoid such combinations being interpreted as new words rather than a 

sequence of known words. Dictionaries with term frequencies were generated 

using the TMG toolbox (Zeimpekis & Gallopoulos, 2005) and were then used to 

generate the Full Significance Document Vector and the Conditional 

Significance Document Vector (see section 3.1.3) and the tf-idf (Manning, 

Raghavan, & Schutze, 2008) representation for each document. The Reuters 

main topics and their distribution in the data along with the number of subtopics 

of each main topic in our data set are given in Table 3.1. Some of these 

subtopics along with their numbers present in the data are given in Table 3.2.  

 

We also extracted the full text (headlines + body text) of ten thousand Reuters 

items and processed them as above to compare the performance of Reuters 

Full Text with that of Reuters Headlines for the purpose of news classification. 

 
Table 3.1: Reuters Level 1 (Main) Topics 

 

 
 

No. Main 
Topic 

    Description                                Number Present No. of 
Subtopics 

1. CCAT     Corporate/ Industrial                                                                4600 18 

2. ECAT     Economics                                                                                   900 8 

3. GCAT     Government/ Social                                                                 1900 20 

4. MCAT     Markets                                                                                       2600 4 
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Table 3.2: Some Reuters Level 2 Subtopics 

 

 
Main Topic  

 
Subtopic 

 
Description 

 
Number Present 

 

CCAT 

 

C17 

 

Funding / Capital 

 

377 

 

CCAT 

 

C32 

 

Advertising/ Promotion 

 

10 

 

ECAT 

 

E12 

 

Monetary/ Economic 

 

107 

 

ECAT 

 

E21 

 

Government Finance 

 

377 

 

GCAT 

 

G15 

 

European Community 

 

38 

 

GCAT 

 

GENV 

 

Environment 

 

30 

 

MCAT 

 

M11 

 

Equity Markets 

 

617 

 

MCAT 

 

M14 

 

Commodity Markets 

 

1050 

 

 

ii) LSHTC Corpus: 
 
For comparative analysis with data drawn from the web, we used the Large 

Scale Hierarchical Text Classification (LSHTC) (Kosmopoulos et al., (2010)) 

competition data from the LSHTC website (http://lshtc.iit.demokritos.gr) as our 

second corpus. This challenge was part of the European Conference on 

Information Retrieval (ECIR) 2010. The LSHTC data was constructed by 

crawling the web pages that are found in the Open Directory Project (ODP) 

located at www.dmoz.org and translating them into feature vectors. These 

vectors were called content vectors. The Open Directory Project is an open 
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source and extensive directory of web content.  An example web page content 

accessed from this directory is given below: 

 

"Ambienti Italia brings you world class Italian furniture through infinite selections for 

decorating your home. Flexibility and design expertise allow us to adapt to any kind of 

space according to required functions and available dimensions. We want our 

customers to go home and find the best - comfort and style. Ambienti Italia's collections 

reflect the achievements and history of Italian home furnishings" 

 

The ODP descriptions of the web pages and the categories were also 

translated into feature vectors. These vectors were called web page and 

category description vectors. Two datasets were put up for the LSHTC 

competition – the large_lshtc_dataset and the smaller dry-run_lshtc_dataset. 

The directory of each dataset consisted of a cat_hier.txt file describing the 

category hierarchy of the dataset and data folders for four tasks (Task1 – 

Task4). Task1 contained only crawl data while the data for task 2, task 3 and 

task 4 contained crawl data and RDF data. 

 

We used the data from the dry-run task1 training folder as our LSHTC corpus. 

The average number of words in each document in this dataset is 290. This 

number takes into account only the stemmed words without the stop words.  

The data is in the form of content vectors which are obtained by directly 

indexing the web pages. A text file describing the category hierarchy is also 

given with the data. There were 4463 content vectors in this data file with their 

associated lowest level labels. We pre-processed these vectors in order to 

replace the lowest level labels with the corresponding labels of the first two 

levels of the category hierarchy. We detected 10 level 1 main topics and 158 

level 2 subtopics in this dataset. There were no overlapping topics at any level 

in this corpus. These topics were coded numerically. We replaced this numeric 

code with an alphanumeric code for ease of analysis. Subsequently the 10 top 

level categories were given letter codes A – J. These main topics and their 



62 
 

distribution in the data along with the number of subtopics of each main topic in 

this data set are given in Table 3.3. The subtopics were coded A01-A19, B01-

B36, etc with the first character denoting the main topic to which these 

subtopics belonged. The number of document content vectors for some of 

these subtopics is given in Table 3.4. These vectors were then used to 

generate the Full Significance Document Vector, the Conditional Significance 

Document Vector and the tf-idf representation for each document.  

 
Table 3.3: LSHTC Level 1 (Main) Topics 

 
No. 

 
Main Topic 

 
Number Present 

 
Number of Subtopics 

 

1.  

 

A 

 

802 

 

19 

 

2. 

 

B 

 

979 

 

36 

 

3. 

 

C 

 

639 

 

17 

 

4. 

 

D 

 

269 

 

17 

 

5. 

 

E 

 

158 

 

5 

 

6. 

 

F 

 

20 

 

3 

 

7. 

 

G 

 

578 

 

19 

 

8. 

 

H 

 

364 

 

6 

 

9. 

 

I 

 

321 

 

14 

 

10. 

 

J 

 

333 

 

22 
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Table 3.4: Some LSHTC Level 2 Subtopics 

 
Subtopic 

 
Number Present 

  
Subtopic 

 
Number Present 

 

A09 

 

120 

 

F02 

 

11 

 

A16 

 

8 

 

F03 

 

8 

 

B06 

 

114 

 

G07 

 

47 

 

B26 

 

40 

 

G14 

 

208 

 

C05 

 

2 

 

H02 

 

336 

 

C10 

 

232 

 

H04 

 

2 

 

D02 

 

26 

 

I03 

 

91 

 

D08 

 

62 

 

I10 

 

18 

 

E03 

 

40 

 

J06 

 

44 

 

E05 

 

2 

 

J22 

 

19 

 

 

3.1.6  The Experimental Environment 
 

Our semantic subspace learning architecture is a general framework which can 

be implemented with any classifier. To decide which classifiers are best suited 

to this architecture, we decided to compare the performance of a wide variety of 

classifiers. WEKA (Hall et al. (2009)), an open source machine learning 

environment, provided an excellent platform for these experiments as it 

contains a wide variety of classifiers. WEKA (Waikato Environment for 
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Knowledge Analysis) was developed by the University of Waikato, New 

Zealand. We chose ten classifiers in WEKA to cover a wide range of classifier 

types.  

 

Selected Classification Algorithms: 
 

The ten classification algorithms selected for our experiments were Random 

Forest, C4.5, Multilayer Perceptron, BayesNet, IBk, NNge, PART, Bagging, 

LogitBoost and Classification via Regression. Random Forests (Breiman, 

2001), (Bernard, Heutte, & Adam, 2009) are a combination of tree predictors 

such that each tree depends on the values of a random vector sampled 

independently. C4.5 (Quinlan, 1993), (Ruggieri, 2002) is an inductive tree 

algorithm with two pruning methods: subtree replacement and subtree raising. 

The Multilayer Perceptron (Verma, 1997), (Popescu, Balas, Perescu-Popescu, 

& Mastorakis, 2009) is a neural network which uses backpropagation for 

training. BayesNet (Pernkopf, 2007), (Likforman-Sulem & Sigelle, 2008) 

implements Bayes Network learning using various search algorithms and 

quality measures. IBk (Aha, Kibler, & Albert, 1991) is a k-nearest neighbour 

classifier which can select an appropriate value of k based on cross-validation 

and can also do distance weighting. NNge (Martin, 1995) is a nearest neighbor 

- like algorithm using non-nested generalized exemplars which can be 

considered as if-then rules. A PART (Frank & Witten, 1998) decision list uses 

C4.5 decision trees to generate rules. Bagging (Breiman, 1996) is a method for 

generating multiple versions of a classifier and using these to get an 

aggregated classifier. LogitBoost (Friedman, Hastie, & Tibshirani, 2000) 

performs classification using a regression scheme as the base learner. In 

Classification via Regression  (Frank, Wang, Inglis, Holmes, & Witten, 1998), 

one regression model is built for each class value.  Table 3.5 shows the 

different classification algorithms used with their default parameters in Weka. All 

these algorithms can cope with categories of different sizes.  This takes care of 

the different number of instances present for each category in the dataset. 
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Table 3.5:   Classification Algorithms and their default parameters in Weka 

 
No. 

 
Algorithm 

 
Parameters 

 

1. 

 

Random Forests 

Number of trees = 10;  

Depth of each tree=unlimited; No. of random 

attributes = log_2(No. of total attributes) + 1; 

seed=1 

 

2. 

 

J48 (C4.5) 

Confidence factor=0.25, MinNumObj=2, 

NumFolds=3,  

Subtree raising = true; seed=1 

 

3. 

 

Bagging 

Bag Size Perc=100; Number of Iterations=10; 

NumExecutionSlots=1; 

Base Classifier=REP Tree; seed =1 

 

4. 

 

Classification via Regression 

 

 

Classifier = M5P 

 

5. 

 

LogitBoost 

Number of Iterations =10,  

Number of Runs =1, 

Shrinkage =1.0,Weight threshold =100,  

Base Classifier = Decision Stump; seed=1 

 

6. 

 

PART 

Confidence factor=0.25, MinNumObj=2, 

NumFolds=3; seed=1 

 

7. 

 

IBk 

KNN=1; No cross validation;  

No distance weighting;  

Window size = Unlimited; 

Uses Linear Nearest Neighbour search algorithm; 

 

8. 

 

BayesNet 

Estimator=Simple Estimator,  

Search algorithm=K2 

 

9. 

 

NNge 

NumAttemptsGeneOption=5 

NumFoldersMIOption=5 

 

10. 

 

MultiLayer Perceptron 

Learning Rate=0.3,Momentum=0.2,  

Training time=500, Number of Hidden Layers = 1 

Number of Hidden Layer units 

 = (attributes + classes) / 2 

seed=0 
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   Table 3.6:  Variation in seed value used for multiple experimental runs   

Chapter of 
Reported 
Experiments  

Train/Test Split 
Used on Full 
Data 

Number of 
Different Seed 
Values Taken 

Variation Range 
of Seed Value 

Chapter 4 50% 10 1 – 5000 (Reuters) 

1 – 2232 (LSHTC) 

Chapter 5 90% 10 1 – 9000 (Reuters) 

1 – 4000 (LSHTC) 

Chapter 6 90% 10 1 – 9000 (Reuters) 

1 – 4000 (LSHTC) 

 
 

Table 3.7:  Other parameter variations used in Chapter 5 and Chapter 6 
Classification 
Algorithm 

Parameters and their different values taken  

PART Confidence factor = 0.25, 0.5, 0.1 

Minimum Number of Instances per Leaf (minNumObj) = 2, 3, 4 

NNge Number of attempts for generalization  

= 2, 4, 5, 7, 9, 10, 12, 15, 17, 20 

Number of folders for mutual information 

= 2, 4, 5, 7, 9, 10, 12, 15, 17, 20 

J48 Confidence factor = 0.25, 0.5, 0.1 

Minimum Number of Instances per Leaf (minNumObj) = 1, 2, 4 

Random Forest Number of Trees = 10, 15, 20, 25, 30 

 

Multilayer 

Perceptron 

Learning rate = 0.1, 0.3, 0.5, 0.9    

Momentum = 0.2, 0.3, 0.5 

Number of Hidden layer units (Reuters) = 25, 50, 100 

Number of Hidden Layer units (LSHTC) = 79, 158, 316 

Training Time = 500, 700, 1000 

 



67 
 

An average of ten runs was used record the experimental results. Table 3.6 and 

Table 3.7 show the variation in parameters used for the different runs. 

  

 

3.1.7  Experimental Methodology  
 

For the experiments, various datasets were generated from the test corpora as 

explained below: 

 

i) Reuters Headlines Datasets 
 

The initial experiments were run with ten thousand Reuters Headlines. To study 

the effect of masking out portions of the vector space, datasets for five different 

vector representations were generated.  The Full Significance Vectors were 

processed in different ways to generate four different data sets. The fifth set 

was the Conditional Significance Vector dataset. 

 

a) No Mask Full Significance Data Set 

 
For each vector the first four columns, representing four main topics – CCAT, 

ECAT, GCAT & MCAT, were ignored leaving a vector with 50 columns 

representing 50 subtopics. The order of the data vectors was then randomised 

and divided into two sets – training set and testing set of 5000 vectors each. 

 

b) Mask 1 Full Significance Data Set 

 

For each document vector the numerical entries in the first four columns, 

representing four main topics – CCAT, ECAT, GCAT & MCAT, were compared. 

The topic with the minimum numerical value entry was identified. This signified 

the main topic which was least relevant to the document vector. Therefore the 

entries for all subtopics belonging to this main topic were masked i.e. set to 
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zero. Finally, the first four columns representing four main categories were 

deleted. The resultant vector had 50 columns representing 50 subtopics but the 

subtopic entries for the topic with least significance value had been masked to 

zero. The average number of relevant columns was then 38. The dataset was 

then randomised and divided into two sets – training set and testing set of 5000 

vectors each.    

                                                                                                                       

c) Mask 2 Full Significance Data Set 

 
As above, the numerical entries in the first four columns of each vector 

representing four main topics CCAT, ECAT, GCAT and MCAT were compared. 

The main topics with the two smallest numerical value entries were identified. 

Then the entries for all subtopics belonging to these two main topics were 

masked i.e. set to zero. Then, the first four columns representing four main 

categories were ignored. The resultant vector had 50 columns representing 50 

subtopics but the subtopic entries for the two topics with the two smallest 

significance values had been masked to zero. The average number of relevant 

columns in this case became 25. The masked dataset was then randomised 

and divided into training and testing sets of 5000 vectors each. 

 

d) Mask 3 Full Significance Data Set 
 

Here again, the numerical entries in the first four columns, representing four 

main topics – CCAT, ECAT, GCAT & MCAT, were compared. The topics with 

the three smallest numerical value entries were identified. Then the entries for 

all subtopics belonging to these three topics were masked i.e. set to zero. 

Finally, the first four columns representing four main categories were deleted. 

The resultant vector had 50 columns representing 50 subtopics but the subtopic 

entries for the three main topics with least significance value, 2nd least 

significance value and 3rd least significance value had been masked to zero. 

Since there are four main topics in the Reuters corpus, this has the same effect 
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as allowing only the subtopics of the main topic with the maximum significance 

value in the resultant vector while masking out all the rest.  The average 

number of relevant columns here was 12.  Again the dataset was randomised 

and divided into training set and testing set of 5000 vectors each. 

 

e) Mask 3 Conditional Significance Data Set 

 
In this case, while calculating the significance vector entries for each word in a 

subtopic, its occurrence in all subtopics of only a particular main topic was 

taken into account. Hence this representation was called the conditional 

significance vector. Here, when calculating significance values for C11, C12, 

etc, the topics considered were only the subtopics of CCAT. Similarly for M11, 

M12, etc only MCAT subtopics were considered. For each word, four separate 

conditional significance sub-vectors were generated for the four main Reuters 

topics. These sub-vectors were then concatenated together along with the 

significance value entries for the four main topics to form the 54 column word 

vector.  The Conditional Significance document vector was generated by 

summing the conditional significance word vectors for each word appearing in 

the document and then dividing by the total number of words in the document. 

This vector representation is used to measure the significance of a word within 

a particular main topic. Hence only the subtopic entries for the main topic with 

maximum value entry were allowed. All the subtopic entries belonging to the 

other 3 main topics were masked out. The dataset was then randomised and 

divided into two sets – training set and testing set of 5000 vectors each. Fig 3.7 

shows the Conditional Significance Vector (CSV) and the Mask 3 Full 

Significance Vector (FSV) for two different Reuters headlines. The main topic 

label and subtopic label are shown at the end of each vector. As can be seen, 

the vector entries are boosted in the case of CSV – thus helping to differentiate 

between subtopics within the subspace. 
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Fig 3.7: Conditional Significance and Full Significance (Mask 3) Vectors for Two 

Different Reuters Headlines 
 
 

 
f) TFIDF Vector Set 

 

The tf-idf weight (Term Frequency–Inverse Document Frequency) is often used 

in text mining and information retrieval. It is a statistical measure which 

evaluates how important a word is to a document in a data set. This importance 

increases with the number of times a word appears in the document but is 

reduced by the frequency of the word in the data set. Words which occur in 

almost all documents have very little discriminatory power and hence are given 

very low weight. The TMG toolbox (Zeimpekis & Gallopoulos, 2005) was used 

to generate TFIDF vectors for the ten thousand Reuters headlines used in 

these experiments. Dimensionality reduction was also done using PCA with the 

same toolbox. The number of dimensions was chosen as 50 for PCA to have 

vectors similar in size to the significance vectors generated earlier. The TFIDF 

and the TFIDF/PCA datasets were then randomised and divided into two sets - 

training and test of 5000 vectors each. 

 

 

Headline 1 

0......0, 0.20, 0.03, 0.04, 0.02, MCAT/M11 : FSV 

0......0, 0.59, 0.11, 0.20, 0.08, MCAT/M11 : CSV 

Headline 2 

0…..0, 0.03, 0.05, 0.04, 0.0099, 0.01, 0.0073, 0.25, 0.0069, 0…..0, ECAT/E51: FSV 

0…..0, 0.13, 0.13, 0.10, 0.0100, 0.02, 0.0300, 0.52, 0.0300, 0…..0, ECAT/E51: CSV 
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ii) LSHTC Datasets 
 

The web based dataset LSHTC had ten main topics. To study the effect of 

masking on this dataset, we followed the method explained in the earlier section 

(for the Reuters dataset) and generated ten LSHTC Full Significance Vector 

variations – No Mask, Mask 1, Mask 2, Mask 3, Mask 4, Mask 5, Mask 6, Mask 

7, Mask 8 and Mask 9. Mask 9 represented the status where only the subtopics 

of the maximum significance main topic were allowed while the subtopics 

corresponding to the remaining 9 main topics were masked out. The Mask 9 

Conditional Significance Vector and the tf-idf vectors were also generated for 

this dataset.  

 

iii) Experiment Runs 
 

We ran a wide range of experiments in Weka running each classification 

algorithm in Table 3.5 for each of the datasets mentioned in (i) and (ii) above. 

For each experiment, we took ten runs with different seed values and recorded 

the average classification accuracy and variance of these ten runs. The results 

of these experiments are discussed in the following chapters. 

 

 

3.2 Phase II : Hybrid Parallel Classifiers 
 

In this section we propose an extension to the semantic subspace learning 

architecture presented in section 3.1.4 to deal with very wide variations in data 

present in today’s world (e.g. the web). The previous architecture proposed only 

one classifier which had to distinguish between all the subtopics at level 2. The 

vector length to be handled by the classifier also remained the full document 

vector length even though many components were masked to zero in the 

conditional significance vector representation. 
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3.2.1 Hybrid Classifiers and Dimensionality Reduction 
 

Subspace analysis lends itself naturally to the idea of hybrid classifiers. Since 

each subspace can be viewed as an independent dataset, different classifiers 

can be used to process different subspaces. Each subspace can be processed 

by a classifier best suited to the characteristics of that particular subspace. 

Additionally, instead of using the complete set of full space feature dimensions, 

classifier performances can be boosted by using only a subset of the 

dimensions. The use of a smaller number of dimensions will avoid the curse of 

dimensionality and lead to simpler classifiers with lower training times 

 

The method of choosing a feature dimension subset is an area of active 

research. In the Random Subspace Method (RSM) (Ho, 1998), classifiers were 

trained on randomly chosen subspaces of the original input space and the 

outputs of the models were then combined. Several variations of this method 

have also been proposed in literature [(Garcia-Pedrajas & Ortiz-Boyer, 2008), 

(Kotsiantis, 2009), (Yaslan & Cataltepe, 2010)]. However random selection of 

features does not guarantee that the selected inputs have necessary 

distinguishing information. Today’s data contains many distinct semantic 

subspaces and it will be useful if the selected feature subset was in some way 

related to the semantic subspace. Our conditional significance vector (sec 

3.1.3) proposes that all subtopics of a given main topic be positioned adjacent 

to each other in the vector space. This vector representation thus divides the 

vector space into distinct semantic vector component groups. These separate 

vector component groups can thus be used to train separate classifiers 

corresponding to the different semantic subspaces.  
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3.2.2 Hybrid Parallel Classifier Architecture 
  

We propose the use of a parallel classifier combination where different 

classifiers operate on different portions of the input data space.  The combining  

 

 
Fig 3.8: Hybrid Parallel Classifier Architecture for Semantic  

Subspace Learning 

 Combination Classifier Input Stage 

(Chooses active subspace classifier based on 
the maximum significance value for level 1 
topics) 

Classifier 1 Classifier N Classifier 2 

 
Combination Classifier Output Stage 
(Forwards result of active subspace classifier 
only) 

Individual 
Classifier Inputs 
with Reduced 
Dimensions  

.  .  .  .  .  .  .  .  .  .  .  .  .  .  .  

Hybrid Classifier Output Label 

Input Test Vector 

Individual Classifier 
Outputs 
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classifier decides which part of the input data has to be applied to which base 

classifier. Fig. 3.8 shows our proposed hybrid parallel classifier architecture for 

semantic subspace learning. During the training phase, the training data set is 

divided into separate training data subsets according to the level 1 topics or 

subspaces (4 subsets for our example in Fig 3.2). The relevant feature vector 

subset is taken for each subspace. These training data subsets with the 

relevant feature subsets and the associated document subtopic (level 2) labels 

are then used to train the corresponding base classifiers associated with the 

different subspaces. 

 

In this architecture the combination classifier chooses the relevant subspace of 

a test vector based on the Maximum Significance Value (see section 3.1.4). 

Furthermore, only the vector components corresponding to subtopics of this 

subspace (main topic) are extracted. These relevant vector components are 

then given to the classifier trained on this subspace for level 2 classification of 

the test vector. The predicted subtopic labels of the test vectors are then 

compared with their actual subtopic labels for the calculation of classification 

performance. 

 

In this hybrid architecture, each base classifier trains on less data with reduced 

dimensions. This is expected to reduce the training time of each classifier thus 

impacting the overall training time. Classification performance is also expected 

to improve as each base classifier deals with a smaller variation in data. 

 

 
3.2.3 Experimental Methodology 
 

For these experiments too, we generated as number of datasets from the test 

corpora as follows: 
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i) Datasets Generation 
 

As will be described below, three different vector representations (Full 

Significance Vector, Conditional Significance Vector and tf-idf) were generated 

for our data. The Conditional Significance Vectors were processed further to 

generate main category-wise data vector sets (4 different datasets for Reuters 

and 10 different data sets for LSHTC). 

