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Abstract: Ochratoxins are a group of mycotoxins produced by a variety of moulds. 

Ochratoxin A (OTA), the most prominent member of this toxin family, was first described 

by van der Merwe et al. in Nature in 1965. Dietary exposure to OTA represents a serious 

health issue and has been associated with several human and animal diseases including 

poultry ochratoxicosis, porcine nephropathy, human endemic nephropathies and urinary 

tract tumours in humans. More than 30 years ago, OTA was shown to be carcinogenic in 

rodents and since then extensive research has been performed in order to investigate its mode 

of action, however, this is still under debate. OTA is regarded as the most toxic family 

member, however, other ochratoxins or their metabolites and, in particular, ochratoxin 

mixtures or combinations with other mycotoxins may represent serious threats to human and 

animal health. This review summarises and evaluates current knowledge about the differential 

and comparative toxicity of the ochratoxin group. 

Keywords: ochratoxin; biosynthesis; metabolites; detection; comparative toxicity 

 

1. Ochratoxin A—An Important Mycotoxin 

Ochratoxin A was first described in a paper published in Nature by van der Merwe and co-workers 

(1965) after they isolated a new toxic metabolite from Aspergillus ochraceus [1]. Ochratoxins are 
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produced by certain Aspergillus species such as A. ochraceus or A. niger and some Penicillium species, 

especially P. verrucosum. The main forms are ochratoxin A, B, and C, which differ in that ochratoxin B 

(OTB) is a non-chlorinated form of ochratoxin A (OTA) and ochratoxin C (OTC) is an ethyl ester of 

OTA (Table 1). OTA ((R)-N-((5-Chlor-3,4-dihydro-8-hydroxy-3-methyl-1-oxo-1H-benzo[c]-pyran-7-

yl)-carbonyl)-3-phenylalanin) is the most prevalent and relevant form of this group, while OTB and OTC 

are generally assumed to be of lesser importance [2]. 

Table 1. Overview of main ochratoxin forms. 

Name OTA OTB OTC 

CAS number 303-47-9 4825-86-9 4865-85-4 
Molecular formula C20H18ClNO6 C20H19NO6 C22H22ClNO6 

Molar mass (g·mol−1) 403.8 369.4 431.9 

CAS, Chemical Abstracts Service. 

OTA is a highly abundant food and animal feed contaminant and is frequently detected in all types 

of cereals and cereal products, but also coffee, cacao, grapes, raisins, wine, soy, spices, nuts, pulses, 

liquorice and beer [3–6]. A European report estimated the contributions to the total human adult OTA 

exposure as being 44% cereals, 15% others, 10% wine, 9% coffee, 7% beer, 5% cacao, 4% dried fruits,  

3% meat and 3% spices [5]. In general, the mean OTA contamination levels in European food 

commodities are relatively low (ng kg−1 to µg kg−1), however, elevated concentrations can occur in 

individual batches. Even though preventive measures are taken to keep the levels of OTA in food low, 

a certain degree of contamination seems unavoidable [7,8]. Furthermore, in other countries where 

screening of food is rare and outdated storage and transport conditions are still in use, much higher 

contamination levels may occur. Many farm animals are fed with cereal-based diets exposing them to 

ochratoxins (usually in the low to high µg kg−1 range) [9], but again elevated contamination levels may 

occur depending on storage and feeding practice [10]. The highest contamination level reported was  

80 mg OTA kg−1 in mouldy bread intended for animal feeding [11]. OTA has a high affinity for proteins, 

particularly serum albumin, which promotes bio-accumulation in the organs of animals, leading to  

carry-over of the contamination [9]. Therefore, muscle and offal products, as well as milk and sometimes 

eggs, may be contaminated, and the highest level of OTA contamination can be found in porcine  

blood-based sausages, “black pudding”, and liver products (e.g., pâtés, sausages) [9]. 