  

a) Full Significance Vector 

 
Here, the document vectors were generated by summing the full significance 

word vectors for each word occurring in a document and then dividing by the 

total number of words in that document. For each Reuters Full Significance 

document vector the first four columns, representing four main topics – CCAT, 

ECAT, GCAT & MCAT, were ignored leaving a vector with 50 columns 

representing 50 subtopics. The order of the data vectors was then randomised 

and divided into two sets – training set of 9000 vectors and a test set of 1000 

vectors. Similarly, for each LSHTC Full Significance document vector the first 

ten columns, representing ten main topics (A - J), were ignored leaving a vector 

with 158 columns representing 158 subtopics. The order of the data vectors 

was then randomised and divided into two sets – training set of 4000 vectors 

and a test set of 463 vectors. 

 

b) Main-Category Wise Conditional Significance Vectors 

 
Here, the conditional significance word vectors were used to generate the 

document vectors for the Reuters and LSHTC corpora. These document 

vectors were then processed as described below to produce the 

CSV_RelVectors for each corpus. 
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Reuters Corpus: The order of the 10,000 Reuters Conditional Significance 

document vectors was randomised and divided into two sets – a training set of 

9000 vectors and a test set of 1000 vectors. The training set was then divided 

into 4 sets according to the main topic labels. For each of these sets, only the 

relevant subtopic vector entries (e.g. C11, C12, etc for CCAT; E11, E12, etc for 

ECAT) for each main topic were retained. Thus the CCAT category training 

dataset had 18 columns for 18 subtopics of CCAT. Similarly the ECAT training 

dataset had 8 columns, the GCAT training dataset had 20 columns and the 

MCAT training dataset had 4 columns. These 4 training sets were then used to 

train the 4 parallel classifiers of the Reuters hybrid classifier. The main category 

of a test data vector was determined by the maximum significance vector entry 

for the first four columns representing the four main categories. After this, the 

entries corresponding to the subtopics of this predicted main topic were 

extracted along with the actual subtopic label and given to the classifier trained 

for this predicted main category.  
 

LSHTC Corpus: The order of the 4463 LSHTC Conditional Significance 

document vectors was randomised and divided into two sets – training set of 

4000 vectors and a test set of 463 vectors. The training set was then divided 

into 10 sets according to the main topic labels. For each of these for sets, only 

the relevant subtopic vector entries (e.g. A01, A02, etc for A; B01, B02, etc for 

B) for each main topic were retained. These 10 training sets were then used to 

train the 10 parallel classifiers of the LSHTC hybrid classifier. The main 

category of a test data vector was determined by the maximum significance 

vector entry for the first ten columns representing the ten main categories. After 

this, the entries corresponding to the subtopics of this predicted main topic were 

extracted along with the actual subtopic label and given to the classifier trained 

for this predicted main category. 
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c) Main-Category Wise Full Significance Vectors  

 
To compare the performance of different vector formats, we also generated the 

main-category wise Full Significance Vectors. Here, the Full Significance 

document vectors were generated as described earlier for the Reuters and 

LSHTC Corpora. After this, the document vector set for each corpus was 

divided into main-category wise training and test sets as described in section 

(b) above. Two variations of the main-category wise Full Significance Vectors 

were generated for our experiments: 

 

- Main-Category Wise Separated Vectors with the complete set of 

subtopic vector dimensions (50 for Reuters and 158 for LSHTC) 

designated as FSV_FullVector. 

 

- Main-Category Wise Separated Vectors with only the relevant subtopic 

vector dimensions corresponding to the actual main category for training 

vectors and the predicted main category for test vectors. These vectors 

are designated here as  FSV_RelVector. 

 

d) TF-IDF Vector  

 

The tf-idf vectors were generated as in section 3.1 for both the Reuters as well 

as the LSHTC Corpus. The tf-idf  vector datasets were then randomized and 

divided into 9000 training vectors / 1000 test vectors for the Reuters Corpus 

and 4000 training vectors / 463 test vectors for the LSHTC Corpus.  

 

ii) Experiment Runs 
 
We conducted a wide range of experiments in Weka with a large variety of 

hybrid classifier combinations. We determined the best classifier for each 

subspace and then combined all these classifiers in a hybrid combination. We 
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also experimented with various predefined two-classifier and four-classifier 

combinations. Single classifiers using the Full Significance Vector and the tf-idf 

vector on the complete dataset were used as baselines for these experiments. 

Classification accuracy and Training Time were used to compare the 

performances of the various hybrid classifiers with the baselines. The average 

of ten runs with different classifier parameter values was taken for each 

recorded performance metric. In some of the experiments the Reuters Full Text 

document vectors were used to compare the performance of Reuters Headlines 

v/s Reuters Full Text. We also experimented with parallel classifiers using the 

same type of classifier for each subspace. The results of all these experiments 

are discussed in detail in the following chapters.  

 

 

3.3 Performance Evaluation Metrics and Hypothesis Testing 
 

In a binary classification setting, precision, recall and F-measure are the most 

popular performance evaluation metrics. However their definition in terms of 

True Positives, False Positives, True Negatives and False Negatives is not 

directly applicable to single label multi-way classification. Their extension to 

single label setting is many times artificially created by considering the single 

label classification as multiple one-against-rest binary classifications. While this 

may be required for inherently binary classifiers such as the SVM, it is not at all 

suitable and even required for direct single label classifiers such as nearest 

neighbour, tree-based, rule-based, etc. Some researchers (Koller & Sahami , 

1997), (McCallum, Rosenfeld, Mitchell, & Ng, 1998) are therefore bypassing 

these metrics and directly measuring Classification Accuracy which is 

percentage of the correctly classified instances.  Sebastiani (2005) states the 

evaluation measures used for single label classification are Classification 

Accuracy (the percentage of correct classifications) and Error which is the 

converse of Accuracy (Error = 1 - Accuracy).  Fukumoto & Suzuki (2002) further 

claim that in the single label case, classification accuracy is equivalent to 
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standard precision and standard recall.  Hence we take Classification Accuracy 

as a measure of effectiveness for evaluating our architecture. We also measure 

the timing efficiency of the Hybrid Parallel Classifier for training as well 

classification/test.  

 

Our main hypothesis is that the use of separate classifiers for separate 

subspaces along with the use of Conditional Significance Vectors will improve 

overall subspace classification accuracy and learning time. Hence the main 

experiments that we conduct are the Conditional Significance Vector 

experiments in Phase I and the Hybrid Parallel Classifier experiments in Phase 

II using Reuters Headlines as well as the LSHTC datasets. For comparison, we 

also conduct the baseline experiments using single classifiers for the complete 

datasets with two different vector formats – the Full Significance Vector and the 

standard tf-idf vector. We also conduct some experiments using Reuters Full 

Text to compare its performance with that of Reuters Headlines for the purpose 

of news classification. For hypothesis testing, we conduct statistical significance 

tests on the evaluation metrics (classification accuracy, training time and 

classification time) measured from these experiments. We use the Friedman 

test for the Reuters Headlines and the LSHTC experiments as there are two 

baselines for comparison and this test can compare three sets of values. To 

compare the performance of Reuters Headlines v/s Reuters Full Text, we use 

the Wilcoxon Signed Rank test as this test compares two sets of values.   

 

3.4  Chapter Summary 
 

In this chapter, we looked at the presence of semantic subspaces in today’s 

data and introduced a category-hierarchy based document vector 

representation. We developed the concept of Maximum Significance Value 

which is proposed to detect the level 1 category or relevant subspace of a 

document and also the concept of Conditional Significance Vectors which is 

based on the importance of a word within a particular level 1 category instead of 
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the whole dataset. We proposed a general semantic subspace learning 

framework using these two concepts. This framework can be implemented with 

any base classifier to learn the level 2 categories or subtopics within a dataset. 

We discussed in detail the two corpora (Reuters and LSHTC) used in our 

experiments. The experimental methodology for semantic subspace learning 

along with pre-processing steps and the baselines to be used was also 

presented. 

 

To deal with the very wide variation present in data today (e.g. web data), we 

expanded the above framework to generate the Hybrid Parallel Classifier 

architecture which includes separate classifiers for separate subspaces. This 

classifier also uses the Maximum Significance Value and the Conditional 

Significance Vectors. The experimental methodology for this architecture was 

presented along with the pre-processing steps and the baselines. The machine 

learning environment used for our experiments was also discussed along with 

the different classifiers which were proposed for comparison as base classifiers. 

We showed how the classification accuracy is equivalent to standard precision 

and standard recall in a single label setting thus obviating the need to measure 

multiple metrics. We also presented the statistical significance tests used for 

testing our main research hypothesis. 

 

In the next chapter we describe the actual experiments conducted for testing 

the Conditional Significance Vectors using the initial semantic subspace 

learning architecture presented in Phase I (section 3.1) of this chapter. We also 

discuss in detail the results of these experiments.   
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Chapter 4 

 

Conditional Significance Vectors: 

Experiments & Results 
  

 

 

 

In this chapter, we present the results of the experiments conducted to check 

the effectiveness of the Conditional Significance Vectors using the initial 

Semantic Subspace Learning architecture. The first phase of experiments was 

conducted on a subset of the Reuters RCV1 Corpus consisting of 4 main topics 

and 50 subtopics. Three different sets of experiments were conducted in this 

phase. The first set of experiments was conducted using 10,000 Reuters 

Headlines. This was scaled up to 100,000 headlines in the second set of 

experiments. The third set of experiments used 10,000 Reuters full text items 

which contained both headlines as well as body text. These three sets of 

experiments indicated that the use of Conditional Significance Vectors 

increases classification accuracy. In order to scale up the number of topics, we 
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conducted the second phase of experiments with the LSHTC Corpus which 

consisted of 10 main topics and 158 subtopics. All the experiments used a 

train/test split of 50%. 
 

 

4.1 Upper Limit on Subspace Classification Accuracy using 
Conditional Significance Vectors 

 

The detection of the relevant subspace of a test document is based on the 

Maximum Significance Value. We measured the accuracy of choosing the level 

1 (main) topic of a document with this method and found it to be 96.80% for 

Reuters Headlines, 82.50% for Reuters Full Text and 85.31% for LSHTC. 

These values form the upper limit on subtopic (Level 2) classification accuracy 

for the corresponding datasets. This is because a wrong subspace selection will 

propagate this error down to level two and cause a wrong selection of level 2 

subtopics as well.  

 

4.2 Experimental Setup for the Initial Semantic Subspace 
Learning Architecture 

 
 The experiments for this chapter were set up as follows: 

 

• Text Dataset converted into Conditional Significance Vectors 

• Train/Test split of 50% taken for each vector dataset 

• A single classifier trained and tested with this dataset  

• Main topic and Subtopic Classification Accuracy recorded for each 

experiment run 

• Average of 10 runs with different parameters used for comparing 

the performance of different classifiers 

• Ten different classifiers compared in this chapter 
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• Same experiments also run with Full Significance Vectors with 

different levels of masking for comparison. 

 

The figures below show some examples of the experimental setup for subspace 

learning. All the vectors shown are the Conditional Significance Vectors.  

 

 

 

4.3  Reuters Corpus – Experiments & Results 
 

4.3.1 Case I: 10,000 Reuters News Headlines 
 

Here 10,000 Reuters Headlines were extracted along with their main topic and 

subtopic labels. This dataset was pre-processed to separate hyphenated words.  

We generated the category-hierarchy based significance vector representation 

of this Reuters dataset where the first four vector elements represented the 4 

main topics and the remaining 50 vector elements represented the subtopics. 

We generated both the Full Significance as well as the Conditional Significance 

versions of the document vector.  

Random 
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      Fig 4.1: Reuters Corpus Document Vectors with different levels of masking  

   

       

       

       

        

                   Full Significance Vector No Mask   (All subtopic entries used) 

Full Significance Vector Mask 1   (Subtopics related to minimum significance Main 
topic masked out by setting them to zero ) 

Full Significance Vector Mask 2   (Subtopics related to minimum and second minimum 
significance Main topics masked out by setting them to zero ) 

 

Full Significance Vector Mask 3   (Subtopics related to three minimum significance Main 
topics masked out by setting them to zero. Only subtopics relating to maximum 

significance Main topic used ) 
 

Conditional Significance Vector Mask 3   (Subtopics related to three minimum 
significance Main topics masked out by setting them to zero. Only subtopics relating to 

maximum significance Main topic used ) 
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As described in section 3.1.7, the Full Significance Vector was examined to 

determine the minimum value among the first four main topic entries. The main 

topic corresponding to this minimum value was considered the least significant 

main topic for the given document. The subtopic entries corresponding to this 

main topic were masked i.e. set to zero. The first four main topic entries were 

then removed leaving a vector length of 50. This generated the FSV Mask 1 

dataset of the Reuters Corpus. Similarly, masking out the subtopic entries of the 

two minimum value main topics generated the FSV Mask 2 dataset. In a similar 

fashion, the FSV Mask 3 dataset was generated. FSV Mask 3 represented the 

maximum masking dataset. We also generated CSV Mask 3 which was the 

maximum masking dataset using the Conditional Significance document 

vectors. Fig 4.1 shows the Reuters Corpus Document Vectors with different 

levels of masking.  

 

Two sets of experiments were run to test learning at the first two levels of 

Reuters topic classification. Ten runs of each algorithm with different seed 

values (wherever applicable) were taken for each vector representation. Four 

algorithms (Classification via Regression, IBk, BayesNet and NNge) did not 

have the option for entering a random seed value in Weka. Three algorithms 

(C4.5, LogitBoost and PART) had an option for entering random seed value but 

the results for all 10 runs were identical. Only three algorithms (Random Forest, 

Bagging and Multilayer Perceptron) showed variance in the classification 

accuracy values. The average and variance of the classification accuracy for 10 

runs with different seed values was calculated for each algorithm. The results of 

these experiments are shown in Table 4.1 and Table 4.2 below. The 

abbreviated column names represent the following vectors: 

 

FS_0: Full Significance Vector No Mask 

FS_1: Full Significance Vector Mask 1 

FS_2: Full Significance Vector Mask 2 
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FS_3: Full Significance Vector Mask 3 

CS_3: Conditional Significance Vector Mask 3 

 

In Table 4.1, all algorithms except the nearest neighbor algorithm IBk (No. 7) 

show that the maximum masking option (Mask 3) gives the best result. This 

indicates that the maximum significance value is a good indicator of the relevant 

subspace. The best results are divided between FS_3 and CS_3 for different 

algorithms. In Table 4.2, the Conditional Significance Vector representation with 

maximum masking option (Mask 3) gives the best average accuracy result with 

all algorithms. As the Mask 3 option allows only the subtopics of the main topic 

with maximum Significance Value, This shows that branching on maximum 

significance value along with the use of conditional significance within a 

subspace greatly improves classification at level 2. 

 

 
Table 4.1: Main Topic Average Classification Accuracy for Test Vectors 

(Reuters 10,000 Headlines) 

 
 

S. 
No 

Algorithm FS_0 FS_1 FS_2 FS_3 CS_3 TFIDF
/PCA     

1. Random Forest 91.17 90.67 91.45 96.45 96.45 79.46 

2. J48 (C4.5) 92.46 91.02 92.40 95.72 96.10 73.58 

3. Bagging 92.24 91.95 93.54 96.39 96.29 78.89 

4. Classification Via 

Regression 

92.10 94.94 94.72 96.28 96.78 77.54 

5. LogitBoost 92.30 92.22 90.96 96.24 96.38 72.20 

6. PART 93.46 92.86 92.20 95.92 95.60 74.14 

7. IBk  96.84 96.74 95.28 95.44 95.94 76.74 

8. BayesNet 83.58 81.26 71.70 96.26 96.30 59.62 

9. NNge  95.66 95.58 89.92 96.64 96.34 73.72 

10. Mulitlayer Perceptron 96.54 96.40 95.31 96.49 97.43 79.77 
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Table 4.2: Subtopic Average Classification Accuracy for Test Vectors 
(Reuters 10,000 Headlines) 

 

Tables 4.3 and 4.4 show the variance in classification accuracy across the ten 

runs with different seed values taken for each dataset and each algorithm. Low 

variance is an indicator of a stable classification method as the classification 

accuracy is not dependent on the seed value which can be random. Table 4.3 

shows that the lowest variance in level 1(main topic) classification accuracy is 

obtained by the maximum masking option (Mask 3). The minimum variance 

here is given by the Conditional Significance Vector Mask 3 (CS_3). Table 4.4 

shows that the lowest variance in level 2 (subtopic) accuracy is also given by 

the maximum masking option (Mask 3). The minimum variance values are split 

between the Full Significance Vector Mask 3 (FS_3) and the Conditional 

Significance Vector Mask 3 (CS_3). As the maximum masking option limits the 

learning process to within a subspace, the classifiers are better able to 

distinguish between subtopics in this subspace and thus variance in 

classification accuracy is less. 
 

 

S. 
No 

Algorithm FS_0 FS_1 FS_2 FS_3 CS_3 TFIDF
/PCA    

1. Random Forest 82.11 80.69 74.69 88.55 90.60 57.37 

2. J48 (C4.5) 87.90 87.62 78.50 88.90 90.42 49.16 

3. Bagging  86.68 87.04 79.51 89.53 92.06 57.51 

.4 Classification Via 

Regression 

92.12 91.94 83.32 91.36 92.98 56.02 

5. LogitBoost 92.32 92.10 83.88 91.16 92.62 52.98 

6. PART 87.18 87.98 77.20 88.78 90.24 50.44 

7. IBk  90.84 90.58 81.76 89.66 91.22 55.52 

8. BayesNet 68.52 61.98 52.18 86.84 89.04 46.74 

9. NNge  91.30 91.16 82.34 90.96 92.42 54.82 

10. Mulitlayer Perceptron 91.96 91.86 82.07 91.39 92.39 58.84 
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Table 4.3: Main Topic Classification Accuracy Variance for ten runs 
(Reuters 10,000 Headlines) 

 
Table 4.4: Subtopic Classification Accuracy Variance for ten runs 

(Reuters 10,000 Headlines) 

 S. 
No

. 

Algorithm FS_0 FS_1 FS_2 FS_3 CS_3 TFIDF/ 
PCA   

  

1. Random Forest 0.227 0.236 0.123 0.018 0.011 0.120 

2. J48 (C4.5) 0 0 0 0 0 0 

3. Bagging 0.234 0.084 0.042 0.003 0.003 0.224 

4. Classification Via 

Regression 0 0 0 0 0 0 

5. LogitBoost 0 0 0 0 0 0 

6. PART 0 0 0 0 0 0 

7. IBk  0 0 0 0 0 0 

8. BayesNet 0 0 0 0 0 0 

9. NNge  0 0 0 0 0 0 

10. Mulitlayer Perceptron 0.109 0.115 0.095 0.062 0.042 0.742 

S.No. Algorithm FS_0 FS_1 FS_2 FS_3 CS_3 TFIDF/ 
PCA   

  

1. Random Forest 0.545 1.239 0.264 0.101 0.146 0.202 

2. J48 (C4.5) 0 0 0 0 0 0 

3. Bagging 0.233 0.241 0.151 0.030 0.028 0.147 

4. Classification Via 

Regression 0 0 0 0 0 0 

5. LogitBoost 0 0 0 0 0 0 

6. PART 0 0 0 0 0 0 

7. IBk  0 0 0 0 0 0 

8. BayesNet 0 0 0 0 0 0 

9. NNge  0 0 0 0 0 0 

10. Mulitlayer Perceptron 0.141 0.163 0.746 0.026 0.059 0.320 
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In Tables 4.1 – 4.4, the Mask 3 option consistently shows the best results 

(highest classification accuracy and lowest classification accuracy variance) at 

level 1 and level 2. This shows that the maximum significance value is 

successful in identifying the relevant subspace (level 1 topic). Since the 

Conditional Significance Vector with Mask 3 option encodes the subspace 

within the vector itself, the subtopic accuracy table shows the combined effect 

of branching at level one and applying the classification algorithms at level 2. 

Consistent maximum accuracy obtained at level 2 by the conditional 

significance vector with all the algorithms shows that conditional significance is 

successful in differentiating between subtopics within a data subspace. Thus 

our conditional significance vector representation is unique in that it 

incorporates both subspace branching and subspace learning in the same step. 
 

Table 4.5: Classification Accuracy with TF-IDF/PCA and TFIDF 
(Reuters 10,000 Headlines) 

 
 

 
S. No. 

 
Algorithm 

Main Topic  Subtopic 

TFIDF/ 
PCA 

TFIDF TFIDF/ 
PCA 

TFIDF 

1. Random Forest 79.46 75.21 57.37 54.81 

2. J48 (C4.5) 73.58 68.66 49.16 53.68 

3. Bagging 78.89 72.64 57.51 52.18 

4. Classification Via 

Regression 

77.54 46.22 56.02 21.44 

5. LogitBoost 72.20 65.64 52.98 50.56 

6. PART 74.14 68.00 50.44 53.08 

7. IBk  76.74 73.82 55.52 52.66 

8. BayesNet 59.62 70.32 46.74 47.68 

9. NNge  73.72 71.98 54.82 52.00 

10. Mulitlayer Perceptron 79.77 66.31 58.84 32.61 
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A comparison of the TF-IDF and the TF-IDF/PCA baselines in Table 4.5 shows 

that the use of PCA dimensionality reduction provides small improvements in 

the classification performances for most of the algorithms. For level 1 (main 

topic), the classification accuracy of the Classification Via Regression algorithm 

is greatly improved and that of the multilayer perceptron is also improved with 

the use of PCA while the classification accuracy of BayesNet is degraded 

significantly by its use. For level 2 (subtopic), the use of PCA slightly degrades 

the classification accuracy of J48 (C4.5), PART and BayesNet while greatly 

improving the classification accuracy of the Classification Via Regression 

algorithm and the Multilayer perceptron. The values in red show the cases 

where the use of PCA has reduced the classification accuracy. All the other 

algorithms show small improvements with the use of PCA. Hence, overall, the 

use of PCA does not seem very beneficial in our case as it does not 

substantially improve the classification accuracy for all algorithms. 

 

 

4.3.2 Case II: 100,000 Reuters News Headlines 
 

In this case, we scaled up the experiments to include 100,000 Reuters 

Headlines which were processed to produce the five different datasets as in 

section 4.1.1. These datasets were FSV No Mask, FSV Mask 1, FSV Mask 2, 

FSV Mask 3 and CSV Mask 3. A Train/Test split of 50% was taken to generate 

50,000 training and 50,000 test vectors. The Multilayer Perceptron and the two 

rule-based classifiers (PART and NNge) could not complete the classification 

process within reasonable time and were removed from consideration. The 

results obtained are given in Table 4.6 and Table 4.7.  In the level 1 (main topic) 

results shown in Table 4.6, the maximum accuracies (except for IBk and 

Classification via Regression) are again shown with maximum masking (FS_3 

and CS_3). 
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Table 4.6: Main Topic Classification Accuracy for Test Vectors 
      (Reuters 100,000 Headlines) 

 

 
Table 4.7: Subtopic Classification Accuracy for Test Vectors 

      (Reuters 100,000 Headlines) 

 

The level 2 (subtopic) results in Table 4.7 show that tree-based classifiers (J48 

and Random Forest), Bagging, Classification Via Regression and BayesNet 

show the maximum accuracies with Conditional Significance Vectors. The 

difference in classification accuracy between the unmasked FS_0 vector and 

the maximum masked CS_3 vector is much greater with J48, Random Forest 

S. 
No 

Algorithm  FS_0 FS_1 FS_2 FS_3 CS_3 

1. Random Forest 92.78 93.01 94.38 94.73 94.35 

2. J48(C4.5) 91.62 91.86 93.58 94.21 93.41 

3. Bagging 93.64 93.66 94.75 94.98 94.46 

4. Classification 

Via Regression 

94.21 94.40 94.93 94.66 94.21 

5. LogitBoost 90.86 90.57 91.44 93.97 93.97 

6. IBk 95.37 95.21 95.03 93.54 92.72 

7. Bayes Net 85.79 83.40 81.09 93.96 93.96 

S. 
No 

Algorithm  FS_0 FS_1 FS_2 FS_3 CS_3 

1. Random Forest 78.55 78.99 80.10 82.36 84.28 

2. J48(C4.5) 79.45 79.27 80.03 81.78  82.71 

3. Bagging 82.64 82.80 83.36 84.22 85.50 

4. Classification 

Via Regression 

84.76 85.15 85.16 84.55 85.71 

5. LogitBoost 85.44 85.49 85.22 83.92 85.47 

6. IBk 82.70 82.32 82.06 80.50 81.54 

7. Bayes Net 67.69 59.47 53.24 79.02 80.74 



92 
 

and BayesNet than with Bagging and Classification Via Regression. The 

maximum improvement is shown by BayesNet where the accuracy goes from 

67.69% with FS_0 to 80.74% with CS_3. As Bayesian classifiers are very fast, 

this technique will be very useful when dealing with large datasets. The best 

performance with LogitBoost (FS_2) was very close to the corresponding 

performance of CS_3 (85.49% v/s 85.47%). The nearest neighbour classifier 

(IBk), on the other hand, favours the unmasked basic vector format FS_0.  

 

Overall, these results show that maximum masking is a good indicator of a 

subspace and that the use of conditional significance vectors improves subtopic 

classification accuracies for the majority of the classifiers. 
 

4.3.3 Case III: 10,000 Reuters Full Text News Items 
 

Here, ten thousand Reuters Full Text (Headlines + Body Text) items were 

extracted and processed as described in section 4.1.1 generating the 

corresponding five datasets (FS_0, FS_1, FS_2, FS_3 and CS_3). The results 

of running these experiments in Weka are given in Table 4.8 and Table 4.9. An 

examination of the main topic (level 1) results given in Table 4.8 show that the 

nearest neighbour classifier gives the highest accuracy with no masking (FS_0), 

one rule-based classifier (NNge) and the meta-classifier (Bagging, 

Classification Via Regression and LogitBoost) give the highest accuracy with 

masking half the data i.e. 2 out of 4 main topics (vector FS_2). The tree based 

classifiers (Random Forest and J48), the Bayesian classifier BayesNet and a 

rule-based classifier PART give the highest accuracy with maximum masking. 

In the subtopic results in Table 4.9, IBk and MLP along with two meta-classifiers 

(Classification Via Regression and LogitBoost) give the highest accuracy with 

no masking (FS_0) while PART gives the highest accuracy with FS_1. The 

remaining five classifiers all give the highest accuracies with the Conditional 

Significance Vector CS_3. These results show that for long documents, the 
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elementary classifier performances are improved more by the use of 

Conditional Significance Vectors than the more complex classifiers.  
 

Table 4.8: Main Topic Classification Accuracy for Reuters 10,000 Full Text 
News Items 

 

Table 4.9: Subtopic Classification Accuracy for Reuters 10,000 Full Text 
News Items 

S. 
No 

Algorithm FS_0 FS_1 FS_2 FS_3 CS_3 

1. Random Forest 84.96 86.10 86.26 86.54 85.84 

2. J48 (C4.5) 83.48 82.20 83.72 85.72 84.74 

3. Bagging 86.38 86.12 87.64 86.72 86.40 

4. Classification Via Regression 87.94 87.94 88.40 87.98 85.86 

5. LogitBoost 85.92 85.36 86.02 84.32 85.78 

6. PART 85.56 85.10 85.88 86.20 84.46 

7. IBk  88.66 88.60 88.60 86.34 85.26 

8. BayesNet 72.02 71.88 75.08 81.78 81.80 

9. NNge  87.16 87.40 87.58 86.42 86.04 

10. Mulitlayer Perceptron 89.74 90.48 89.22 88.94 86.32 

S. 
No 

Algorithm FS_0 FS_1 FS_2 FS_3 CS_3 

1. Random Forest 64.84 65.02 67.66 70.24 71.12 

2. J48 (C4.5) 66.96 67.80 67.50 68.78 70.66 

3. Bagging 70.32 70.70 72.10 72.00 74.04 

4. Classification Via Regression 79.10 78.60 78.70 74.58 75.52 

5. LogitBoost 80.06 79.28 79.00 74.78 75.48 

6. PART 69.04 70.12 68.30 69.18 68.46 

7. IBk  75.06 74.30 74.68 71.82 72.40 

8. BayesNet 54.44 38.96 40.36 62.52 62.80 

9. NNge  72.28 73.46 73.26 72.12 73.86 

10. MultiLayer Perceptron 77.87 76.91 76.86 74.07 75.05 
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4.4  LSHTC Corpus – Experiments & Results 
 

In these experiments, we tested the effect of a much larger set of categories on 

the performance of the Conditional Significance Vector. The LSHTC Corpus 

had 10 main and 158 subtopic categories as compared to 4 main and 50 

subtopics of the Reuters dataset in the previous section. 

 

Here, we generated the category-hierarchy based significance vector 

representation of the LSHTC dataset where the first ten vector elements 

represented the ten main topics and the remaining 158 vector elements 

represented the subtopics of the LSHTC Corpus. We generated both the Full 

Significance as well as the Conditional Significance versions of the document 

vector. The Full Significance Vector was examined to determine the minimum 

value among the first ten main topic entries. The main topic corresponding to 

this minimum value was considered the least significant main topic for the given 

document. The subtopic entries corresponding to this main topic were masked 

i.e. set to zero. The first ten main topic entries were then removed leaving a 

vector length of 158. This generated the FSV Mask 1 dataset of the LSHTC 

Corpus. Similarly masking out the subtopic entries of the two minimum value 

main topics generated the FSV Mask 2 dataset. In a similar fashion, the FSV 

Mask 3 – FSV Mask 9 datasets were generated. FSV Mask 9 represented the 

maximum masking dataset. We also generated CSV Mask 9 which was the 

maximum masking dataset using the Conditional Significance document 

vectors.  

 

Table 4.10 and Table 4.11 show the results of learning at the top two levels of 

the LSHTC dataset. FS_0  -  FS_9 represent the Full Significance Vectors with 

various levels of masking while CS_9 represents the  Conditional Significance 

Vector with the maximum number (9 out of 10) of main topics masked out.  
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Table 4.10: Main Topic Classification Accuracy for Test Vectors 
(LSHTC) 

 
Table 4.10 – Part 1 

Algorithm 
  

FS_0 FS_1 FS_2 FS_3 FS_4 FS_5 

Random Forest 63.41 62.64 63.64 66.34 67.70 70.17 

J48 69.21 68.44 69.12 70.15 71.45 72.34 

Bagging 71.00 69.97 72.70 72.52 75.44 74.81 

Classification Via 

Regression 

73.38 74.23 76.20 77.86 79.07 79.20 

LogitBoost 81.58 81.98 82.47 81.80 83.19 84.54 

PART 71.72 72.52 71.63 73.15 73.87 72.34 

IBk 86.78 85.57 86.02 85.88 85.43 86.37 

BayesNet 65.71 62.39 61.27 60.06 60.20 59.12 

NNge 73.02 74.54 75.93 80.05 81.53 83.10 

MLP 35.23 51.41 36.98 48.72 45.90 20.39 

 
Table 4.10 – Part 2 

Algorithm 
 

FS_6 FS_7 FS_8 FS_9 CS_9  TFIDF 

Random Forest 71.60 74.92 80.04 87.01 86.78 45.21 

J48 76.38 76.60 78.80 83.24 81.44 38.17 

Bagging 78.04 79.16 82.07 88.08 87.14 49.24 

Classification Via 

Regression 

80.14 82.97 86.06 87.63 85.48 46.55 

LogitBoost 84.72 85.25 85.93 87.18 86.33 51.34 

PART 76.11 77.36 79.78 83.86 82.21 39.25 

IBk 86.82 88.21 88.61 87.09 86.51 42.03 

BayesNet 62.17 66.20 74.09 86.91 86.19 53.00 

NNge 83.42 85.88 86.28 86.96 86.02 45.79 

MLP 22.73 48.32 44.55 84.58 82.61 44.44 
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Table 4.11: Subtopic Classification Accuracy for Test Vectors 
      (LSHTC) 

 
Table 4.11 – Part 1 

Algorithm FS_0 FS_1 FS_2 FS_3 FS_4 FS_5 
 

Random Forest 36.20 35.94 36.87 38.21 40.01 41.48 

J48 46.62 47.96 50.47 53.12 55.00 55.49 

Bagging 54.50 54.73 54.46 56.88 56.16 58.14 

ClassViaRegress 87.14 87.85 87.27 87.36 85.93 84.31 

LogitBoost 88.35 88.75 88.75 88.70 88.75 88.44 

PART 52.53 53.74 52.71 60.47 58.76 59.48 

IBk 80.95 79.20 79.34 77.99 77.81 77.95 

BayesNet 39.13 38.95 19.99 11.52 11.07 14.88 

NNge 65.13 64.37 66.07 66.34 68.35 69.12 

MLP 18.69 41.64 22.37 7.58 28.91 29.49 

 
Table 4.11 – Part 2 

Algorithm FS_6 FS_7 FS_8 FS_9 CS_9  TFIDF 
 

Random Forest 43.08 45.84 50.50 59.15 59.29 22.92 

J48 55.13 61.23 63.87 72.43 71.81 17.72 

Bagging 59.79 63.02 68.00 72.88 73.11 25.89 

Classification Via 

Regression 

82.97 83.28 80.01 80.01 80.28 21.96 

LogitBoost 87.85 86.87 86.69 82.21 82.07 27.23 

PART 61.45 64.63 67.86 72.39 71.85 16.38 

IBk 78.98 79.83 80.14 77.86 79.83 21.03 

BayesNet 19.32 22.59 28.82 57.91 61.68 15.13 

NNge 71.49 72.30 74.59 75.53 73.55 24.60 

MLP 31.02 26.85 31.51 21.96 68.49 26.96 
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As can be seen from Table 4.10, the best main topic classification accuracy is 

obtained by the maximum masking dataset FS_9 with the CS_9 dataset 

following close behind. This supports our hypothesis that maximum masking 

identifies the subspace accurately. Table 4.11 shows that, apart from the 

nearest neighbour classifier IBk and two meta-classifiers Classification Via 

Regression and LogitBoost, the best subtopic classification accuracies are split 

between the two maximum masking options FS_9 and CS_9. A reason for this 

can be that unlike Reuters, the LSHTC dataset has no multiple label 

assignments at the subtopic level. The unique advantage of the Conditional 

Significance Vector is that it increases the separation between subtopics. As 

the LSHTC subtopics are already separated, the FS_9 and CS_9 vectors in this 

case would be quite similar to each other. These results are quite similar to the 

level 1 performance with Reuters Ten Thousand Headlines. In that case, the 

level 1 topics have no overlap and the best results are divided between the two 

maximum masking options FS_3 and CS_3. 

4.5  Conclusion 
 

In these experiments, we explore semantic subspace learning with the overall 

objective of improving document retrieval in a vast document space. Our 

experiments in Reuters Case 1 (Ten Thousand Reuters Headlines) show that 

the maximum significance value has a good potential to identifying the main 

(Level 1) topic of a document. They also show that modifying the significance 

vector (conditional significance) to process only the subspace improves learning 

within the subspace. Thus the combination of branching on maximum 

significance value along with using conditional significance improves subspace 

learning. The subspace detection is done by processing a single document 

vector. This method is independent of the total number of data samples and 

only compares the level 1 topic entries. The time complexity is thus O(k) where 

k is the number of level 1 topics. The novelty of our approach is in the vector 

representation. In the document conditional significance vector generated by 
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the subspace detection step, the subspace is encoded in the vector (the non-

zero values represent the subspace). Secondly, the numerical significance 

values in the word conditional significance vector denote the significance of a 

particular word for different subtopics within that subspace. Since the document 

vector is a summation of the word vectors,  this helps in differentiating between 

topics within a given subspace (between subtopics of a main topic in case of 

Reuters Corpus) thus enhancing subspace learning. 

 

The Reuters Case II (One Hundred Thousand Reuters Headlines) experiments 

suggest that the basic tree-based and Bayesian classifiers benefit more from 

the use of Conditional Significance Vectors than the more complex meta-

classifiers like boosting and classification via regression. The performance of 

IBk indicates that nearest neighbor classifiers are not suitable for semantic 

subspace learning. In section 2.1 of the literature review, nearest neighbor 

classifiers were shown to be unsuitable for large datasets due to their high run-

time memory requirements and large training times. Therefore, we have 

removed IBk from consideration for later experiments. 

 

The Reuters Case III (Ten Thousand Reuters Full Text News Items) 

experiments further confirm that the elementary Tree-based, Bayesian and 

Rule-based classifiers along with Bagging benefit more from the use of 

Conditional Significance Vectors than the more complex classifiers like 

LogitBoost and Classification Via Regression and that IBk is not suitable at all 

for its use. 

 

Thus, overall, the Reuters experiments conclude that the use of Conditional 

Significance Vectors improves the subtopic classification accuracy of the basic 

classifiers. 

 

The LSHTC results again confirm that IBk is not suitable for semantic subspace 

learning and that LogitBoost and Classification Via Regression do not work very 
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well for this purpose either. The LSHTC results also show the best subtopic 

classification accuracy with the maximum masking option for the remaining 

classifiers. As the LSHTC does not have overlapping subtopics, the vectors 

FS_9 and CS_9 are similar and the best LSHTC subtopic results are divided 

between these two vector formats.  

 

In these experiments, the vector length of all the datasets derived from the 

same corpus is equal (50 for Reuters and 158 for LSHTC). We mask the 

different portions of a vector by setting the corresponding vector values to zero. 

However these zero values also contribute to the training of a classifier as they 

form a part of the input data pattern. Therefore, to remove certain subspaces 

from consideration, we need to remove all the document vector components 

corresponding to that subspace by deleting them instead of just masking them 

to zero value. However different main topics have different number of subtopics.  

For example, in our Reuters dataset, the CCAT main topic has 20 subtopics 

whereas the MCAT main topic has just 4 subtopics. The number of vector 

components required to represent different main topics (subspaces) is different 

whereas a single classifier learns on a fixed input vector length. Therefore our 

initial Semantic Subspace Learning architecture with a single classifier is not 

sufficient to deal with this case.  

 

We need an architecture which has different classifiers to deal with different 

vector lengths of the separate subspaces. In case of today’s vast data space, 

the subspaces can be as widely different from each other as medicine and 

politics and a single type of classifier may not be able to handle all the different 

types of subspaces equally well. Hence we modify this initial architecture to 

generate our final Hybrid Parallel Classifier architecture which applies different 

types of classifiers to different subspaces. In the Hybrid Parallel Classifier, we 

extract only the vector components relevant to a subspace thus reducing the 

length of the Conditional Significance Vector. We expect this to further improve 

classification accuracy as each classifier will deal with a reduced set of 
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dimensions. In the subsequent experiments, we concentrate only on the basic 

classifiers as they have been shown to be suitable for semantic subspace 

learning. In the next chapter, we explain the experiments conducted and the 

results obtained by our final Hybrid Parallel Classifier architecture. We also 

measure the timing efficiency of the classifiers along with their classification 

accuracy in the next set of experiments. 
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Chapter 5 

 

Hybrid Parallel Classifiers: 

Experiments & Results 
 

 

 

In this chapter, we present the experimental evaluation of the Hybrid Parallel 

Classifier Architecture introduced in Chapter 3 (section 3.2.2). The Hybrid 

Parallel Classifier takes advantage of the different semantic subspaces existing 

in the data. At level 1, the Hybrid Parallel Classifier detects the relevant 

subspace of a document by using the Maximum Significance Value. This 

detection is done by comparing the numerical significance values of all the level 

1 topics in the document vector. The detection time is O(k) where k is the 

number of level 1 topics. Subspace detection is therefore very fast and is 

independent of the total number of documents. At level 2, subtopic classification 

is done by the classifier best suited to the selected subspace. In this 

architecture, separate classifiers are trained on separate semantic subspaces 
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using the Conditional Significance Vector with reduced dimensions. We 

conducted two sets of experiments with hybrid classifiers. In the first set of 

experiments (Experiment Set A), we determined the best classifier for each 

subspace and combined them together to form a hybrid classifier. We also tried 

to improve the performance of a multilayer perceptron (MLP) by combining it 

with other classifiers in various hybrid combinations. As the baseline for these 

experiments, we used the single MLP classifier on the full data space with two 

different vector formats, the Full Significance Vector and the tf-idf. The datasets 

used in this case were the Reuters Headlines and the LSHTC datasets. In the 

second set of experiments (Experiment Set B), we worked with a much wider 

variety of two-classifier and four-classifier hybrid combinations. We combined 

one type of basic classifier (e.g. Bayesian) with a basic classifier of another type 

(e.g. tree-based) in various two-classifier combinations and compared the 

classification accuracy of the basic classifier with all the two-classifier 

combinations in which this basic classifier also participated. We also 

experimented with various four-classifier combinations and compared their 

classification accuracies with those of their constituent classifiers. In these 

experiments, in addition to Reuters Headlines and LSHTC, we also used the 

Reuters Full Text dataset. 

 

5.1 Experiment Set A:  Hybrid Classifiers combining MLP with  
other types of basic classifiers 

 

The experiments in Chapter 4 showed the Multilayer Perceptron (MLP) to be 

the best performing classifier in the majority of the cases. Hence, in these 

experiments, we attempted to improve upon the performance of the single MLP 

by combining it with other types of classifiers. These experiments used the 

Multilayer Perceptron (MLP) along with six other basic classification algorithms. 

These included two Bayesian algorithms (BayesNet & Naive Bayes), two rule-

based algorithms (PART & NNge) and two tree-based algorithms (J48 & 
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Random Forest). Our experiments were run using these seven algorithms from 

Weka on the Reuters Headlines and LSHTC datasets. The experimental setup 

was as follows: 

 

• Convert the text datasets into the Conditional Significance Vector 

representation.  

• Train / Test Split taken as 9000 training vectors / 1000 test vectors for 

Reuters Headlines dataset and 4000 training vectors / 463 test vectors 

for the LSHTC dataset.  

• Training vectors further divided into different subsets according to their 

main topics.  

• Training data subsets used to separately train the classifiers for each 

main topic (subspace).  

• For each subspace, only the vector dimensions representing the 

subtopics of that main topic were extracted from the complete document 

vector.  

• For a test vector, the main topic was identified by the Maximum 

Significance Value. Here, all the main topic vector entries were inspected 

and the maximum among these values was determined. The main topic 

corresponding to this maximum value was taken as the main topic of the 

test document.  

• The subtopic vector entries corresponding to this predicted main topic 

were extracted along with their actual subtopic label and given to the 

classifier trained for this main topic (subspace).  

 

Determination of classifier to be allocated for each subspace: 

 

This was done in two different ways as follows: 

 

i. Experimental Determination: 
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In this case, we used the category-wise separated data from the 

training set to select the algorithm with the highest classification 

accuracy for each main category. In the case of a tie between two 

algorithms, the one with the lower training time was chosen.  

 

ii. Predefined Combinations 

 

As the performance of many classifiers for each main category 

was quite close to each other, we also ran some experiments with 

hybrid classifiers using a predefined combination of basic 

classifiers. Here, the MLP was combined with different types of 

classifiers (Bayesian, rule-based and tree-based classifiers) in 

various two-classifier and four-classifier combinations. For a two-

classifier combination, MLP and the other classifier were used 

alternately on the main category topics of the Reuters and LSHTC 

datasets as follows: 
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For a four-classifier system four different classifiers were used on 

the four main topics of Reuters Headlines dataset and repeated 

for each block of four main topics for the LSHTC dataset as 

follows: 

 

 

 

 

 

 

 

 

 

 

 

 

  

 

 

 

 

 

Subsequently we applied these selected algorithms to the test data and 

measured the performance of the hybrid classifier. The category-wise 

separated Conditional Significance Vectors were used here. We also ran the 

MLP classifier on the full (not category-wise separated) data set to provide a 

comparison for the hybrid classifier. Two vector representations were used for 

the comparison baseline – the Full Significance Vector and tf-idf. The 

combination of MLP with different types of classifiers (Bayesian, rule-based and 

tree-based classifiers) was evaluated and the best combination was identified.  
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5.1.1 Upper Limit on Hybrid Classifier Accuracy  
 

Figure 5.1 shows the classification decisions for a set of Reuters Headlines 

input vectors by a hybrid classifier. Figures 5.1(a) – 5.1(e) each represent one 

input test vector. The x-axis of these figures represents the significance vector 

components which in turn represent all the main topics and subtopics present in 

our Reuters Headlines data. The y-axis shows the actual numerical values for 

these significance vector components as calculated in sections 3.1.2 and 3.1.3. 

The red data points show the predicted main topic and the predicted subtopic 

while the yellow data points show the actual main topic and the actual subtopic 

(wherever actual and predicted are distinct). Figures 5.1(a), 5.1(b) and 5.1(c) 

show correctly classified vectors while Figures 5.1(d) and 5.1(e) show vectors 

which are classified wrongly. In Figures 5.1(a), 5.1(b) and 5.1(c), there are no 

yellow data points as the predicted and actual main topics are the same. In 

Figure 5.1(d), the main topic predicted was correct and the vector was 

presented to the correct classifier but the subtopic classification was wrong. 

Hence the figure shows red and yellow data points for the subtopic. In Figure 

5.1(e), the main topic predicted was wrong and hence the vector was presented 

to the wrong classifier – resulting in a wrong classification. This figure shows 

red and yellow data points for both the main topic as well as the subtopic. 

Figure 5.1(e) presents an inherent limitation of this system whereby a wrong 

classifier is chosen by the classifier selection step of the parallel classifier.  

 

For the Reuters Headlines, the accuracy of choosing the correct main topic by 

selecting the maximum significance level 1 entry was measured to be 96.80% 

for the 1000 test vectors, i.e. 968 vectors were assigned the correct trained 

classifiers whereas 3.20% or 32 vectors were assigned to a wrong classifier – 

resulting in a wrong classification decision for all these 32 vectors. Hence the 

upper limit for classification accuracy was 96.80% for our hybrid parallel 

classifier for the Reuters Headlines dataset.  