OTA-related diseases of economic importance occur in poultry (poultry ochratoxicosis) [12–17] and 

pigs (mycotoxic porcine nephropathy, MPN) [18–21]. These diseases are characterised by severe kidney 

damage, which could be clearly associated with the exposure to ochratoxins, sometimes in combination 

with other mycotoxins, as shown in several epizootiological and feeding studies [20–25]. Similarly, a 

slow, progressive renal disease (Endemic Nephropathy, EN) occurs in humans which is characterised by 

cellular interstitial fibrosis, tubular atrophy, and karyomegaly predominately in proximal convoluted 

tubules [26–30]. The aetiology of EN is still unknown, but based on epidemiological features, 

researchers agree that the causative agent is of natural origin [26,31]. There are several hypotheses as to 

the causes of EN that are currently in circulation, the two most important focus on the potential roles of 

aristolochic acid from the plant birthwort (Aristolochia clematitis) and mycotoxins (OTA and citrinin). 
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The toxicity of OTA has been investigated intensively in recent decades and numerous comprehensive 

reviews have been published with respect to all types of toxic effects. The scope of this review is to 

summarise and evaluate the existing data on the less well-studied members of the ochratoxin family, 

including the known metabolites, in comparison to OTA. 

2. Occurrence of Ochratoxins 

2.1. Biosynthesis 

The biosynthetic pathway of OTA (an amide formed between phenylalanine and a chlorinated 

dihydroisocoumarin) is not completely established. However, it is known that the phenylalanine moiety 

originates from the shikimate pathway and the dihydroisocoumarin moiety from a polyketide (pentaketide) 

pathway, with the latter differing between Penicillium and Aspergillus species [32–39]. Also, the OTA 

polyketide synthase genes have been characterised from several fungal species [32,40–43]. 

Both ochratoxin production and the primary producing organisms depend on factors that affect fungal 

physiology such as temperature, moisture and the available substrates [2,20,33,39,44]. Aspergillus 

species can produce OTA and OTB in parallel [44,45], and experiments with A. ochraceus have revealed 

growth-associated production of OTA and OTB, in which the yield and the ratio were dependent on the 

prevailing culture conditions [44,46–48]. Often, the amount of OTB produced was considerably lower 

than that of OTA, but under certain conditions the level of OTB production was comparable to that of 

OTA [46,47]. The reported production ratios (OTA:OTB) ranged from 2:1 to 34:1 [46,49,50]. A complex 

interaction of different carbon sources, basal media and nitrogen sources seems to be crucial [44].  

An increased OTA production was correlated to an induction of OTA polyketide synthase expression, 

whereas OTB production does not correlate with transcription of the polyketide synthase gene [44]. 

Laboratory fermentation experiments with A. ochraceus resulted in very high yields (up to 10 mg/g) of 

OTA, OTB and transitorily also ochracin (mellein, see Table 2) [46]. The intermediate metabolite OTβ 

was found to be biotransformed very efficiently into both OTA and OTB (14% and 19%, respectively), 

whereas OTα was biotransformed only into OTA (4.9%). Also, OTB is poorly converted (1.5%) into 

OTA, whereas some OTB may be produced by dechlorination of OTA [46]. 

Table 2. Natural and synthetic forms of ochratoxins. 
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Table 2. Cont. 