107 
 

 
Fig 5.1:  Classification Decisions by a Hybrid Parallel Classifier for some 

REUTERS Headlines Input Vectors 
 

 
PrM – Predicted Main Topic                   PrS – Predicted Subtopic 
AcM – Actual Main Topic                        AcS – Actual Subtopic 

Red data points show the predicted main topic and the predicted subtopic 
Yellow data points show the actual main topic and the actual subtopic 
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Fig 5.2:  Classification Decisions by a Hybrid Parallel Classifier for some LSHTC  

Input Vectors 
 

 
PrM – Predicted Main Topic                   PrS – Predicted Subtopic 
AcM – Actual Main Topic                        AcS – Actual Subtopic 

Red data points show the predicted main topic and the predicted subtopic 
Yellow data points show the actual main topic and the actual subtopic 
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Similarly, the accuracy of choosing the correct main topic by selecting the 

maximum significance level 1 entry was measured to be 85.31% for the 463 

LSHTC test vectors, i.e. 85.31% or 395 vectors were assigned the correct 

trained classifiers whereas 14.69% or 68 vectors were assigned to a wrong 

classifier – resulting in a wrong classification decision for all these 68 vectors. 

Hence the upper limit for classification accuracy was 85.31% for our hybrid 

parallel classifier for the LSHTC dataset. Figures 5.2(a), 5.2(b) and 5.2(c) show 

relevant snapshots of the correctly classified LSHTC vectors while Figures 

5.2(d) and 5.2(e) show snapshots of the LSHTC vectors which are classified 

wrongly.  

 

5.1.2 Hybrid Parallel Classifier Results for Experiment Set A 
 

The graphs in Figure 5.3 show a comparison of the performance of hybrid 

classifiers with that of MLP for both corpora. The subtopic classification 

accuracy percentage and training time in seconds is shown for the Hybrid 

Parallel classifiers along with that of the baselines. The baseline was a single 

MLP classifier using full data (not category-wise separated data). This baseline 

experiment was run with two different vector representations – Significance 

Vector and tf-idf. The accuracies of all the hybrid parallel classifiers were better 

than that of the single MLP classifier. This was due to the fact that each base 

classifier present in the hybrid parallel classifier had to learn from a subset of 

the original data. As such, it was able to distinguish between categories present 

in this subspace more accurately than a classifier which had to learn from the 

full dataset.  

 

Overall, it was observed that there was an improvement in subtopic 

classification accuracy along with a significant reduction in training time. The 

classification accuracies of all the hybrid classifiers were quite close to each 

other but all of them were much better than the classification accuracy of the 

single classifier with the tf-idf baseline for both the Reuters Headlines and the 
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LSHTC datasets. The difference with the significance vector baseline was less 

for Reuters Headlines but even there the classification accuracies of the hybrid 

systems were better. The training times showed a very steep reduction 

compared to both baselines. The average of 10 runs was taken for each 

experiment. In the hybrid classifier, even though we are using more classifiers, 

the training time is reduced. This is because each classifier was now trained on 

a reduced set of data with a reduced set of vector components. This two-fold 

reduction translates to a significant decrease in training time. 

 

We also compared the performance of one hybrid classifier (HC4) with three 

different vector formats: FSV_FullVector, FSV_RelVector and CSV_RelVector. 

The FSV_FullVector was the complete Full Significance Vector while 

FSV_RelVector was the Full Significance Vector with only the relevant subtopic 

columns corresponding to the a document’s main topic. Similarly, 

CSV_RelVector was the Conditional Significance Vector with only the relevant 

subtopic columns corresponding to a main topic.  It was observed that the 

CSV_RelVector gave the highest subtopic classification accuracy. The use of 

only relevant dimensions reduced the document vector length to be handled by 

the constituent basic classifiers. This improved the effectiveness of these basic 

classifiers. The use of Conditional Significance further enhanced the distinction 

between subtopics within a subspace. The combination of these two factors led 

to the best classification result being obtained by the CSV_RelVector   

 

 

Reuters Corpus Results for Experiment Set A: 
 
Figure 5.3 shows the results for hybrid classifiers for the Reuters Headlines 

dataset with the two baselines (MLP with Full Significance Vector and and MLP 

with tf-idf vector). Figures 5.4(a) and 5.4(b) show the detailed Reuters 

Headlines results for the hybrid classifiers. The Hybrid 4-classifier system 

(HC10) showed the best classification accuracy which was quite similar to that 
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of the hybrid classifier with category-wise classifiers chosen from the training 

set (HC1). The training times of all the hybrid classifiers were quite close to 

each other with HC1, HC8, HC9 and HC10 showing the least training time. The 

other hybrid classifiers were two-classifier systems with one MLP and one non-

MLP classifier alternating on the main topics. Therefore, the Reuters main 

topics CCAT/ECAT/GCAT/MCAT had MLP/Non-MLP/MLP/Non-MLP as the  

corresponding basic subspace classifiers. Hence for the Reuters Headlines 

data there were two MLPs in all the hybrid 2-classifier systems. This could 

account for the slightly higher training time of these classifiers versus the hybrid 

4-classifier systems (HC8, HC9 and HC10) which had only one MLP in the 

combination. The hybrid classifier with category-wise classifiers chosen from 

training set (HC1) had MLP for the CCAT main topic and J48 for all other main 

topics. Since this combination also had only one MLP, its training time was 

comparable to the hybrid 4-classifier systems. 

 

Figure 5.5(a) shows the comparison of the classification accuracy of the best 

hybrid classifier (HC10) on category-wise data with that of each basic classifier 

on full data for the Reuters Headlines dataset. The average basic classifier 

accuracy is also shown. The chart shows the performance of each basic 

classifier using two different vector formats – tf-idf and Significance Vector. The 

performance of the hybrid classifier was better than the average basic classifier 

accuracy for both vector formats. The hybrid classifier comprised of four 

different classifiers operating on the four subspaces of the Reuters Headlines 

dataset. Each classifier within the hybrid classifier was more effective as it had 

to distinguish only between subtopics within a main topic. The performance of 

each classifier within the combination was thus improved leading to an overall 

higher performance of the hybrid classifier. Each basic single classifier, on the 

other hand, had to distinguish between all subtopics of all main topics in the 

Reuters Headlines dataset. As this was a very large number, the performances 

of the various basic single classifiers were reduced leading to a lower average 

basic classifier accuracy. 
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Figures 5.6(a) and 5.6(b) show the performance of the HC4 classifier (Hybrid 

parallel 2-classifier MLP/NNge combination) with different vector formats for the 

Reuters Headlines dataset. It can be seen that CSV_RelVector (Conditional 

Significance Vectors with only the relevant subtopic vector components) gave 

the highest subtopic classification accuracy and the lowest training time. 

Relevant subtopic vector components reduced the vector length handled by a 

subspace classifier and the use of Conditional Significance improved the 

distinction between subtopics within a subspace. The combination of these two 

factors lead to the highest performance of the CSV_RelVector. 

 

 
LSHTC Corpus Results for Experiment Set A: 
 

Figure 5.3 also shows the results of the Hybrid Classifiers for the LSHTC 

dataset with both baselines (MLP with Full Significance Vector and MLP with tf-

idf vector). Figures 5.4(c) and 5.4(d) show the detailed results for the LSHTC 

hybrid classifiers. The highest subtopic classification accuracy was shown by 

the Hybrid Parallel Classifier with category-wise classifiers chosen from training 

data performance (HC1) with 82.85%. It had a training time of 63.69 seconds. 

This was very closely followed by Hybrid 2-Classifier (MLP/NNge) System 

(HC4) with 82.72% classification accuracy and 43.68 seconds training time. The 

lowest training time was shown by the Predefined Hybrid 4-Classifier System 

(MLP/NB/NNge/J48) (HC8) at 24.14 seconds. In an overall tradeoff between 

classification accuracy and training time (almost best accuracy and much less 

training time), the best hybrid classifier seemed to be the Hybrid 2-Classifier 

System (MLP/NNge) (HC4). This classifier also eliminated the step of choosing 

the best classifier per main category from the training set and thus effectively 

reduced training time even further. 
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Fig 5.3:  Hybrid Parallel Classifiers Performance Metrics with MLP Baselines 

 

Fig 5.3(a) Fig 5.3(b) 

Fig 5.3(c) Fig 5.3(d) 

Classifier Index 
SC1- Single MLP over full data using tf-idf Vectors 
SC2- Single MLP over full data using Significance Vectors 
HC1- Hybrid Parallel Classifier with category-wise classifiers chosen from training data performance 
HC2- Hybrid 2-Classifier System (MLP/NB)*        HC5- Hybrid 2-Classifier System (MLP/PART)* 
HC3- Hybrid 2-Classifier System (MLP/BN)*     HC6- Hybrid 2-Classifier System (MLP/J48)* 
HC4- Hybrid 2-Classifier System (MLP/NNge)*    HC7- Hybrid 2-Classifier System (MLP/RF)* 
 
HC8- Hybrid 4-Classifier System (MLP/NB/ NNge/ J48)* 
HC9- Hybrid 4-Classifier System  (MLP/BN/PART/RF)* 
HC10- Hybrid 4-Classifier System (MLP/NNge/PART/NB)* 
 
*MLP - Multilayer Perceptron (Neural Network); NB - Naïve Bayes, BN - BayesNet (Bayesian); 
  NNge - Nearest Neighbour with Generalised Exemplars, PART - PART Decision List (Rule Based); 
  J48 - Weka's version of C4.5, RF - Random Forest (Tree Based); 
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Fig 5.4:  Performance Metrics - Hybrid Parallel Classifiers Only 

 

Fig 5.4(a) Fig 5.4(b) 

Fig 5.4(c) Fig 5.4(d) 

Classifier Index 
HC1- Hybrid Parallel Classifier with category-wise classifiers chosen from training data performance 
HC2- Hybrid 2-Classifier System (MLP/NB)* 
HC3- Hybrid 2-Classifier System (MLP/BN)* 
HC4- Hybrid 2-Classifier System (MLP/NNge)* 
HC5- Hybrid 2-Classifier System (MLP/PART)* 
HC6- Hybrid 2-Classifier System (MLP/J48)* 
HC7- Hybrid 2-Classifier System (MLP/RF)* 
HC8- Hybrid 4-Classifier System (MLP/NB/ NNge/ J48)* 
HC9- Hybrid 4-Classifier System  (MLP/BN/PART/RF)* 
HC10- Hybrid 4-Classifier System (MLP/NNge/PART/NB)* 
 
*MLP - Multilayer Perceptron (Neural Network); NB - Naïve Bayes, BN - BayesNet (Bayesian); 
  NNge - Nearest Neighbour with Generalised Exemplars, PART - PART Decision List (Rule Based); 
  J48 - Weka's version of C4.5, RF - Random Forest (Tree Based); 
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Fig 5.5:  Comparison of Hybrid Classifier Performance with Basic Classifiers on 

Full Data space 

 

 

 

 

 

 

 

Fig 5.5(a) Fig 5.5(b) 
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Fig 5.6:  Comparison of Hybrid Classifier (HC4) Performance with different Vector 

Formats 

 

  

Fig 5.6(b) Fig 5.6(a) 

Fig 5.6(c) Fig 5.6(d) 

  
HC4:  Hybrid Parallel 2-Classifier Combination with MLP and NNge  
  
Vector Formats: 
  
FSV_Full: Full Significance Vector with the full set of subtopic vector components 
                 (Vector Length is 50 for Reuters and 158 for LSHTC) 
FSV_Rel : Full Significance Vector with only the set of subtopic vector components relevant 
                  to the Main Topic 
CSV_Rel : Conditional Significance Vector with only the set of subtopic vector components 
                  relevant to the Main Topic  
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Figure 5.5(b) shows the comparison of the classification accuracy of the best 

hybrid classifier (HC1) on category-wise data with that of each basic classifier 

on full data for the LSHTC dataset. The average classification accuracy is also 

shown. The chart shows the performance of each basic classifier using two 

different vector formats – tf-idf and Significance Vector. The performance of the 

hybrid classifier was much better than the average basic classifier accuracy for 

both vector formats. Though the numerical values of classification accuracies 

are higher with the Reuters Headlines dataset, the improvement in performance 

is much higher with the LSHTC dataset.       

 

Figures 5.6(c) and 5.6(d) show the performance of the HC4 classifier (Hybrid 

parallel 2-classifier MLP/NNge combination with different vector formats for the 

LSHTC dataset. Here again, it can be seen that CSV_RelVector (Conditional 

Significance Vectors with only the relevant subtopic vector components) gives 

the best subtopic classification accuracy and training time. Here again, the 

improvement obtained was higher with the LSHTC dataset than with the 

Reuters Headlines dataset. The main reason for this is that the baseline 

FSV_FullVector had 158 components for LSHTC and only 50 components for 

Reuters. As the LSHTC had 10 main topics, the average number of relevant 

vectors components in FSV_RelVector and CSV_RelVector was 158/10 or 15.8 

for LSHTC. Similarly the Reuters datasets had 4 main topics and thus an 

average number of 50/4 or 12.5 relevant vector components for each subspace. 

Thus the reduction in the number of vector components was much greater with 

LSHTC than Reuters leading to the higher improvement in classification 

accuracy and training time with the LSHTC dataset. The use of Conditional 

Significance improved the distinction between subtopics within a main topic 

thus causing further improvement with the use of CSV_RelVector.  

 

Numerically the hybrid classifier accuracy values obtained for the Reuters 

Headlines dataset were greater than the hybrid classifier accuracy values 

obtained for the LSHTC dataset (93.21% – 94.21% for Reuters Headlines v/s 
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79.20% - 82.85% for LSHTC Corpus). However, the improvement in 

performance over the baselines was much more marked with the LSHTC 

dataset compared to the Reuters Headlines dataset. Again, with the different 

vector formats, improved performance was found with the Reuters dataset, but 

the improvement obtained was higher with LSHTC. As the LSHTC dataset has 

more categories (10 main and 158 subtopic) than the Reuters Headlines 

dataset (4 main and 50 subtopics), this result is particularly encouraging. 

 

5.2 Experiment Set B: Hybrid Classifiers combining a variety 
of basic classifiers 

 

 

These experiments used six classification algorithms, namely Random Forest, 

J48 (C4.5), the Multilayer Perceptron, Naïve Bayes, BayesNet and PART. The 

test corpora used were the LSHTC dataset, the Reuters Headlines dataset and 

the Reuters Full Text dataset. The Reuters Full Text dataset was formed by 

merging the headlines and body text of each news item. Figure 5.7 shows an 

example of Reuters Full Text.  
 

We tested various hybrid 2-classifier and 4-classifier combinations. The 

experimental setup was as follows: 

 

• For the hybrid 2-classifier combinations, a classifier of one type was 

combined with classifiers of other types in a large variety of 

combinations. Some examples of NB-based hybrid combinations for the 

Reuters dataset with 4 main topics are shown below:  
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• The performance of each single classifier on the full data was compared 

with the performance of the hybrid 2-classifier combinations in which this 

particular classifier also participated. In the NB-based hybrid 

combinations shown above the comparison baseline would be the 

performance of the single NB classifier on the full data space. 

• For the single classifier experiments, the Full Significance Vector 

representation was used, whereas for the hybrid classifier experiments, 

the category-wise separated Conditional Significance Vector 

representation was used.  

• For Hybrid 4-Classifier combinations, four different types of classifiers 

were used for the four main topics of the Reuters Corpus.  A variety of 4-

classifier combinations were tested here. For the LSHTC Corpus, the 4-

Classifier combination was repeated after every block of four main 

topics. 

Input Stage 

NB 

   Output Stage 

RF NB  RF 

Input Stage 

NB 

   Output Stage 

PART NB  PART 

HYBRID 2-CLASSIFIER 
COMBINATIONS WITH 
NAÏVE BAYES (NB) 

Hybrid NB/RF Classifier 

               Hybrid NB/PART Classifier 
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• The data was divided into 9000 training/1000 test vectors for the Reuters 

Headlines as well as the Reuters Full Text datasets and 4000 

training/463 test vectors for the LSHTC dataset.   

• The result values represent an average of 10 runs with different 

parameter values. 

 

5.2.1  Reuters Results for Experiment Set B 
 

In all combinations, it was observed that hybrid 2-classifier combinations 

performed better than the single basic classifier. Figure 5.8 shows the subtopic 

classification accuracy of the hybrid 2-classifier combinations along with the 

Example 1 

Headline: 

Planet Hollywood launches credit card 

Body Text: 

If dining at Planet Hollywood made you feel like a movie star now you can spend money 
like Arnold Schwarzenegger with a new credit card from the themed restaurant chain.   

 The fast growing company whose outlets are festooned with kitsch movie memorabilia 
has teamed up with the William Morris talent agency and MBNA America Bank of 
Wilmington-Del   to offer a credit card with appropriate Hollywood perks.   

 These include preferential seating in the restaurants, a limited edition T-shirt and 
discounts on food and merchandise, a statement said.  Planet Hollywood joins other pop 
culture companies such as Rolling Stone magazine that are issuing branded credit cards 
that make going into debt more fun than usual.   

 Approved applicants don't have to pay an annual fee and there's a special introductory 
annual percentage rate of 5.9 percent for balance transfers and cash advance checks.  
Orlando, Florida based Planet Hollywood is part of Planet Hollywood International Inc.    

Full Text = Headline + Body Text 

  
Fig 5.7: An Example of Reuters Full Text 
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subtopic classification accuracy of single basic classifiers for both the Reuters 

Headlines as well as the Reuters Full Text datasets. Both the datasets followed 

a similar pattern where all the hybrid classifiers performed better than any of the 

single classifiers. In both cases, this was statistically significant (Wilcoxon 

Signed Rank h = 1, p = 1.304e-05). Numerically, the classification accuracy 

values for the Reuters Headlines were higher than those of Reuters Full Text. 

 

The single classifier performances also showed a similar pattern for both 

datasets. In the tree based classifiers, J48 performed better than Random 

Forest for Reuters Headlines and vice-versa for Reuters Full Text. In Figure 5.8, 

the hybrid classifier data points immediately above a particular single classifier 

show the 2-classifier combinations which include that single classifier e.g. the 

hybrid classifier data points H1-H4, which are above the single classifier Naïve 

Bayes, show the two-classifier combinations which include Naïve Bayes. As 

can be seen in the figure all the hybrid 2-classifier combinations performed 

better than the corresponding single classifiers. 

 

Figure 5.9 shows the subtopic classification accuracy of the hybrid 4-classifier 

combinations along with the subtopic classification accuracy of single basic 

classifiers for both the Reuters Headlines as well as the Reuters Full Text 

datasets. Here again, both datasets followed a similar pattern where all the 

hybrid classifiers performed better than any of the single classifiers. Once 

again, this was statistically significant for both headlines and full text (Wilcoxon 

Signed Rank h = 1, p = 0.03125). In this case too, the numerical classification 

accuracy values for the Reuters headlines were higher than those of Reuters 

Full Text. Possible reasons for this will be discussed in the conclusion to this 

chapter. 

Upper Limit for Reuters Full Text Hybrid Classifier 
 

Similar to the Reuters Headlines and LSHTC datasets, we checked the 

accuracy of choosing the correct main topic by selecting the maximum 
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significance level 1 entry for the Reuters Full Text dataset. It was found to be 

82.50% for the 1000 test vectors. Hence, this is the upper limit for the hybrid 

parallel classifier for the Reuters Full Text dataset. 

 

5.2.2 LSHTC Results for Experiment Set B 
 

The results for the LSHTC dataset also showed that all the two-classifier and 

four-classifier combinations performed better than the single classifiers. Figure 

5.10 and Figure 5.11 show the LSHTC results. The single classifier 

performances also showed a similar pattern to the Reuters datasets. These 

results were again statistically significant for two-classifier combinations 

(Wilcoxon Signed Rank h = 1, p = 1.2290e-005) as well as four-classifier 

combinations (Wilcoxon Signed Rank h = 1, p = 0.03125). 

    

In the tree based classifiers, J48 performed better than Random Forest as in 

Reuters Headlines. Similar to the Experiment Set A (section 5.1), the 

improvement in performance by using hybrid classifiers was much more marked 

with the LSHTC dataset as compared to both the Reuters Headlines as well as 

the Reuters Full Text dataset. For example, the hybrid two-classifier 

combinations containing J48 showed an improvement of about 1.5% for 

Reuters Headlines, 8% for Reuters Full Text and 25% for LSHTC over the 

corresponding baseline single J48 classifiers. Similarly, the hybrid two-classifier 

combinations containing Naïve Bayes showed an improvement of about 6% for 

Reuters Headlines, 6% for Reuters Full Text and 13% for LSHTC over the 

corresponding baseline single Naïve Bayes classifiers. The BayesNet classifier 

similarly showed an improvement about 21% for Reuters Headlines, 12% for 

Reuters Full Text and 35% for the LSHTC dataset on hybridization. As the 

LSHTC dataset has more categories than the Reuters datasets, this shows that 

the effectiveness of Hybrid Classifiers increases with the increasing number of 

categories. We will discuss possible reasons for this in the conclusion of this 

chapter. 
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Fig 5.8: Subtopic Classification Accuracy for Hybrid Two-Classifier 
Combinations for the REUTERS Corpus 
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Fig 5.9: Subtopic Classification Accuracy for Hybrid Four-Classifier 
Combinations for the REUTERS Corpus 
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Fig 5.10: Subtopic Classification Accuracy for Hybrid Two-Classifier 
Combinations for the LSHTC Corpus 
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Fig 5.11: Subtopic Classification Accuracy for Hybrid Four-Classifier 
Combinations for the LSHTC Corpus 

 

 

5.3  Conclusion 
  

In these experiments, we attempted to leverage the differences in the 

characteristics of different subspaces to improve semantic subspace learning. 
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The main objective was to improve document classification in a vast document 

space by combining various learning methods. Our results with experiment set 

A (section 5.1) showed that combining MLP in parallel with a basic classifier 

(Bayesian, tree based or rule based) improved the classification accuracy and 

significantly reduced the training time compared to using a single MLP on the 

full data space. The performance improvement was even more significant when 

the number of main topics and subtopics was large (LSHTC v/s Reuters). The 

results with experiment set B (section 5.2) showed that combining a basic 

classifier in parallel with classifiers of other types in a hybrid combination 

increased the classification accuracy of the basic classifier concerned. They 

also showed that combining various types of classifiers in a hybrid combination 

resulted in a classification accuracy better than that of all the constituent single 

classifiers. The Wilcoxon Signed Rank test conducted on these results showed 

them to be statistically significant. Similar to Experiment Set A, these results 

also showed a higher improvement with the LSHTC dataset than with both the 

Reuters datasets. As the LSHTC dataset had 10 main topics, the LSHTC hybrid 

classifier had 10 basic classifiers to deal with these 10 subspaces (main topics). 

The total number of subtopics in the LSHTC dataset was 158. The average 

number of subtopics to be distinguished by each subspace classifier was 

therefore 15.8 (158/10). The average vector length handled by a subspace 

classifier was also 15.8 in this case. The baseline single LSHTC classifiers, 

however, had to distinguish between all the 158 subtopics and deal with a 

vector length of 158. The combined effect of a large number of dimensions and 

a large number of categories considerably reduced the classification accuracies 

of the baseline single LSHTC classifiers. Thus the gap between the 

classification accuracies of the hybrid classifier and the baseline single 

classifiers was very large for the LSHTC dataset.  The Reuters datasets, on the 

other hand, had 4 main topics and 50 subtopics. The Reuters hybrid classifier 

thus had 4 basic classifiers for the 4 subspaces (main topics). The average 

number of subtopics to be distinguished by each Reuters subspace classifier 

was 12.5 (50/4). The average vector length was also 12.5 here. Thus the 
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baseline single Reuters classifiers had to distinguish between 50 subtopics with 

a vector length of 50.  While the complexity to be handled by the subspace 

classifiers was similar for both LSHTC and Reuters hybrid classifiers (Subtopics 

and vector lengths of 15.8 v/s 12.5), the complexity to be handled by the 

baseline single classifiers was very different (Subtopics and vector lengths of 

158 for LSHTC v/s 50 for Reuters). The baseline single classifiers for LSHTC 

thus performed much less well than the baseline single classifiers for Reuters. 

This was the cause of the greater improvement observed by the LSHTC dataset 

with the use of hybrid classifiers. Thus increasing the number of level 1 topics 

(subspaces) causes an increase in the number of subspace classifiers 

employed by a hybrid classifier thereby causing an increased improvement in 

the subtopic classification performance. 

 

All these experiments confirmed the facts that: 

 

• The maximum significance value was very effective in detecting the 

relevant subspace of a test document. 

• Training separate classifiers on separate subsets of the original data 

enhanced overall classification accuracy.  

• Hybrid parallel combinations of classifiers trained on different semantic 

subspaces offered a significant performance improvement over single 

classifier learning on full data space.  

• The use conditional significance vectors increased subtopic 

classification accuracy.  

• Individual classifiers performed better when presented with less data in 

fewer dimensions.  

• The performances of the various hybrid classifiers were very close to 

each other but all of them performed much better than the baseline 

single classifiers.  

• Datasets with a larger number of categories benefited more from this 

architecture. This result is particularly encouraging for real-world 
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applications where the number of categories would be much larger than 

number present in the experimental datasets. 

• Reuters Headlines performed better than Reuters Full Text for the 

purpose of news classification.  

 

The last finding was consistent across all types of experiments – single 

classifiers, hybrid 2-classifier combinations as well as hybrid 4-classifier 

combinations. This can be attributed to the fact that Reuters Full Text 

contains a lot of text which is introduced to make reading interesting. In the 

example in Figure 5.7, the body text contains many sentences like “The fast 

growing company whose outlets are festooned with kitsch movie 

memorabilia .…” which contain no keywords related to the news topic. From 

a text processing point of view, this acts as noise which interferes with the 

relevant words. On the other hand, Reuters Headlines provide a concise 

summary of the news article which improves classification accuracy.  
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Chapter 6 

 

Parallel Classifiers - A Special Case: 

Experiments & Results 
 

 

 

 

In this chapter we look at a special case of the Hybrid Parallel Classifier which 

we call the Parallel Classifier. This is a meta-classifier which can be 

implemented with any base classifier. In this architecture, different classifiers of 

the same type are trained on different semantic subspaces using the 

Conditional Significance Vector with reduced dimensions. In Chapter 5, we 

combined a classifier of one type such as Bayesian with classifiers of other 

types such as tree-based, rule-based, etc. Our experiments in Chapter 5 

showed that the use of different classifiers on different subspaces improved 

classification accuracy. However the timing efficiency of such hybrid 

combinations was not always better than that of all the constituent single 
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classifiers. This was because there was a very wide variation in training times of 

different types of basic classifiers used. For example, the training time of Naïve 

Bayes was less than that of MLP by several orders of magnitude. The training 

time of a Naïve Bayes/MLP combination was between that of single Naïve 

Bayes and single MLP. In order to focus on timing efficiency, we introduce the 

Parallel Classifier where different classifiers of the same type are used on 

different data subspaces. This architecture represents a generalised framework 

with a base classifier. This base classifier can be changed to create different 

Parallel Classifiers. We experiment with Parallel Classifiers using six different 

base classifiers. We expect the parallel classifier timings to be of a similar order 

of magnitude as the corresponding base classifier. The relevant subspace of a 

document is again detected using the Maximum Significance Value. The 

datasets used for these experiments are the Reuters Headlines, Reuters Full 

Text and LSHTC datasets. 

 

 

6.1 Parallel Classifier Experiments 
 

These experiments were carried out using six different classification algorithms 

as the base classifiers for our Parallel Classifier framework. These included two 

Bayesian algorithms (BayesNet & Naive Bayes), two tree-based algorithms 

(J48 & Random Forest), one rule-based classifier (PART) and one neural 

network (MLP). These classifiers were selected to represent a broad range of 

classification algorithms. The experiments were run using these six algorithms 

from Weka on the Reuters Headlines and LSHTC datasets. The Conditional 

Significance Vector representation was used here. The experimental 

methodology is as follows: 

 

• The Reuters Headlines dataset consisting of 10,000 data vectors, was 

divided into 9000 training vectors and 1000 test vectors while the LSHTC 
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dataset which had 4463 data vectors was divided into 4000 training and 

463 test vectors.  

• The 9000 training vectors for Reuters Headlines and the 4000 training 

vectors for LSHTC dataset were further divided into different subsets 

according to their main topics.  

• These training subsets were then used to separately train the classifiers 

for each main topic (subspace).  

• The classifiers used for different subspaces were all of the same type. 

The figures below show some examples of the Parallel Classifier 

implementation for the Reuters Corpus. The LSHTC Corpus 

implementations contain 10 classifiers corresponding to its 10 main 

topics. 
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• For each subspace, only the vector dimensions representing the 

subtopics of that main topic were extracted from the complete document 

vector.  

• For a test vector, the main topic was identified by the Maximum 

Significance Value. Here, all the main topic vector entries were inspected 

and the maximum among these values was determined. The main topic 

corresponding to this maximum value was taken as the main topic of the 

test document.  

• The subtopic vector entries corresponding to this predicted main topic 

were extracted along with their actual subtopic label and given to the 

classifier trained for this main topic (subspace).  

• Parallel Classifier architecture was tested using six different base 

classifiers (Naïve Bayes, BayesNet, J48, Random Forest, PART and 

MLP).  

• In the Reuters parallel classifier using Naïve Bayes, four different Naïve 

Bayes classifiers were trained on the four subspaces of the Reuters 

Corpus namely CCAT, ECAT, GCAT and MCAT. Similarly for the 

Reuters parallel classifier using MLPs, four different MLP classifiers were 

trained on the four subspaces of the Reuters Corpus and so on.  

• As the LSHTC Corpus had ten main topics, the LSHTC parallel classifier 

using Naïve Bayes had ten basic Naïve Bayes classifiers. These ten 

basic Naïve Bayes classifiers were trained on the ten subspaces of the 

LSHTC corpus (Main topics A - J). Similarly for the LSHTC parallel 

classifier using MLP, ten different MLPs were trained on the ten 

subspaces (main topics).  

• The performance of each single classifier on the full data was compared 

with the performance of the parallel classifier combination in which this 

particular classifier was used as a base classifier.  

• For the baseline single classifier experiments, the Full Significance 

Vector and the  tf-idf  vector representations were  used  whereas  for  
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the  parallel classifier experiments, the category-wise separated 

Conditional Significance Vector representation was used.  

• Parallel Classifier experiments were also run with the Reuters Full Text 

dataset containing 10,000 items to compare its performance with that of 

the Reuters Headlines dataset. 

• An average of ten runs with different parameter values was taken for all 

experiments. 

6.2 Reuters Corpus Results 
 

The first set of experiments was performed on a dataset of 10,000 headlines 

drawn from the Reuters Corpus. This dataset had 4 main topics and 50 

subtopics.  
 

6.2.1  Reuters Headlines Performance Metrics 
 

In these experiments, we implemented different parallel classifiers with different 

base classifiers and studied the effect on classification accuracy, training time 

and test time with the use of this parallel architecture. These experiments were 

run with 10,000 Reuters Headlines. In all comparisons using this dataset, it was 

observed that the parallel classifier combination performed better than the 

single basic classifier. The classification accuracy was improved and the 

training times as well as classification (test) times were reduced. The baseline 

using Full Significance Vectors (FSV) performed better than the baseline using 

tf-idf. Figure 6.1 shows the subtopic classification accuracy, training time and 

test time for the parallel classifiers along with the baselines for the Reuters 

Headlines dataset. Figure 6.1(a) shows that the maximum improvement in 

subtopic classification accuracy was achieved by the Naïve Bayes Classifier 

while the other classifiers also showed a substantial improvement especially 

with respect to the tf-idf baseline. Figures 6.1(b) and 6.1(c) show a sharp 
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reduction in training and test times for all classifiers. These figures are shown 

on a log scale to accommodate a wide range of values. These results are 

statistically significant for classification accuracy (Friedman test, p=0.0025), 

training time (Friedman test, p=0.0025) as well as test time (Friedman test, 

p=0.0057) 

 

Figure 6.2 shows the speed-up of the parallel classifiers with respect to both 

baselines. Speed-up was calculated by dividing the baseline time by the 

corresponding parallel classifier time. The speed-up diagrams in Figure 6.2 are 

also shown on a log scale to accommodate a wide range of values. The 

maximum training speed-up was achieved by the rule-based classifier PART 

(14.41 with reference to the FSV baseline and 149.05 with reference to the tf-idf 

baseline) which was followed by the tree-based classifier J48 (C4.5) with a  

speed-up of 11.77 with reference to the FSV baseline and 79.50 with reference 

to the tf-idf baseline. 

 

The test time speed-up was greatest for the Bayesian classifiers.  Naïve Bayes  

achieved  a  speed-up  of 6.08 with respect  to FSV and 32.82 with respect to  

tf-idf,  while BayesNet achieved a speed-up of 11.75 and 48.75 with the 

corresponding baselines. Naïve Bayes achieved significant speed-up in both 

training and as well as testing (a Train/Test speed-up of 5.84/6.08 and 

15.13/32.82 for FSV and tf-idf respectively).  
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Fig 6.1:  Parallel Classifier Performance Metrics with Baselines 

(Reuters Headlines) 
  

Parallel Classifiers (Reuters Headlines) 
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Fig 6.2:  Parallel Classifier Speed-up for Reuters Headlines 

 

 

6.2.2  Comparison of Different Vector Formats for Reuters Headlines 
 

To study the effect of vector format on the Reuters parallel classifier, we also 

experimented with three different vector formats. These were as follows: 

FSV_FullVector-  Full Significance Vector with all 50 vector components 

FSV_RelVector-  Full Significance Vector with only relevant vector components 

CSV_RelVector – Conditional Significance Vector with only relevant vector 

                              Components 
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Fig 6.3: Parallel Classifier Metrics with Different Vector Formats (REUTERS) 

 

Figure 6.3 shows the results of these experiments for various parallel 

classifiers. Figure 6.3(a) shows that the maximum classification accuracy is 

obtained by the CSV_RelVector for all parallel classifiers. The maximum 

improvement in classification accuracy is observed in the Bayesian classifiers 

(Naïve Bayes and BayesNet). The training times in Figure 6.3(b) are again 

shown on a log scale. A substantial reduction in training times is observed for 

all classifiers with a reduction in the number of vector components from 

FullVector to RelVector. The training times of FSV_RelVector and 

CSV_RelVector are similar for three classifiers – Naïve Bayes, BayesNet and 

J48. For the other three classifiers – Random Forest, PART and MLP, the 

CSV_RelVector has the least training time. Thus we observe that a reduction in 
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the number of vector components has a very high impact on the training times 

of the parallel classifiers. These results are also statistically significant for 

classification accuracy (Friedman Test, p = 0.0025) as well as training time 

(Friedman Test, p = 0.0062). 

 

6.2.3 Comparison of Reuters Headlines with Reuters Full Text 
 

The parallel classifier experiments were also run on 10,000 Reuters Full Text 

news items (containing headlines and body text). It was observed that the 

subtopic classification accuracy of Reuters news items was better with Reuters 

Headlines than with Reuters Full Text. This finding was consistent across all 

parallel classifiers. A possible explanation for this can be that the extra text 

present in Reuters Full Text acts as noise which degrades classifier 

 
              Fig 6.4:  Comparison of Reuters Headlines and Reuters Full Text 

 
Parallel Classifier Index: 
 
NB – Naïve Bayes   BN – BayesNet  
J48 – C4.5 Tree       RF – Random Forest 
PART – Rule Based Classifier          MLP – Multilayer Perceptron 
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performances. Fig 6.4 shows the corresponding subtopic classification 

accuracies. This result was statistically significant (Wilcoxon Signed Rank test, 

p=0.031). 

6.3 LSHTC Corpus Results 
 

In order to test the effect of a large number of categories on the Parallel 

Classifier, we also ran these experiments with the Large Scale Hierarchical Text 

Collection (LSHTC) which had 10 main topics and 158 subtopics. 

 

6.3.1 LSHTC Performance Metrics 
 

Figure 6.5 below shows the performance of six different parallel classifiers 

along with the baselines for the LSHTC corpus. It was observed that the parallel 

classifier combinations performed better than all the corresponding single basic 

classifiers. In this case too, the classification accuracy was improved and the 

training times as well as classification (test) times were reduced. Figure 6.5 

shows the subtopic classification accuracy, training time and test time for the 

parallel classifiers along with the baselines for the LSHTC dataset. Figure 6.5(a) 

shows a substantial improvement in the classification accuracy of all parallel 

classifiers with respect to both baselines. The performance of the FSV baseline 

was better than the performance of the tf-idf baseline. Figures 6.5(b) and 6.5(c) 

show a sharp reduction in training and test times for all classifiers. These 

figures are shown on a log scale to accommodate a wide range of values. In 

this case, the performances of the two baselines, Full Significance Vector (FSV) 

and tf-idf, were similar to each other. A possible explanation for this could be 

the similar vector length of these two baselines. These results are again 

statistically significant for classification accuracy (Friedman test, p=0.0025), 

training time (Friedman test, p=0.0111) as well as test time (Friedman test, 

p=0.0111). 
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Fig 6.5:  Parallel Classifier Performance Metrics with Baselines 
                                               (LSHTC) 
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                            Fig 6.6:  Parallel Classifier Speed-up for LSHTC 
 

Figure 6.6 shows the speed-up of the parallel classifiers with respect to both 

baselines. The speed-up diagrams in Figure 6.6 are also shown on a log scale 

to accommodate a wide range of values. Similar to the Reuters dataset, the 

maximum training speed-up was achieved by the rule-based classifier PART 

(72.82 with reference to the FSV baseline and 245.18 with reference to the tf-idf 

baseline). This was followed by MLP with a speedup of 72.92 for FSV and 

33.79 for tf-idf. The maximum test speedup was achieved by MLP (32.78/31.27 

for FSV/tf-idf) followed by Naïve Bayes (26.33/26.00 for FSV/tf-idf). All the 

classifiers showed a good speedup for both training and test times (except 

Random Forest). For classification (test) times, Random Forest has a very low 

speedup with reference to the FSV baseline - 0.99 with Reuters and 1.14 with 

LSHTC. The reason for this could be that Random Forest proceeds by creating 
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a number of trees (default 10 trees in Weka). These trees are created during 

the training phase. In a parallel classifier, each Random Forest algorithm works 

with a reduced subset of data and therefore the time required to construct these 

trees (training time) is reduced. However, the number of trees created remains 

the same as the number created with the baseline single Random Forest 

classifier. The test vector has to proceed down 10 trees and voting is done 

among 10 labels in both cases. Hence the test timings remain similar and 

therefore the test speed-up is low. 

 

 

Fig 6.7: Parallel Classifier Metrics with Different Vector Formats (LSHTC) 
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6.3.2 Comparison of Different Vector Formats for LSHTC 
 

Figure 6.7 shows the LSHTC parallel classifier performance metrics for different 

vector formats. These vector formats were the FSV_FullVector, the 

FSV_RelVector and the CSV_RelVector. We can see that the CSV_RelVector 

gave the highest classification accuracy and all classifiers except Random 

Forest showed a substantial decrease in training time in going from FullVector 

to RelVector. Thus a reduction in the number of vector components leads to a 

big reduction in training time in this case too. The time axis is shown on a log 

scale here. The performances of the FSV_RelVector and CSV_RelVector were 

similar. These results are again statistically significant for classification 

accuracy (Friedman Test, p = 0.0031) as well as training time (Friedman Test, p 

= 0.0057) 

6.4 Conclusion 
 

The results in this chapter show that: 

 

• The Maximum Significance Value is very effective in detecting the 

relevant subspace of a test document. 

• Combining classifiers of the same type in parallel improves the 

classification accuracy of the concerned basic classifier where the 

underlying data has distinct semantic categories.  

• Reuters Headlines perform better than Reuters Full Text for the purpose 

of news classification.  

• A parallel combination of classifiers results in a very sharp reduction in 

training and testing times. The speed-up achieved is considerable in all 

cases. 

 

All of these results are statistically significant. Naïve Bayes achieved a high 

degree of speed-up in both training and test timings along with the greatest 
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improvement in classification accuracy. Since Naïve Bayes is already a fast 

classifier, further speed-up can be put to good use especially in search 

technology. The results showed that Naïve Bayes achieved a train/test speed 

up of 5.84/6.08 and 15.13/32.82 for FSV and tf-idf respectively for the Reuters 

dataset. The corresponding values for the LSHTC dataset were 6.84/26.33 and 

7.81/26.00. Thus parallel classifiers work well even with a larger hierarchy (4 

main topics and 50 subtopics for Reuters vs. 10 main topics and 158 subtopics 

for LSHTC). This is an encouraging result as real world hierarchies are much 

larger than the experimental ones. 
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Chapter 7 

 

Conclusion 
 

 

 

 

7.1  Introduction 
 

The text documents available to us nowadays are often related to a taxonomy 

or category hierarchy rather than a flat classification system. The documents 

present in today’s world are also increasing exponentially. To be able to access 

these documents in real time, we need fast automatic methods which take 

advantage of these category hierarchies. As the documents become very 

diverse it becomes difficult for a single classifier to deal with such varied data. 

In this thesis, we looked at combinations of diverse classifiers to improve 

classification of text documents in a two-level hierarchy. 
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7.2 Achievement of Objectives 
 

 

The following objectives mentioned in section 1.2.2 have been achieved: 

 

1. Conduct a literature review on the current state of multilevel text 

classification systems using machine learning methods with emphasis on 

hierarchical classification and subspace learning  

 

In chapter 2, a detailed literature survey and analysis of the current state of art 

techniques is presented for both hierarchical classification (section 2.1.3) and 

subspace learning (section 2.2). This study clarified that it is appropriate to 

concentrate on at most 2 – 3 levels of category hierarchy to avoid the problem 

of error propagation. It also showed that the use of subspace learning can deal 

with a two-level hierarchy while at the same time increasing the speed of 

subspace detection by the use of search methods rather than classification 

techniques at level 1 of the hierarchy. 

 

2. Propose a new vector representation suitable for two-level learning 

 

Chapter 3 looks at an existing method of category based vector representation. 

This method weighs different words according to their importance in different 

categories. We proposed a modification to this method to incorporate a two-

level hierarchy and weigh words according to their importance within a 

particular data subspace (main topic). Our new vector representation can be 

expanded to incorporate a multi-level hierarchy. 

 

3. Conduct a literature review on the currently available methods of 

classifier combination. 
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4. Research various classifier combination methods to improve two-level 

text classification. 

 

Section 2.3 of this thesis showed that most classifier combination methods 

concentrated on a flat classification system with few categories. They 

concentrated on feature transformation techniques to reduce the feature set 

and then applied ensemble methods for classification. Subspace Clustering, 

which works by extracting a data subspace along with features relevant to that 

data subspace was more appropriate for our problem domain of text with a 

large number of categories. However, even this method had not specifically 

been applied to two-level classification. We detected a gap in the literature 

where category information could be used to identify subspaces instead of the 

use of unsupervised clustering. 

 

5. Propose a new hybrid architecture for improved two-level learning using 

the new proposed vector representation. 

 

In Chapter 4, we presented a new hybrid architecture based on subspace 

detection using a novel method based on the Maximum Significance Value 

extracted from a single document vector and the use of separate classifiers for 

separate subspaces to improve level 2 learning. 

 

6. Evaluate the performance of the new proposed hybrid architecture using 

various performance methods 

 

Chapter 5 presents evaluation of this architecture using the metrics of 

classification accuracy and training time. The standard measures of precision 

and recall are shown to be equivalent to classification accuracy for our case of 

single label multi-class classification. The results of statistical significance tests 

are also presented here. Chapter 6 presents the evaluation of a special case of 

this architecture – the Parallel Classifier, on classification accuracy, training 
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time as well as test time. Statistical significance testing is also presented for this 

case.  

 

 

7.3 Review of Hypothesis and Research Questions 
 

7.3.1  Hypothesis 
 

The use of separate classifiers for separate subspaces will improve overall 

subspace classification accuracy and learning time and lead to improved two-

level classification of text documents.  

 

Our experiments in Chapter 5 have proved this hypothesis to be correct. In 

these experiments, the experimental datasets were divided into different 

subspaces or subsets based on the level 1 (main) category.  

 

The Experiment Set A (section 5.1) combined MLP in parallel with other 

classifiers in various hybrid two-classifier and four-classifier combinations where 

each classifier operated on a separate data subspace. These experiments were 

conducted on the Reuters Headlines dataset and the LSHTC dataset. For a 

two-classifier combination, MLP and the other classifier were used alternately 

on the main category topics while for a four-classifier system four different 

classifiers were used on the four main topics of the Reuters Headlines dataset 

and repeated for each block of four main topics for the LSHTC dataset. The 

baseline for these experiments was a single MLP classifier on the full data 

dataset using two different vector formats – the tf-idf and the Full Significance 

Vector. The results of these experiments (section 5.1.2) showed that the use of 

hybrid MLP-based classifiers resulted in an improvement in subtopic 

classification accuracy along with a significant reduction in training time over the 

single MLP baselines for both the datasets.   
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In Experiment Set B (section 5.2), various hybrid 2-classifier and 4-classifier 

combinations were tested. For the hybrid 2-classifier combinations, a classifier 

of one type was combined with classifiers of other types in a large variety of 

combinations. The performance of each single classifier on the full data was 

compared with the performance of the hybrid 2-classifier combinations in which 

this particular classifier also participated. For the baseline single classifier 

experiments, the Full Significance Vector representation was used, whereas for 

the hybrid classifier experiments, the category-wise separated Conditional 

Significance Vector representation was used. In these experiments, in addition 

to Reuters Headlines and LSHTC, the Reuters Full Text dataset was also used. 

Reuters Full Text merged headlines with the body text for each Reuters news 

item. The results for these experiments (sections 5.2.1 & 5.2.2) showed that 

classification accuracy of all the hybrid two-classifier combinations were better 

than that of the corresponding baseline single classifiers and the hybrid four-

classifier combinations performed better than all of the single classifiers. 

 

 

7.3.2  Research Questions 
 

 

The three research questions given in Chapter 1 are as follows: 

 

Research Question 1) Is it possible to devise a method to quickly direct the 

document search to a relevant document subspace by examining only a single 

input query vector? 

 

In the initial experiments presented in section 4.1.1 with 10,000 Reuters 

Headlines, the subspace of a test document was detected by the Maximum 

Significance Value which is the maximum value among the level 1 topic entries 

of the Conditional Significance Vector.  The categories within this subspace 

were then allocated by a single classifier. The performance of ten different 
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classifiers was compared for this process. All classifiers showed that the best 

subtopic classification accuracy was achieved by keeping only the relevant 

subspace in consideration.  Thus the correct subspace is detected in this case 

by examining only a single input query vector. Further experiments conducted 

with a larger dataset (section 4.1.2 – 100,000 Reuters Headlines) and with 

longer documents (section 4.1.3 – 10,000 Reuters Full Text items) and with a 

dataset with a larger hierarchy (section 4.2 - LSHTC) all showed that the 

performance of level 2 classification is improved with basic classifiers when only 

the relevant subspace detected by our method is used. Hence it is possible to 

devise a method to quickly direct the document search to a relevant document 

subspace by examining only a single input query vector. 

 

Research Question 2) Can we develop a classification method which directs 

the classification from all possible classes to a relevant subspace of classes?  

 

The developed method is as follows: We take an existing category based vector 

representation system, the Significance Vector (section 3.1.2) and modify it to 

represent a two-level hierarchy with the Conditional Significance Vector (section 

3.1.3). In the Conditional Significance Vector, the initial vector components (4 

for Reuters / 10 for LSHTC) contain information about level 1 while the 

remaining components contain information about level 2. We use the Maximum 

Significance Value among the level 1 components to detect the level 1 (main) 

category of a document. After this, only the vector components relevant to the 

subtopics of that main topic are extracted and given to a classifier for subtopic 

classification. This directs the classification from all possible classes to a 

relevant subspace of classes. The improved subtopic classification accuracies 

obtained by using this method in chapters 4, 5 and 6 show the strength of our 

method. 

 

Research Question 3) Is it possible to have a vector representation that 

focuses on the relative importance of keywords within a data subspace? 
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The word significance vectors discussed in section 3.1.2 take the relative 

weight of a word for all categories in the system. At subtopic level, this means 

taking all the subtopics in the dataset under consideration. This forms the Full 

Significance Vector. In section 3.1.3, we have proposed the Conditional 

Significance Vector which takes the relative weight of a keyword with reference 

to their relevant data subspace. At subtopic level, this means all the subtopics 

of  only a particular main topic – not all the subtopics in the complete dataset. A 

keyword which is more important in subspace A than in subspace B receives a 

higher weightage in subspace A than in subspace B. Thus the weight of the 

same word is different in different subspaces. The results of our experiments 

comparing different vector formats (Fig 5.6, Fig 6.3 and Fig 6.7 ) show that the 

best subtopic classification accuracy is obtained by the Conditional Significance 

Vector  Hence it is possible to have a vector representation that focuses on the 

relative importance of keywords within a data subspace. 

 
7.4 Summary of Contributions 
 

This work contributes to the research on text classification in the presence of  

multi-level category hierarchies and to the research on hybrid methods of 

classifier combination. The main contributions are as follows: 

 

• Identifying the need for a fast classification method which can deal with 

category hierarchies. 

• Proposal of a new vector format, the Conditional Significance Vector 

which encodes category hierarchy information along with the relative 

importance of words in different data subspaces. 

• Proposal of a new method of subspace detection using the Maximum 

Significance Value extracted from the Conditional Significance Vector. 
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• The first application of subspace learning using category information to 

deal with two-level text data. 

• Proposal of a Hybrid Parallel Classifier to improve learning at the sub-

category level.   

• Conducting a variety of experiments with a large number of hybrid 

combinations to show the efficacy of this method. 

• Experiments with a special case, the Parallel Classifier, to show 

improvement in a single type of classifier for two-level text classification 

using this high level architecture.  

 

The main findings of this work were as follows: 

 

• Maximum Significance Value is very effective in identifying the relevant 

subspace of a test document. It is also very fast as it examines just a 

single document vector for subspace detection. 

• The use of Conditional Significance Vectors enhances the distinction 

between subtopics in a subspace improving overall learning at level 2. 

• The use of separate classifiers for separate subspaces improves 

learning at the subtopic level. 

• There is very small variation in the performance of different hybrid and 

parallel combinations but all of them perform much better than the single 

baseline classifiers. 

• The method of classifier combination is more important than the 

classifiers themselves. Our architecture can thus be implemented with 

any base classifier available. 

• The improvement obtained for level 2 learning with the Hybrid Parallel 

Classifiers increases as the category hierarchies become larger. This is 

shown by the higher improvement obtained by the LSHTC Corpus with 

10 main and 158 subtopics than the Reuters Corpus with 4 main and 50 

subtopics. 
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• The use of the same type of classifier for different subspaces results in a 

considerable reduction in training and test timings along with an 

improvement in the classification accuracy.  

• Reuters Headlines perform better than Reuters Full Text (Headlines + 

Body Text) for the purpose of news classification with our vector 

representation. 

 

 

7.5   Applicability to Other Domains 
 

In this work, we have applied our techniques to unstructured text. However, 

Hybrid Parallel Classifiers can be applied to many other domains such as 

Image Processing, Pattern Recognition and Computer Vision where different 

classifiers can work on different parts of an image/pattern to improve overall 

recognition. The image vector can be constituted such that different blocks of 

the image vector correspond to distinct parts of an image. In face recognition, 

different classifiers can be allocated to recognise different parts of a face such 

as eyes, ears, mouth and nose. The outputs of these different classifiers can 

then be combined to generate a final face recognition decision. Apart from 

image data, this technique can also be applied to image captions for image 

classification. Computational Biology can also benefit from this method to 

improve recognition within subdomains. Social Media, which has a lot of text 

content, can also be explored with this method for customised suggestions and 

marketing. 

7.6 Personal Concluding Remarks 
 

This research has greatly deepened my understanding of the challenges faced 

by the field of unstructured text classification in the presence of the ever 

increasing volume and complexity of data and category hierarchies. It has also 

increased my understanding of machine learning methods and their importance 
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in today’s world. I am particularly satisfied that my instinct of pointing directly to 

a subset of data for improving subtopic classification could be practically 

implemented and has shown encouraging results. I am, however, aware that 

category hierarchies are not static in today’s world. As such this system needs 

to be made dynamic.   

 

Our experimental results show that our high level architecture is very good in 

improving learning at level 2. This improvement is almost independent of the 

types of classifiers used. Even though there is variation in the performance of 

various hybrid and parallel classifiers, they are very close to each other and all 

of them are much better than the baseline single classifiers over the full data 

space. This seems to suggest that it is our general architecture of maximum 

significance based subspace learning which improves performance. Thus this 

architecture can be implemented with any base classifiers available. An 

elementary classifier such as Naïve Bayes performs as well with this 

architecture as a more complex classifier such as the MLP. The strength of our 

architecture thus lies in the method of classifier combination rather than the 

classifiers themselves. Thus it can act as a powerful meta-classifier whose 

performance is even more useful when the underlying data has a more complex 

category hierarchy. This has been shown by a higher improvement observed 

over the baselines in the LSHTC Corpus with 10 main and 158 subtopics than 

in the Reuters Corpus with 4 main and 50 subtopics. 

  

A major implication for this in the field of text classification and classifier theory 

is that further improvements in classification performances can be obtained by 

combining various classifiers and by focusing on improving feature vector 

representation. Vector representations that incorporate semantic information 

give better results than general vectors like tf-idf. Thus feature engineering and 

classifier combinations should be the focus of future work for improved 

classification performances.  
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7.7 Suggestions for Further Work 
 

a) Use of Ontologies: 

 

In this work, significance vectors are calculated solely on the basis of word 

frequencies. The addition of domain ontologies to the computation of 

Conditional Significance Vectors should further improve learning. 

 

b) Error Correction: 

 

To keep classification speeds high, we have avoided error correction in this 

work. Gao et al. (2009) have applied error reduction and correction in a 

hierarchical classification scheme using category and subtree probabilities. 

Similar methods of error correction can be explored to increase the 

classification accuracy of our system. 

 

c) Use of classifier combinations: 

 

Classifier ensembles can be used instead of single classifiers to process each 

subspace. Classifier ensembles are based on the reasoning that strengths and 

weaknesses of various classifiers can compensate each other. An instance 

which is misclassified by one classifier may be classified correctly by another 

classifier thus pushing up the combined classification performance. Classifier 

ensembles have been successfully applied in the literature to text with flat 

classification schemes [(Larkey and Croft (1996), Al-Kofahi et al. (2001), Florian 

et al. (2003), Fradkin and Kantor (2005)]. In our Hybrid Parallel Classifier, the 

classifiers operating in the subspaces deal with a single level of categories (only 

the level 2 subcategories within a main category). Hence classifier ensembles 

should improve learning within a subspace. 

 



157 
 

d)       Extension to more levels: 

 

We have applied the Maximum Significance Value to detect the main topic at 

level 1. This method can be applied recursively at lower levels to deal with a 

deeper hierarchy. For example, in a three level hierarchy, the reduced length 

sub-vector extracted after subspace detection at level 1 will contain information 

about level 2 as well as level 3. The Maximum Significance Value can be 

applied to the level 2 category information to further detect a lower level 

subspace and extract a further reduced vector containing only level 3 

information. A classifier can then be applied at level 3 to obtain the level 3 

category relevant to the document being processed. 

 

e)      Modifications to deal with dynamic category hierarchies: 

 

In today’s world, category hierarchies are continuously changing. New 

categories are introduced and old ones phased out. Our system is based on a 

fixed category hierarchy. Methods of converting this to a dynamic architecture 

should be explored.  
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Abstract — Subspace detection and processing is receiving 
more attention nowadays as a method to speed up search 
and reduce processing overload. Subspace Learning 
algorithms try to detect low dimensional subspaces in the 
data which minimize the intra-class separation while 
maximizing the inter-class separation. In this paper we 
present a novel technique using the maximum significance 
value to detect a semantic subspace. We further modify the 
document vector using conditional significance to represent 
the subspace. This enhances the distinction between classes 
within the subspace. We compare our method against 
TFIDF with PCA and show that it consistently outperforms 
the baseline with a large margin when tested with a wide 
variety of learning algorithms. Our results show that the 
combination of subspace detection and conditional 
significance vectors improves subspace learning. 

 

I. INTRODUCTION 
Many learning algorithms do not perform well with high-
dimensional data due to the curse of dimensionality [1]. 
Additional dimensions spread out the points making 
distance measures less useful. In very high dimensions, 
objects in a dataset are nearly equidistant from each other. 
Therefore, methods are needed that can discover clusters 
in various subspaces of high dimensional datasets [2].  
      Subspace learning methods are therefore nowadays 
being increasingly researched and applied to web 
document classification, image recognition and data 
clustering. Among subspace learning methods, Principal 
Component Analysis (PCA) [3] and Linear Discriminant 
Analysis (LDA) [4] are well known traditional methods. 
LDA is a supervised method whereas PCA is 
unsupervised. Other methods include ISOMAP, Locally 
Linear Embedding (LLE), Neighborhood Preserving 
Embedding (NPE), Laplacian Eigen Maps, 
Nonparametric Discriminant Analysis, Marginal Fisher 
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Analysis and Local Discriminant Embedding [5]. 
Furthermore, the Supervised Kampong Measure (SKM) 
[6] is an incremental subspace learning method.  

The objective of all these algorithms is to minimize the 
intra-class distance while maximizing the inter-class 
separation. However, as the number of feature dimensions 
increases, the computational complexity for these 
algorithms increases dramatically. For instance, the 
computational complexity of PCA is O(p2n )+O(p3) where 
p is number of data dimensions and n is the number of 
data points [7].   In other approaches, Wang et al [8] use 
an RD-Quadtree to subdivide the data space and show 
that their RD–Quadtree-based clustering algorithm has 
better results for high-dimensional data than the well-
known K–means algorithm. Finally, Hinton & 
Salakhutdinov [9] have proposed the concept of Semantic 
Hashing where documents are mapped to memory 
addresses in such a way that semantically similar 
documents are located at nearby addresses. The majority 
of these methods have high computational complexity and 
as such cannot quickly focus the search when the amount 
of data is very large.   

We present here a novel method of subspace detection 
and show that it improves learning without lengthy 
computations. We use the semantic significance vector 
[10], [11] to incorporate semantic information in the 
document vectors. We compare the performance of these 
vectors against that of TFIDF vectors. The dimensionality 
of TFIDF vectors is reduced using PCA to produce a 
vector length equal to that of the semantic significance 
vectors. Our experiments were performed on the Reuters 
corpus (RCV1) using the first two levels of the topic 
hierarchy. Our method achieves the objective of the other 
subspace learning algorithms i.e. decreasing intra-class 
distance while increasing inter-class separation but 
without the associated computational cost. Subspace 
detection is done in O(k) time where k is the number of 
level 1 topics and thus can be very effective where time is 
critical for returning search results.  

 

II. METHODOLOGY OVERVIEW AND OVERALL 
ARCHITECTURE 

 
The topic codes in the Reuters Corpus [12] represent the 
subject areas of each news story. They are organized into 
four hierarchical groups, with four top-level nodes: 
Corporate/Industrial (CCAT), Economics (ECAT), 
Government/Social (GCAT) and Markets (MCAT). 
Under each top-level node there is a hierarchy of codes, 
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with the depth of each represented by the length of the 
code.  

Ten thousand headlines along with their topic codes 
were extracted from the Reuters Corpus. These headlines 
were chosen so that there was no overlap at the first level 
categorization. Each headline belonged to only one level 
1 category.  At the second level, since most headlines had 
multiple level 2 subtopic categorizations, the first 
subtopic was taken as the assigned subtopic. Thus each 
headline had two labels associated with it – the main topic 
(Level 1) label and the subtopic (Level 2) label. Headlines 
were then pre-processed to separate hyphenated words. 
Dictionaries with term frequencies were generated based 
on the TMG toolbox [13]. These were then used to 
generate the Semantic Significance Vector representation 
[10], [11] for each document. Two different variations of 
vector representations were used – the Full Significance 
Vector representation and the new Conditional 
Significance Vector representation. Masking of the vector 
elements was done by setting them to zero value.  
Different levels of masking were examined to generate  a  
total  of  five  different datasets. Each dataset  

 

  Fig 1.  Semantic Subspace Learning Architecture 

was then randomised and divided into two equal sets for  
training and testing, each comprising of 5000 document 
vectors. Fig 1 shows the semantic subspace learning 
architecture. 

The WEKA machine learning workbench [14] was 
used to examine this architecture and representations with 
various learning algorithms. Ten algorithms were 
compared for our representations to examine the different 
categories of classification algorithms. Classification 
Accuracy, which is a comparison of the predicted class to 
the actual class, was recorded for each experiment run.  

 

III. STEPS FOR DATA PROCESSING AND DATA 
GENERATION FOR EXPERIMENTS 

 
3.1 Text Data Preprocessing 
 
10,000 Reuters headlines were used in these experiments.  
The Level 1 categorization of the Reuters Corpus divides 
the data into four main topics. These main topics and their 
distribution in the data along with the number of 
subtopics of each main topic in this data set are given in 
Table 1.  

 
Level 2 categorization further divides these into 

subtopics. Here we took the direct (first level nesting) 
subtopics of each main topic occurring in the 10,000 
headlines.  A total of 50 subtopics were included in these 
experiments. Some of these subtopics with their numbers 
present are shown in Table 2. Since all the headlines had 
multiple subtopic assignment e.g.  C11/C15/C18, only the 
first subtopic e.g. C11 was taken as the assigned subtopic. 

 

 
 

                

                 Table 1: Reuters Level 1 Topics 

 

No Main  
Topic 

Description Num-
ber 
Present 

No.  of 
Sub-
topics 

1 CCAT Corporate/ 
Industrial 
 

4600 18 

2 ECAT Economics 
 

900 8 

3 GCAT Government/ 
Social 
 

1900 20 

4 MCAT Markets 
 

2600 4 

Subspace 
Detection 

Learning 
Algorithm 

Classification 
Decision 

 12 column 
(average 
value) 
subspace 
document 
vector 

Document 
Significance 
Vector 
Generation  

54 column  
document  
vector 

Training 
Document 
Set 

Test 
Document 
Set 
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3.2 Semantic Significance Vector Generation 
 
We use a vector representation which looks at the 
significance of the data and weighs different words 
according to their significance for different topics. 
References [10] and [11] have introduced the concept of 
semantic significance vectors. Significance Vectors are 
determined based on the frequency of a word in different 
semantic categories. A modification of the significance 
vector called the semantic vector uses normalized 
frequencies. Each word w is represented with a vector 
(c1,c2,..,cn) where ci represents a certain semantic category 
and n is the total number of categories. A value v(w, ci) is 
calculated for each element of the semantic vector as the 
normalized frequency of occurrences of word w in 
semantic category ci  (the normalized category frequency), 
divided by the normalized frequency of occurrences of the 
word w in the corpus (the normalized corpus frequency): 
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For each document, the document semantic vector is 
obtained by summing the semantic vectors for each word 
in the document and dividing by the total number of 
words in the document. This is the version of the semantic 
significance vector used in our experiments. Henceforth it 

is simply referred to as Significance Vector. The TMG 
Toolbox [13] was used to generate the term frequencies 
for each word in each headline. The word vector consisted 
of 54 columns for 4 main topics and 50 subtopics. While 
calculating the significance vector entries for each word, 
its occurrence in all subtopics of all main topics was taken 
into account - hence called  Full Significance Vector. 

We also generated vectors to observe whether results 
obtained with Full Significance can be improved by 
modifying the significance vectors to reflect the subspace 
which is being processed. Here again the word vector 
consisted of 54 columns for 4 main topics and 50 
subtopics. However, while calculating the significance 
vector entries for each word, its occurrence in all 
subtopics of only a particular main topic was taken into 
account - henceforth called Conditional Significance 
Vector.  
 
 
 
3.3 Data Sets Generation 
 
As will be described below, datasets for five different 
vector representations were generated.  The Full 
Significance Vectors were processed in different ways to 
generate four different data sets. The fifth set was the 
Conditional Significance Vector dataset. 
 
 
3.3.1 No Mask Full Significance Data Set 
 
For each vector the first four columns, representing four 
main topics – CCAT, ECAT, GCAT & MCAT, were 
ignored leaving a vector with 50 columns representing 50 
subtopics. The order of the data vectors was then 
randomised and divided into two sets – training set and 
testing set of 5000 vectors each. 
 
 
3.3.2 Mask 1 Full Significance Data Set 
 
For each vector the numerical entries in the first four 
columns, representing four main topics – CCAT, ECAT, 
GCAT & MCAT, were compared. The topic with the 
minimum numerical value entry was identified. Then the 
entries for all subtopics belonging to this main topic were 
masked i.e. set to zero. Finally, the first four columns 
representing four main categories were deleted. The 
resultant vector had 50 columns representing 50 subtopics 
but the subtopic entries for the topic with least 
significance value had been masked to zero. The average 
number of relevant columns was then 38. The dataset was 
then randomised and divided into two sets – training set 
and testing set of 5000 vectors each.    
                                                                                                                   

3.3.3 Mask 2 Full Significance Data Set 
 
As above, the numerical entries in the first four columns 
of each vector representing four main topics CCAT, 

Table 2: Some Reuters Level 2 subtopics used for our   
experiments. 

Main 
Topic 

Sub Topic Description Number 
Present 

CCAT C17 Funding/ Capital 377 

CCAT C32 Advertising/ 
Promotion 

10 

CCAT C41 Management 130 

ECAT E12 Monetary/ Economic 107 

ECAT E21 Government Finance 377 

ECAT E71 Leading Indicators 87 

GCAT G15 European 
Community 

38 

GCAT GPOL Domestic Politics 197 

GCAT GDIP International 
relations 

215 

GCAT GENV Environment  30 

MCAT M11 Equity Markets 617 

MCAT M14 Commodity  Markets 1050 
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ECAT, GCAT and MCAT were compared. The main 
topics with the two smallest numerical value entries were 
identified. Then the entries for all subtopics belonging to 
these two main topics were masked i.e. set to zero. Then, 
the first four columns representing four main categories 
were ignored. The resultant vector had 50 columns 
representing 50 subtopics but the subtopic entries for the 
two topics with the two smallest significance values had 
been masked to zero. The average number of relevant 
columns in this case became 25. The masked dataset was 
then randomised and divided into training and testing sets 
of 5000 vectors each. 
 
3.3.4 Mask 3 Full Significance Data Set 
 
Here again, the numerical entries in the first four 
columns, representing four main topics – CCAT, ECAT, 
GCAT & MCAT, were compared. The topics with the 
three smallest numerical value entries were identified. 
Then the entries for all subtopics belonging to these three 
topics were masked i.e. set to zero. Finally, the first four 
columns representing four main categories were deleted. 
The resultant vector had 50 columns representing 50 
subtopics but the subtopic entries for the three main topics 
with least significance value, 2nd least significance value 
and 3rd least significance value had been masked to zero. 
Since there are four main topics in the Reuters corpus, 
this has the same effect as allowing only the subtopics of 
the main topic with the maximum significance value in 
the resultant vector while masking out all the rest.  The 
average number of relevant columns here was 12.  Again 
the dataset was randomised and divided into training set 
and testing set of 5000 vectors each. 
 
3.3.5 Mask 3 Conditional Significance Data Set 
 
In this case, while calculating the significance vector 
entries for each word in a subtopic, its occurrence in all 
subtopics of only a particular main topic was taken into 
account - hence called conditional significance vector. 
Here, when calculating significance values for C11, C12, 
etc, the topics considered were only the subtopics of 
CCAT. Similarly for M11, M12, etc only MCAT 
subtopics were considered. For each word, four separate 
conditional significance sub-vectors were generated for 
the four main Reuters topics. These sub-vectors were then 
concatenated together along with the significance value 
entries for the four main topics to form the 54 column 
word vector.  The Conditional Significance document 
vector was generated by summing the conditional 
significance word vectors for each word appearing in the 
document and then dividing by the total number of words 
in the document. This vector representation is used to 
measure the significance of a word within a particular 
main topic. Hence only the subtopic entries for the main 
topic with maximum value entry were allowed. All the 
subtopic entries belonging to the other 3 main topics were 
masked out. The dataset was then randomised and divided 

into two sets – training set and testing set of 5000 vectors 
each. 
 

 
     
Fig 2: Mapping of Conditional Significance Vector to 
relevant subspace. 
 
 Fig 2 shows the conceptual diagram for the conditional 
significance vector while Fig 3 shows the Conditional 
Significance Vector (CSV) for two different Reuters 
headlines. The Mask 3 Full Significance Vector (FSV) 
and Conditional Significance Vector (CSV) values for 
each of these two headlines are given below for 
comparison. The main topic label and subtopic label are 
shown at the end of each vector. As can be seen, the 
vector entries are boosted in the case of CSV – thus 
helping to differentiate between subtopics within the 
subspace 
 
Headline 1 
0......0,0.20,0.03,0.04,0.02,  MCAT/M11 : FSV 
0......0,0.59,0.11,0.20,0.08,  MCAT/M11 : CSV 
 
Headline 2 
0….0,0.03,0.05,0.04,0.0099,0.01,0.0073, 0.25,0.0069, 
0.....0,ECAT/E51 : FSV 
0….0,0.13,0.13,0.10,0.0100,0.02,0.0300,0.52,0.0300, 
0….0,ECAT/E51 : CSV 
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Fig 3: Conditional Significance Vectors showing non- 
zero entries for relevant subspace 
 
3.4 TFIDF Vector  generation 
 
The TMG toolbox [13] was used to generate TFIDF 
vectors for the ten thousand Reuters headlines used in 
these experiments. Dimensionality reduction was done 
using PCA with the same toolbox. The number of 
dimensions was chosen as 50 for PCA to have vectors 
similar in size to the significance vectors generated 
earlier. The dataset was then randomized and divided into 
two sets - training and test of 5000 vectors each. 
 
3.5 Classification Algorithms  
 
Ten Classification algorithms were tested with our 
datasets namely Random Forest, C4.5, Bagging, 
LogitBoost, Classification via Regression, Multilayer 
Perceptron, BayesNet, IBk, NNge and PART. Random 
forests [15] are a combination of tree predictors such that 
each tree depends on the values of a random vector 
sampled independently.  C4.5 [16] is an inductive tree 
algorithm with two pruning methods :       subtree replace- 
ment and subtree raising. Bagging [17] is a method for 
generating multiple versions of a predictor and using 
these to get an aggregated predictor. LogitBoost [18] 
performs classification using a regression scheme as the 
base learner, and can handle multi-class problems. In 
Classification via Regression [19],    one regression model  
is built for each class value.  Multilayer Perceptron [20] is 
a neural network which uses backpropagation for training. 
BayesNet [21] implements Bayes Network learning using 

various search algorithms and quality   measures.    IBk 
[22] is     a k-nearest neighbour classifier which can select 
an appropriate value of k based on cross-validation and 
can also do distance weighting.   NNge [23] is a    nearest    
neighbor    like    algorithm   using    non-nested  
generalized exemplars (which are hyperrectangles that 
can be viewed as if-then rules). A PART  [24] decision 
list uses separate-and-conquer. It builds a partial C4.5 
decision tree in each iteration and makes the best leaf into 
a rule. Table 3 shows the different classification 
algorithms used with their default parameters in Weka. 

 
Table 3: Classification Algorithms and their default  
parameters in Weka 
 
No. 

 
Algorithm Parameters 

1. Random Forest NumTrees = 10 
 

2. J48 (C4.5) Confidence factor=0.25, 
MinNumObj=2, 
NumFolds=3,  
Subtree raising =true 
 

3. Bagging BagSizePerc=100, 
NumIterations=10, 
BaseClasifier=REP Tree 
 

4. Classification via 
Regression 
 

Classifier=M5P 

5. LogitBoost NumIterations =10, 
NumRuns =1, 
Shrinkage =1.0, 
Weight threshold =100, 
BaseClassifier = 
DecisionStump 
 

6. PART Confidence factor=0.25, 
MinNumObj=2, 
NumFolds=3 
 

7. IBk Knn=1,  
No cross validation,  
No distance weighting 
 

8. BayesNet Estimator=SimpleEstimator, 
Search algorithm=K2 
 

9. NNge NumAttemptsGeneOption=5 
NumFoldersMIOption=5 
 

10. Multilayer 
Perceptron 

LearningRate=0.3, 
Momentum=0.2, 
Training time=500,  
RandomValidation 
threshold=20 
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All these algorithms can cope with  different  sized  
categories.   This   takes  care of   the different number of 
instances  present for each category in Table 1. 

IV. RESULTS AND ANALYSIS  
Two sets of experiments were run to test learning at the 
first two levels of Reuters topic categorization. Ten runs 
of each algorithm with different seed values (wherever 
applicable) were taken for each vector representation. 
Four algorithms (Classification via Regression, IBk, 
BayesNet and NNge) did not have the option for entering 
a random seed value in Weka. Three algorithms  (C4.5, 
LogitBoost and PART) had an option for entering random 
seed value but the results for all 10 runs were identical. 
Only three algorithms (Random Forest, Bagging and 
Multilayer Perceptron) showed variance in the 
classification accuracy values. The average and variance 
of   the classification accuracy for 10 runs with different 
seed values was calculated for each algorithm. The 
abbreviations for the various options are given below: 
 
FS_0: Full Significance with No Mask 
FS_1: Full Significance with Mask 1 
FS_2: Full Significance with Mask 2 
FS_3: Full Significance with Mask 3 
CS_3: Conditional Significance with Mask 3 
TFIDF/PCA: TFIDF with PCA reduction 
 
 
The Algorithm Index is as follows: 
 
1. Random Forest 
2. J48 (C4.5) 
3. Bagging 
4. Classification via Regression 
5. LogitBoost 
6. PART 
7. IBk 
8. BayesNet 
9. NNge 
10. Multilayer Perceptron 
 
 
4.1 Level 1 Testing 
 
The Full Significance Vector with four variations – No 
Mask, Mask 1, Mask 2 and Mask 3 and the Conditional 
Significance Vector with Mask 3 were used with only the 
main topic labels i.e. CCAT, ECAT, GCAT and MCAT. 
The TFIDF/PCA vectors with main topic labels were used 
for comparison. The algorithms given above were run 
using 5000 training vectors and 5000 test vectors for each 
case.  Table 4a shows the average accuracy values while 
Table 4b shows the variance in accuracy values for the 
test cases.  
 
 
 
 

 

 
In Table 4a, all algorithms except IBk (No. 7) show that 
the maximum masking option (Mask 3) gives the best 
result. This indicates that the maximum significance value 
is a good indicator of the relevant subspace. The best 
results are divided between FS_3 and CS_3 for different 
algorithms. Table 4b shows that the minimum variance is 
also given by the maximum masking option (Mask 3). 
The best result is given by CS_3.  

Table 4a: Main Topic Average Classification Accuracy 
(%) for test vectors 
Bold Font (big) – best performance; Bold Font (small) - 
2nd best performance 
 
*No. FS_0 FS_1 FS_2 FS_3 CS_3 TFIDF/ 

PCA     
1. 91.17 90.67 91.45 96.45 96.45 79.46 

2. 92.46 91.02 92.40 95.72 96.10 73.58 

3. 92.24 91.95 93.54 96.39 96.29 78.89 

4. 92.10 94.94 94.72 96.28 96.78 77.54 

5. 92.30 92.22 90.96 96.24 96.38 72.20 

6. 93.46 92.86 92.20 95.92 95.60 74.14 

7. 96.84 96.74 95.28 95.44 95.94 76.74 

8. 83.58 81.26 71.70 96.26 96.30 59.62 

9. 95.66 95.58 89.92 96.64 96.34 73.72 

10. 96.54 96.40 95.31 96.49 97.43 79.77 

 
*Algorithm No  

Table 4b: Main Topic Classification Accuracy  Variance  
for test vectors 
Bold Font (big) – best performance  

 
*No. FS_0 FS_1 FS_2 FS_3 CS_3 TFIDF/ 

PCA     
1. 0.227 0.236 0.123 0.018 0.011 0.120 
2. 0 0 0 0 0 0 
3. 0.234 0.084 0.042 0.003 0.003 0.224 
4. 0 0 0 0 0 0 
5. 0 0 0 0 0 0 
6. 0 0 0 0 0 0 
7. 0 0 0 0 0 0 
8. 0 0 0 0 0 0 
9. 0 0 0 0 0 0 

10. 0.109 0.115 0.095 0.062 0.042 0.742 
 
*Algorithm No 
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4.2 Level 2 Testing 
 
Here, the Full Significance Vector with four variations –   
No Mask, Mask 1, Mask 2 and Mask 3 and the 
Conditional Significance Vector with Mask 3 were used 
with the subtopic labels. The TFIDF/PCA vectors with 
subtopic labels were used for comparison here. The same 
algorithms as given above were run using 5000 training 
vectors and 5000 test vectors for each case. The results 
shown in Table 5a are the average accuracy values for the 
test cases. This subtopic accuracy table shows the 

accuracy values obtained by applying classification 
algorithms after subspace branching. So this is a 
combined performance of level 1 and level 2. The 
Conditional Significance Vector representation with 
maximum masking option (Mask 3) gives the best 
average accuracy result with all algorithms. Table 5b 
shows that the minimum variance is again given by the 
maximum masking option (Mask 3). The best variance 
values are split between FS_3 and CS_3 here. 
 
The Mask 3 option consistently shows the best results at 
level 1 and level 2. This shows that the maximum 
significance value is successful in identifying the relevant 
subspace (level 1 topic). Since the Conditional 
Significance Vector with Mask 3 option encodes the 
subspace within the vector itself, the subtopic accuracy 
table shows the combined effect of branching at level one 
and applying the classification algorithms at level 2. 
Consistent maximum accuracy obtained at level 2 by the 
conditional significance vector with all the algorithms 
shows that conditional significance is successful in 
differentiating between subtopics within a data subspace. 
Thus our vector representation is unique in that it 
incorporates both subspace branching and subspace 
learning in the same step. 
 

V. CONCLUSION 
This work is an effort to explore semantic subspace 
learning with the overall objective of improving 
document retrieval in a vast document space. Our 
experiments on the Reuters Corpus show that the 
maximum significance value has potential in identifying 
the main (Level 1) topic of a document. They also show 
that modifying the significance vector (conditional 
significance) to process only the subspace improves 
learning within the subspace. Thus the combination of 
branching on maximum significance value along with 
using conditional significance improves subspace 
learning. The subspace detection is done by processing a 
single document vector. This method is independent of 
the total number of data samples and only compares the 
level 1 topic entries. The time complexity is thus O(k) 
where k is the number of level 1 topics.  

The novelty of our approach is in the vector 
representation. In the document conditional significance 
vector generated by the subspace detection step, the 
subspace is encoded in the vector (the non-zero values 
represent the subspace). Secondly, the numerical 
significance values in the word conditional significance 
vector denote the significance of a particular word for 
different subtopics within that subspace. Since the 
document vector is a summation of the word vectors,  this 
helps in differentiating between topics within a given 
subspace (between subtopics of  a main topic in case of 
Reuters Corpus) thus enhancing subspace learning. In this 
work, the word significance vectors were calculated using 
only term frequencies. For further work, the effect of a 

Table 5a: Subtopic Average Classification Accuracy (%) 
for test vectors 
Bold Font (big) – best performance; Bold Font (small) - 
2nd best performance 
 
*No. FS_0 FS_1 FS_2 FS_3 CS_3 TFIDF/ 

PCA    
1.    82.11  80.69  74.69  88.55 90.60 57.37 
2. 87.90 87.62 78.50 88.90 90.42 49.16 

3. 86.68 87.04 79.51 89.53 92.06 57.51 
4. 92.12 91.94 83.32 91.36 92.98 56.02 

5. 92.32 92.10 83.88 91.16 92.62 52.98 

6. 87.18 87.98 77.20 88.78 90.24 50.44 

7. 90.84 90.58 81.76 89.66 91.22 55.52 

8. 68.52 61.98 52.18 86.84 89.04 46.74 

9. 91.30 91.16 82.34 90.96 92.42 54.82 

10.  91.96 91.86 82.07 91.39 92.39 58.84 
*Algorithm No 

Table 5b: Subtopic Classification Accuracy Variance for 
test vectors 
Bold Font (big) – best performance 
 
*No. FS_0 FS_1 FS_2 FS_3 CS_3 TFIDF/ 

PCA     
1. 0.545 1.239 0.264 0.101 0.146 0.202 
2. 0 0 0 0 0 0 
3. 0.233 0.241 0.151 0.030 0.028 0.147 
4. 0 0 0 0 0 0 
5. 0 0 0 0 0 0 
6. 0 0 0 0 0 0 
7. 0 0 0 0 0 0 
8. 0 0 0 0 0 0 
9. 0 0 0 0 0 0 

10. 0.141 0.163 0.746 0.026 0.059 0.320 
  
 *Algorithm No 
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global weighting measure like Inverse Document 
Frequency (IDF) on the word weights can be explored. 
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Abstract. A vast data repository such as the web contains many broad domains of data which are quite distinct from each other e.g.
medicine, education, sports and politics. Each of these domains constitutes a subspace of the data within which the documents
are similar to each other but quite distinct from the documents in another subspace. The data within these domains is frequently
further divided into many subcategories. In this paper we present a novel hybrid parallel architecture using different types of
classifiers trained on different subspaces to improve text classification within these subspaces. The classifier to be used on a
particular input and the relevant feature subset to be extracted is determined dynamically by using maximum significance values.
We use the conditional significance vector representation which enhances the distinction between classes within the subspace.
We further compare the performance of our hybrid architecture with that of a single classifier – full data space learning system
and show that it outperforms the single classifier system by a large margin when tested with a variety of hybrid combinations on
two different corpora. Our results show that subspace classification accuracy is boosted and learning time reduced significantly
with this new hybrid architecture.

Keywords: Parallel classifiers, hybrid classifiers, subspace learning, significance vectors, maximum significance

1. Introduction

The web is an almost infinite data repository. It con-
tains a large number of data domains which are quite
distinct from each other. A few examples of these are
medicine, education, sports and politics. The data with-
in these domains is frequently further subdivided into
many levels of categories. These domains constitute
different subspaces of data which can be processed as
independent entities.

The curse of dimensionality [11] degrades the perfor-
mance of many learning algorithms. Very high dimen-
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nology, University of Sunderland, Sunderland SR6 0DD, United
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Nandita.Tripathi@hotmail.com.

sions reduce the effectiveness of distance measures and
blur the cluster boundaries within subspaces. There-
fore, we need ways to discover clusters in different sub-
spaces of datasets which are represented with a high
number of dimensions [19].

Subspace analysis lends itself naturally to the idea of
hybrid classifiers. Since each subspace can be viewed
as an independent dataset, different classifiers can be
used to process different subspaces. Each subspace can
be processed by a classifier best suited to the character-
istics of that particular subspace. Instead of using the
complete set of full space feature dimensions, classifier
performances can be boosted by using only a subset
of the dimensions. The method of choosing an appro-
priate reduced set of dimensions is an active research
area [14].

The use of Random Projections in dimensionality
reduction has also been explored. Random Projections
and PCA were compared on different datasets and ma-

1448-5869/11/$27.50  2011 – IOS Press. All rights reserved
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Fig. 1. A combined classifier.

chine learning algorithms by Fradkin and Madigan [6].
They concluded that the performance of PCA was con-
sistently better than that of Random Projections (RP)
but RP was more efficient computationally and it was
best suited with nearest neighbor methods. In the Ran-
dom Subspace Method (RSM) [32], classifiers were
trained on randomly chosen subspaces of the origi-
nal input space and the outputs of the models were
then combined. However random selection of features
does not guarantee that the selected inputs have nec-
essary distinguishing information. Several variations
of RSM have been proposed by various researchers
such as Relevant random feature subspaces for co-
training (Rel-RASCO) [34], Not-so-Random Subspace
Method (NsRSM) [23] and Local Random Subspace
Method [28].

The performance of different types of classifiers
(Bayesian, Tree based, Neural Networks, etc.) can
be improved by combining them with various types of
combining rules. In one method of classifier combi-
nation, several classifiers of different types operate on
the same data and produce their individual classifica-
tion outputs. A combination rule or combining clas-
sifier is then applied to the outputs of these partici-
pating classifiers to produce the final classification de-
cision. In another method of classifier combination,
many classifiers of the same or different types operate
on different portions of the input data space. The com-
bining classifier decides which part of the input data
has to be applied to which base classifier. Two special
types of classifier combinations are Bagging [15] and
Boosting [25] which use a large number of primitive
classifiers of the same type (e.g. a decision stump) on
weighted versions of the original data. Figure 1 shows
a general combined classifier.

Many experiments were conducted on combining
classifiers by Duin and Tax [26] and it was reported
that best performance is achieved by combining both,
different feature sets and different classifiers. Several
researchers have studied classifier combinations with
respect to text categorization. In one method [13], text
and metadata were considered as separate descriptions
of the same object. These descriptions were classified
by their independent classifiers and the classification
outputs combined to give a final classification decision.
Another text categorization method [20] was based on
a hierarchical array of neural networks. In this case,
the expert networks are specialized in recognizing doc-
uments corresponding to a specific category. The prob-
lem of large class imbalances in text classification tasks
was addressed by using a mixture of experts frame-
work [1]. Here different experts are trained on datasets
sampled at different rates. Both oversampling and un-
der sampling is used in this case.

In the real world, documents can be divided into ma-
jor semantic subspaces with each subspace having its
own unique characteristics. The above research does
not take into account this division of documents into
different semantic subspaces. Therefore we present
here a novel hybrid parallel architecture (Fig. 2) which
takes advantage of the different semantic subspaces ex-
isting in the data. We further show that this new hybrid
parallel architecture improves subspace classification
accuracy as well as significantly reduces training time.
For this architecture, we test various hybrid combina-
tions of classifiers using the conditional significance
vector representation [24] which is a variation of the
semantic significance vector [30,31] to incorporate se-
mantic information in the document vectors. The con-
ditional significance vector enhances the distinction be-
tween subtopics within a given main topic. The re-
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Fig. 2. Hybrid parallel classifier architecture for subspace learning.

gion of the test data is determined by the maximum
significance value [24] which is evaluated in O(k) time
where k is the number of level 1 topics and thus can be
very effective where time is critical for returning search
results.

In Section 2, we present our new hybrid parallel ar-
chitecture and describe the corpora used to test this
architecture. Section 3 details the conversion of text
data into the various vector formats and also the clas-
sification algorithms used in our experiments. In Sec-
tion 4, we compare the performance of this hybrid par-
allel classifier against that of single MLP classifiers us-
ing the significance vector as well as the tf-idf vector
representation. Our experiments are performed on two
different corpora – the Reuters corpus (RCV1) [33]
and the Large Scale Hierarchical Text Classification
(LSHTC) Corpus [2] using the first two levels of the
topic hierarchy in both cases.

2. Methodology overview and overall architecture

The Reuters Corpus is a well-known test bench for
text categorization experiments. It also has a hierarchi-

cal organization with four major groups which is well
suited to test the classification performance of a hybrid
architecture. We used the Reuters Corpus headlines for
our experiments as they provide a concise summary of
each news article. Each Reuters headline consists of
one line of text with about 3–12 words. Some example
Reuters headlines are given below:

“Healthcare Imaging Q2 loss vs profit.”
“Questar signs pact to buy oil, gas reserves.”
“Ugandan rebels abduct 300 civilians,army says.”
“Estonian president faces reelection challenge.”
“Guatemalan sides to sign truce in Norway re-
port.”
“CRICKET-Australia beat Zimbabwe by 125 runs
in one-day match.”
“PRESALE – Akron, Ohio.”

The topic codes in the Reuters Corpus represent
the subject areas of each news story. They are or-
ganized into four hierarchical groups, with four top-
level nodes: Corporate/Industrial (CCAT), Economics
(ECAT), Government/Social (GCAT) and Markets
(MCAT). Under each top-level node there is a hierar-
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chy of codes where the depth of each is represented
by the length of the code. As a representative test, ten
thousand headlines along with their topic codes were
extracted from the Reuters Corpus. These headlines
were chosen so that there was no overlap at the first
level categorization. Each headline belonged to only
one level 1 category. At the second level, since most
headlines had multiple level 2 subtopic categorizations,
the first subtopic was taken as the assigned subtopic.
Thus each headline had two labels associated with it –
the main topic (Level 1) label and the subtopic (Level
2) label. Headlines were then preprocessed to sepa-
rate hyphenated words to avoid such combinations be-
ing interpreted as new words rather than a sequence of
known words. Dictionaries with term frequencies were
generated based on the TMG toolbox [7] and were then
used to generate the Full Significance Vector [24], the
Conditional Significance Vector [24] and the tf-idf [5]
representation for each document. The datasets were
then randomised and divided into a training set of 9000
documents and a test set of 1000 documents.

For comparative analysis, we used the LSHTC [2]
competition data from the LSHTC website as our sec-
ond corpus. The LSHTC data has been constructed
by crawling the web pages that are found in the Open
Directory Project (ODP) located at www.dmoz.org and
translating them into feature vectors. These vectors
are called content vectors. The Open Directory Project
is an open source and extensive directory of web con-
tent. An example web page content accessed from this
directory is given below:

“Ambienti Italia brings you world class Italian
furniture through infinite selections for decorating
your home. Flexibility and design expertise al-
low us to adapt to any kind of space according to
required functions and available dimensions. We
want our customers to go home and find the best
– comfort and style. Ambienti Italia’s collections
reflect the achievements and history of Italian home
furnishings”

The ODP descriptions of the web pages and the cat-
egories are also translated into feature vectors. These
vectors are called web page and category description
vectors. Two datasets were put up for the LSHTC com-
petition – the large lshtc dataset and the smaller dry-
run lshtc dataset. The directory of each dataset con-
sisted of a cat hier.txt file describing the category hi-
erarchy of the dataset and data folders for four tasks
(Task1 – Task4). Task1 contained only crawl data while
the data for task 2, task 3 and task 4 contained crawl
data and RDF data.

We used the data from the dry-run task1 training fold-
er as our LSHTC corpus. The average number of words
in each document in this dataset is 290. This number
takes into account only the stemmed words without the
stop words. The data is in the form of content vectors
which are obtained by directly indexing the web pages.
A text file describing the category hierarchy is also giv-
en with the data. There were 4463 content vectors in
this data file with their associated lowest level labels.
We pre-processed these vectors in order to replace the
lowest level labels with the corresponding labels of the
first two levels of the category hierarchy. These vec-
tors were then used to generate the Full Significance
Vector [24], the Conditional Significance Vector [24]
and the tf-idf [5] representations for each document as
will be described below. The datasets were then ran-
domised and divided into a training set of 4000 vectors
and a test set of 463 vectors.

The WEKA machine learning workbench [21] pro-
vided various learning algorithms which we combined
in various new hybrid architectures in order to test a
variety of learning algorithms. Seven algorithms were
compared for our representations to examine the per-
formance of various classification algorithms. Classifi-
cation Accuracy, which is a comparison of the predict-
ed class to the actual class, and the Training Time were
recorded for each experiment run.

3. Steps for data processing and data generation
for experiments

3.1. Text data preprocessing

For designing and testing our new hybrid architec-
ture, we took text data from two different sources
(Reuters and LSHTC). This text data was pre-processed
to represent a two-level hierarchy and then processed
in a variety of ways to generate data vectors in different
formats.

Reuters Corpus: Ten thousand Reuters headlines
were used in these experiments. The Level 1 catego-
rization of the Reuters Corpus divides the data into four
main topics. These main topics and their distribution
in the data along with the number of subtopics of each
main topic in this data set are given in Table 1.

Level 2 categorization further divides these into
subtopics. Here we took the direct (first level nest-
ing) subtopics of each main topic occurring in the
10,000 headlines. A total of 50 subtopics were includ-
ed in these experiments. Some of these subtopics with
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Table 1
Reuters level 1 topics

No. Main Topic Description Number Present No. of Subtopics

1. CCAT Corporate/ Industrial 4600 18
2. ECAT Economics 900 8
3. GCAT Government/ Social 1900 20
4. MCAT Markets 2600 4

Table 2
Some reuters level 2 subtopics

Main Topic Subtopic Description Number Present

CCAT C17 Funding/ Capital 377
CCAT C32 Advertising/ Promotion 10
ECAT E12 Monetary/ Economic 107
ECAT E21 Government Finance 377
GCAT G15 European Community 38
GCAT GENV Environment 30
MCAT M11 Equity Markets 617
MCAT M14 Commodity Markets 1050

Table 3
LSHTC level 1 (main) topics

No. Main Topic Number Present Number of Subtopics

1. A 802 19
2. B 979 36
3. C 639 17
4. D 269 17
5. E 158 5
6. F 20 3
7. G 578 19
8. H 364 6
9. I 321 14

10. J 333 22

their numbers present are shown in Table 2. Since all
the headlines had multiple subtopic assignments, e.g.
C11/C15/C18, only the first subtopic e.g. C11 was tak-
en as the assigned subtopic. Our assumption here is
that the first subtopic used to tag a particular Reuters
news item is the one which is most relevant to it.

LSHTC Corpus: This dataset consisted of 4463 con-
tent vectors with multilevel categorization. There was
no data with overlapping categorization in this dataset.
There are 10 level 1 and 158 level 2 topics in this cor-
pus. These topics were coded numerically. We re-
placed this numeric code with an alphanumeric code
for ease of analysis. Subsequently the 10 top level cate-
gories were given letter codes A – J. These main topics
and their distribution in the data along with the num-
ber of subtopics of each main topic in this data set are
given in Table 3. The subtopics were coded A01-A19,
B01-B36, etc. with the first character denoting the main
topic to which these subtopics belonged. The number
of data vectors for some of these subtopics is given in
Table 4.

Table 4
Some LSHTC level 2 subtopics

Subtopic Number Present Subtopic Number Present

A09 120 F02 11
A16 8 F03 8
B06 114 G07 47
B26 40 G14 208
C05 2 H02 336
C10 232 H04 2
D02 26 I03 91
D08 62 I10 18
E03 40 J06 44
E05 2 J22 19

3.2. Semantic significance vector generation

We use a vector representation which represents the
significance of the data and weighs different words ac-
cording to their significance for different topics. Sig-
nificance Vectors [30,31] are determined based on the
frequency of a word in different semantic categories.
A modification of the significance vector called the se-
mantic vector uses normalized frequencies where each
word w is represented with a vector (c1, c2,. . . ,cn)
where ci represents a certain semantic category and n

is the total number of categories. A value v(w, ci) is
calculated for each element of the semantic vector as
the normalized frequency of occurrences of word w

in semantic category ci (the normalized category fre-
quency), divided by the normalized frequency of oc-
currences of the word w in the corpus (the normalized
corpus frequency):

v(w, ci) =
Normalised Frequency of w in ci∑

k

Normalised Frequency of w in ck

where k ∈ {1..n}

For each document, the document semantic vector is
obtained by summing the semantic vectors for each
word in the document and dividing by the total num-
ber of words in the document. Henceforth it is simply
referred to as the Significance Vector. The TMG Tool-
box [7] was used to generate the term frequencies for
each word in each headline. The word vector consisted
of 54 columns (for 4 main topics and 50 subtopics) for
the Reuters Corpus and 168 columns (for 10 main topics
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and 158 subtopics) for the LSHTC corpus. While cal-
culating the significance vector entries for each word,
its occurrence in all subtopics of all main topics was
taken into account – hence called the Full Significance
Vector. We also generate the Conditional Significance
Vector [24] where a word’s occurrence in all subtopics
of only a particular main topic is taken into account
while calculating the word significance vector entries.

3.3. Data vector sets generation

As will be described below, three different vector
representations (Full Significance Vector, Conditional
Significance Vector and tf-idf) were generated for our
data. The Conditional Significance Vectors were pro-
cessed further to generate main category-wise data vec-
tor sets (4 different datasets for Reuters and 10 different
data sets for LSHTC).

3.3.1. Full significance vector
Here, the document vectors were generated by sum-

ming the full significance word vectors for each word
occurring in a document and then dividing by the
total number of words in that document. For each
Reuters Full Significance document vector the first four
columns, representing four main topics – CCAT, ECAT,
GCAT & MCAT, were ignored leaving a vector with 50
columns representing 50 subtopics. The order of the
data vectors was then randomised and divided into two
sets – training set of 9000 vectors and a test set of 1000
vectors. Similarly, for each LSHTC Full Significance
document vector the first ten columns, representing ten
main topics (A–J), were ignored leaving a vector with
158 columns representing 158 subtopics. The order of
the data vectors was then randomised and divided into
two sets – training set of 4000 vectors and a test set of
463 vectors.

3.3.2. Category-based conditional significance
vectors

Here, the conditional significance word vectors were
used to generate the document vectors in the same way
as above for the Reuters and LSHTC corpora. These
document vectors were then processed as described
below to produce the CSV RelVectors for each corpus.

Reuters Corpus: The order of the 10,000 Reuters
Conditional Significance document vectors was ran-
domised and divided into two sets – a training set of
9000 vectors and a test set of 1000 vectors. The training
set was then divided into 4 sets according to the main
topic labels. For each of these sets, only the relevant

subtopic vector entries (e.g. C11, C12, etc. for CCAT;
E11, E12, etc. for ECAT) for each main topic were re-
tained. Thus the CCAT category training dataset had
18 columns for 18 subtopics of CCAT. Similarly the
ECAT training dataset had 8 columns, the GCAT train-
ing dataset had 20 columns and the MCAT training
dataset had 4 columns. These 4 training sets were then
used to train the 4 parallel classifiers of the Reuters hy-
brid classifier. The main category of a test data vector
was determined by the maximum significance vector
entry for the first four columns representing the four
main categories. After this, the entries corresponding
to the subtopics of this predicted main topic were ex-
tracted along with the actual subtopic label and given
to the classifier trained for this predicted main category.

LSHTC Corpus: The order of the 4463 LSHTC
Conditional Significance document vectors was ran-
domised and divided into two sets – training set of 4000
vectors and a test set of 463 vectors. The training set
was then divided into 10 sets according to the main
topic labels. For each of these for sets, only the rele-
vant subtopic vector entries (e.g. A01, A02, etc. for A;
B01, B02, etc. for B) for each main topic were retained.
These 10 training sets were then used to train the 10
parallel classifiers of the LSHTC hybrid classifier. The
main category of a test data vector was determined by
the maximum significance vector entry for the first ten
columns representing the ten main categories. After
this, the entries corresponding to the subtopics of this
predicted main topic were extracted along with the ac-
tual subtopic label and given to the classifier trained for
this predicted main category.

Figure 3 shows the classification decisions for some
Reuters input vectors. Figures 3(a)–3(e) each represent
one input test vector. The x-axis of these figures repre-
sents the significance vector components which in turn
represent all the main topics and subtopics present in
our Reuters Corpus data. The y-axis shows the actual
numerical values for these significance vector compo-
nents as calculated in Sections 3.2 and 3.3. The black
data points show the predicted main topic and the pre-
dicted subtopic while the gray data points show the ac-
tual main topic and the actual subtopic (wherever actual
and predicted are distinct). Figures 3(a), 3(b) and 3(c)
show correctly classified vectors while Figures 3(d) and
3(e) show vectors which are classified wrongly. In Fig-
ures 3(a), 3(b) and 3(c), there are no gray data points
as the predicted and actual main topics are the same.
In Fig. 3(d), the main topic predicted was correct and
the vector was presented to the correct classifier but
the subtopic classification was wrong. Hence the fig-
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ure shows black and gray data points for the subtopic.
In Fig. 3(e), the main topic predicted was wrong and
hence the vector was presented to the wrong classifier –
resulting in a wrong classification. This figure shows
black and gray data points for both the main topic as
well as the subtopic. Figure 3(e) presents an inherent
limitation of this system whereby a wrong classifier is
chosen by the classifier selection step of the parallel
classifier.

For the Reuters Corpus, the accuracy of choosing
the correct main topic by selecting the maximum sig-
nificance level 1 entry was measured to be 96.80% for
the 1000 test vectors, i.e. 968 vectors were assigned
the correct trained classifiers whereas 3.20% or 32 vec-
tors were assigned to a wrong classifier – resulting in
a wrong classification decision for all these 32 vec-
tors. Hence the upper limit for classification accuracy is
96.80% for our hybrid parallel classifier for the Reuters
Corpus. Similarly, the accuracy of choosing the cor-
rect main topic by selecting the maximum significance
level 1 entry was measured to be 85.31% for the 463
LSHTC test vectors, i.e. 85.31% or 395 vectors were
assigned the correct trained classifiers whereas 14.69%
or 68 vectors were assigned to a wrong classifier – re-
sulting in a wrong classification decision for all these
68 vectors. Hence the upper limit for classification ac-
curacy is 85.31% for our hybrid parallel classifier for
the LSHTC Corpus. Figures 4(a), 4(b) and 4(c) show
relevant snapshots of the correctly classified LSHTC
vectors while Figs 4(d) and 4(e) show snapshots of the
LSHTC vectors which are classified wrongly.

3.3.3. Category-based full significance vectors
To compare the performance of different vector for-

mats, we also generated the category-based Full Sig-
nificance Vectors. Here, the Full Significance docu-
ment vectors were generated as described in Section
3.3.1 for the Reuters and LSHTC Corpora. After this,
the document vector set for each corpus was divided
into category-based training and test sets as described
in section 3.3.2.

Two variations of the category based Full Signifi-
cance Vectors were generated for our experiments:

i) Category-Wise Separated Vectors with the com-
plete set of subtopic vector dimensions (50 for
Reuters and 158 for LSHTC) designated as
FSV FullVector;

ii) Category-Wise Separated Vectors with only the
relevant subtopic vector dimensions correspond-
ing to the actual main category for training vec-
tors and the predicted main category for test
vectors. These vectors are designated here as
FSV RelVector.

3.3.4. TF-IDF vector generation
The tf-idf weight (Term Frequency–Inverse Docu-

ment Frequency) is often used in text mining and in-
formation retrieval. It is a statistical measure which
evaluates how important a word is to a document in a
data set. This importance increases with the number of
times a word appears in the document but is reduced by
the frequency of the word in the data set. Words which
occur in almost all documents have very little discrim-
inatory power and hence are given very low weight.
The TMG toolbox [7] was used to generate the tf-idf
vectors for our experiments. The tf-idf vector datasets
were then randomized and divided into 9000 training
vectors / 1000 test vectors for the Reuters Corpus and
4000 training vectors / 463 test vectors for the LSHTC
Corpus.

3.4. Classification algorithms

Seven Classification algorithms were tested with our
datasets namely Random Forest, C4.5, the Multilayer
Perceptron, Naı̈ve Bayes, BayesNet, NNge and PART.
Random Forests [16,27] are a combination of tree pre-
dictors such that each tree depends on the values of a
random vector sampled independently. C4.5 [12,29] is
an inductive tree algorithm with two pruning methods:
subtree replacement and subtree raising. The Multi-
layer Perceptron [4,22] is a neural network which uses
backpropagation for training. Naive Bayes [10,17] is
the simplest form of Bayesian network, in which all
attributes are independent given the value of the class
variable. BayesNet [9,18] implements Bayes Network
learning using various search algorithms and quality
measures. NNge [3] is a nearest neighbor - like algo-
rithm using non-nested generalized exemplars which
can be considered as if-then rules. A PART [8] decision
list uses C4.5 decision trees to generate rules. Table 5
shows the different classification algorithms used with
their default parameters in Weka.

4. Results and their analysis

A variety of basic learning algorithms required to
test various hybrid combinations for our new architec-
ture were provided by the WEKA machine learning
workbench [21]. The Multilayer Perceptron (MLP)
along with six other basic algorithms were used in
our experiments. These included two Bayesian algo-
rithms (BayesNet and Naive Bayes), two rule-based al-
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Fig. 3. Classification decisions by a hybrid parallel classifier for some REUTERS input vectors.



N. Tripathi et al. / Semantic subspace learning using hybrid intelligent techniques 107

Fig. 4. Classification decisions by a hybrid parallel classifier for some LSHTC input vectors.
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Table 5
Classification algorithms and their default settings in weka

No. Algorithm Default settings

1. BayesNet Estimates probabilities directly from the data; Uses the K2 hill
climbing algorithm;

2. Naı̈ve Bayes Numeric estimator precision values are chosen based on analysis of
the training data;

3. PART Confidence factor for pruning = 0.25; Minimum Number of
instances per rule = 2;

4. NNge Number of Attempts for Generalisation = 5; Number of Folders for
Mutual Information = 5;

5. J48(C4.5) Confidence factor for pruning = 0.25, Minimum Number of
Instances per leaf = 2; Subtree raising used on pruning;

6. Random Forest Number of Trees to be generated = 10; No limit on the depth of a
tree;

7. Multilayer Perceptron Number of hidden layers = (attributes + classes) / 2;
Learning Rate = 0.3; Momentum = 0.2;
Training Time = 500; Validation threshold = 20;

gorithms (PART and NNge) and two tree-based algo-
rithms (J48 and Random Forest).

Our experiments were run using these seven algo-
rithms from Weka on the Reuters and LSHTC Corpora.
The Reuters Corpus was divided into 9000 training vec-
tors and 1000 test vectors while the LSHTC Corpus was
divided into 4000 training and 463 test vectors. For the
hybrid classifier, the 9000 training vectors for Reuters
and the 4000 training vectors for LSHTC were divided
according to the actual main categories and were used
to train the chosen category classifier with the relevant
subtopic vector entries and actual subtopic labels. The
test vectors were divided into main categories based on
the maximum significance value among the main topic
significance vector entries. The relevant subtopic vec-
tor entries of this predicted main topic and the actual
subtopic labels of these vectors were used to test these
classifiers.

In the first step, we used the category-wise separated
data from the training set to select the algorithm with
the highest classification accuracy for each main cate-
gory. In the case of a tie between two algorithms, the
one with the lower training time was chosen. Subse-
quently we applied these selected algorithms to the test
data and measured the performance of the hybrid clas-
sifier. The category-wise separated Conditional Signif-
icance Vectors were used here. We also ran each of the
basic algorithms on the full (not category-wise sepa-
rated) data set to provide a comparison for the hybrid
classifier. Two vector representations were used for the
comparison baseline – the Full Significance Vector and
tf-idf. As the performance of many classifiers for each
main category was quite close to each other, we also ran
some experiments using a predefined set of classifiers.
The combination of MLP with different types of clas-

sifiers (Bayesian, rule-based and tree-based classifiers)
was evaluated and the best combination was identified.
For a two-classifier combination, MLP and the other
classifier were used alternately on the main category
topics while for a four-classifier system four different
classifiers were used on the four main topics of Reuters
Corpus and repeated for each block of four main topics
for the LSHTC Corpus.

The charts in Fig. 5 show a comparison of the per-
formance of hybrid classifiers with that of MLP for
both corpora. The subtopic classification accuracy per-
centage and training time in seconds is shown for the
Hybrid Parallel classifiers along with that of the base-
lines. The baseline is a single MLP classifier using full
data (not category-wise separated data). This baseline
experiment is run with two different vector representa-
tions – Significance Vector and tf-idf. The accuracies
of all the hybrid parallel classifiers are better than that
of the single MLP classifier. This could be due to the
fact that each base classifier present in the hybrid par-
allel classifier has to learn from a subset of the original
data. As such, it is able to distinguish between cate-
gories present in this subspace more accurately than a
classifier which has to learn from the full dataset.

Overall, it was observed that there was an improve-
ment in subtopic classification accuracy along with a
significant reduction in training time. The classifica-
tion accuracies of all the hybrid classifiers were quite
close to each other but all of them were much better
than the classification accuracy of the single classifier
with tf-idf baseline for both the Reuters and the LSHTC
corpora. The difference with the significance vector
baseline was smaller for the Reuters Corpus but even
there the classification accuracies of the hybrid systems
were better. The training times showed a very steep
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Fig. 5. Hybrid parallel classifiers performance metrics with baselines.

reduction compared to both baselines. The average of
10 runs was taken for each experiment. In the hybrid
classifier, even though we are using more classifiers, the
training time is reduced. This is because each classifier
now trains on a reduced set of data with a reduced set of
vector components. This two-fold reduction translates
to a significant decrease in training time.

We also compared the performance of one hybrid
classifier (HC4) with three different vector formats:

FSV FullVector, FSV RelVector and CSV RelVector.
It was observed that the CSV RelVector gave the best
subtopic classification accuracy.

4.1. Reuters corpus results

Figures 6(a) and 6(b) show the detailed results for
the Reuters Corpus. The Hybrid 4-classifier sys-
tem (HC10) shows the best classification accuracy
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Fig. 6. Hybrid parallel classifiers only - Performance metrics.

which is quite similar to that of the hybrid classifier
with category-wise classifiers chosen from training set
(HC1). The training times of all hybrid classifiers were
quite close to each other with HC1, HC8, HC9 and
HC10 showing the least training time. The other hybrid
classifiers were two-classifier systems with one MLP
and one non-MLP classifier alternating on the main

topics. Hence for the Reuters data with four main top-
ics, there were two MLPs in all the hybrid 2-classifier
systems. This could account for the slightly higher
training time of these classifiers versus the hybrid 4-
classifier systems (HC8, HC9 and HC10) which have
only one MLP in the combination. The hybrid classifi-
er with category-wise classifiers chosen from training
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Fig. 7. Comparison of hybrid classifier performance with basic classifiers on full data.

set (HC1) had MLP for the CCAT main topic and J48
for all other main topics. Since this combination also
had only one MLP, its training time was comparable to
the hybrid 4-classifier systems.

Figure 7(a) shows the comparison of the classifica-
tion accuracy of the best hybrid classifier (HC10) on
category-wise data with that of each basic classifier on
full data. The average classification accuracy is also
shown. The chart shows the performance of each ba-
sic classifier using two different vector formats – tf-idf
and Significance Vector. The performance of the hy-
brid classifier is better than the average basic classifier
accuracy for both vector formats.

Figures 8(a) and 8(b) shows the performance of the
HC4 classifier (Hybrid parallel 2-classifier MLP/NNge
combination) with different vector formats for the
Reuters Corpus. It can be seen that CSV RelVector
(Conditional Significance Vectors with only the rel-
evant subtopic vector components) gives the highest
subtopic classification accuracy and the lowest training
time.

4.2. LSHTC corpus results

Figures 6(c) and 6(d) show the detailed results for
the LSHTC Corpus. The highest subtopic classifica-
tion accuracy is shown by the Hybrid Parallel Classi-
fier with category-wise classifiers chosen from train-
ing data performance (HC1) with 82.85%. It has a
training time of 63.69 seconds. This is very close-
ly followed by Hybrid 2-Classifier (MLP/NNge) Sys-
tem (HC4) with 82.72% classification accuracy and
43.68 seconds training time. The lowest training time
is shown by the Predefined Hybrid 4-Classifier Sys-
tem (MLP/NB/NNge/J48) (HC8) at 24.14 seconds. In
an overall tradeoff between classification accuracy and
training time, the best hybrid classifier seems to be the
Hybrid 2-Classifier System (MLP/NNge) (HC4). This
classifier also eliminates the step of choosing the best
classifier per main category from the training set and
thus effectively reduces training time even further.

Figure 7(b) shows the comparison of the classifica-
tion accuracy of the best hybrid classifier (HC1) on
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Fig. 8. Comparison of hybrid classifier (HC4) performance with different vector formats.

category-wise data with that of each basic classifier on
full data for the LSHTC Corpus. The average classi-
fication accuracy is also shown. The chart shows the
performance of each basic classifier using two different
vector formats – tf-idf and Significance Vector. The
performance of the hybrid classifier is much better than
the average basic classifier accuracy for both vector
formats.

Figures 8(c) and 8(d) show the performance of the
HC4 classifier (Hybrid parallel 2-classifier MLP/NNge
combination with different vector formats for the
LSHTC Corpus. Here again, it can be seen that

CSV RelVector (Conditional Significance Vectors with
only the relevant subtopic vector components) gives the
best subtopic classification accuracy and training time.
The improvement is higher with the LSHTC Corpus
than with the Reuters Corpus.

The classification accuracy of the hybrid classifier
is better than the average basic classifier accuracy for
both vector formats. The improvement in performance
is much more marked with the LSHTC Corpus as com-
pared to the Reuters Corpus. As the LSHTC Corpus has
more categories (10 main and 158 subtopic) than the
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Reuters Corpus (4 main and 50 subtopics), this result
is particularly encouraging.

5. Conclusion

In this paper, we attempt to leverage the differences
in the characteristics of different subspaces to improve
semantic subspace learning. The main objective here
is to improve document classification in a document
space by combining various learning methods. Our
experiments show that hybrid parallel combinations of
classifiers trained on different subspaces offer a sig-
nificant performance improvement over single classi-
fier learning on full data space. Individual classifiers
also perform better when presented with less data in
lower dimensions. Our experiments also show that
learning based on the semantic separation of the data
space is more efficient than full data space learning.
Combining different types of classifiers has the advan-
tage of integrating characteristics of different subspaces
and hence improves classification performance. Future
work should test whether this approach can work well
in other domains like pattern / image recognition where
different classifiers can work on different parts of the
image to improve overall recognition.

In our experiments, subspace detection is done by
processing a single document vector. This method is
independent of the total number of data samples and
only compares the level 1 topic entries. The time com-
plexity of the combining classifier is thus O(k) where
k is the number of level 1 topics. The novelty of our
approach is in the use of a maximum significance based
method of input vector projection for a hybrid paral-
lel classifier. Combining MLP in parallel with a ba-
sic classifier (Bayesian, tree based or rule based) im-
proves the classification accuracy and significantly re-
duces the training time. The performance improvement
is even more significant when the number of topics and
subtopics is large (LSHTC v/s Reuters). The experi-
ments also show that using the maximum significance
value is very effective in detecting the relevant sub-
space of a test vector and that conditional significance
vectors further boost subtopic classification accuracy.
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