Name Abbrev. R1 and Others R2 R3 R4 R5 

Naturally occurring ochratoxins, metabolites and conjugates 

Ochratoxin A OTA Phenylalanyl Cl H H H 

Ochratoxin B OTB Phenylalanyl H H H H 

Ochratoxin C OTC Phenylalanyl, ethyl ester Cl H H H 

Ochratoxin A methyl ester -- Phenylalanyl, methyl ester Cl H H H 

Ochratoxin B methyl ester -- Phenylalanyl, methyl ester H H H H 

Ochratoxin B ethyl ester -- Phenylalanyl, ethyl ester H H H H 

Ochratoxin α OTα OH Cl H H H 

Ochratoxin β OTβ OH H H H H 

5′-Hydroxyochratoxin A 5′-OH-OTA Phenylalanyl, OH at C-5′ Cl H H H 

7′-Hydroxyochratoxin A 7′-OH-OTA Phenylalanyl, OH at C-7′ Cl H H H 

9′-Hydroxyochratoxin A 9′-OH-OTA Phenylalanyl, OH at C-9′ Cl H H H 

4R-Hydroxyochratoxin A 4R-OH-OTA Phenylalanyl Cl H OH H 

4S-Hydroxyochratoxin A 4S-OH-OTA Phenylalanyl Cl OH H H 

4R-Hydroxyochratoxin B 4R-OH-OTB Phenylalanyl H H OH H 

4S-Hydroxyochratoxin B 4S-OH-OTB Phenylalanyl H OH H H 

10-Hydroxyochratoxin A 10-OH-OTA Phenylalanyl Cl H H OH 

Open lactone of ochratoxin A OP-OTA Phenylalanyl Cl H H H 

Ochratoxin hydroquinone OTHQ Phenylalanyl OH H H H 

Ochratoxin quinone OTQ Phenylalanyl O H H H 

Ochratoxin α glucuronide 
--  

-- 

Glucuronide Cl H H H 

OH; glucuronide at C-8 Cl H H H 

Ochratoxin A phenol-glucuronide -- Phenylalanyl; glucuronide at C-8 Cl H H H 

Ochratoxin A amino-glucuronide -- Phenylalanyl; glucuronide at N Cl H H H 

Ochratoxin A acyl-glucuronide -- 
Phenylalanyl; acyl-glucuronide 

instead of carboxyl 
Cl H H H 

Ochratoxin A acyl-hexose -- 
Phenylalanyl; acyl-hexose 

instead of carboxyl 
Cl H H H 

Ochratoxin A acyl-pentose -- 
Phenylalanyl; acyl-pentose 

instead of carboxyl 
Cl H H H 

Synthetic ochratoxins 

Ochratoxin A, tyrosine analogue -- Tyrosine Cl H H H 

Ochratoxin A, serine analogue -- Serine Cl H H H 

Ochratoxin A, hydroxyproline 

analogue 
-- Hydroxyproline Cl H H H 

Ochratoxin A, lysine analogue -- Lysine Cl H H H 

Ochratoxin A, alanine analogue -- Alanine Cl H H H 

Ochratoxin A, leucine analogue -- Leucine Cl H H H 

d-Ochratoxin A d-OTA D-Phenylalanyl Cl H H H 

Ochratoxin A, ethylamide OE-OTA Phenylalanyl, ethylamide Cl H H H 

O-methylated ochratoxin A OM-OTA Phenylalanyl, OCH3 at C-8 Cl H H H 

Methyl ester of ochratoxin α M-OTα Methoxy Cl H H H 

Ochratoxin A, decarboxylated DC-OTA Phenylethylamine Cl H H H 

Other related compounds 

Ochracin (=mellein) -- H at C-7 H H H H 

The table contains only those forms that have been detected or synthesised and described until present. Summarised from [39,51–57]. 
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2.2. Contamination Levels and Human Exposure 

Ochratoxins occur ubiquitously and, at least for OTA, contamination levels in food and feed are 

monitored in many countries. OTB contamination levels of food and feed were assumed to be generally 

low [58], but based on the data on production described above, it can also be assumed that the 

contamination levels may sometimes be almost as high as those of OTA. Unfortunately, there is 

insufficient data on OTB contamination of food and feed, although when tested, OTB is often found 

together with OTA in both [59]. For example, a survey of Japanese commercial foods containing  

cereal, fruit, coffee or cacao showed a contamination with OTA at the low µg kg−1 level in more than 

one third of the samples [60]. Those with high OTA levels also contained OTB (up to 30% of the OTA 

concentration) [60]. Another survey of 681 samples from more than 50 different spice commodities 

resulted in positive detection of OTA and OTB in 21% and 10% of samples, respectively [61]. More 

recently, 57 samples of Sicilian red wines were found to be mostly weakly contaminated (<EU legal limit), 

ranging 0.02–0.73 μg L−1 and 0.04–0.66 μg L−1 for OTA and OTB, respectively [62]. OTA was found 

in 71.9% and OTB in 64.9% of samples tested [55]. Similar observations have been published for animal 

feed. For example, Hamilton and co-workers found a contamination ratio of about 90:8:2 for OTA, OTB 

and OTC, respectively, in poultry feed [13]. 

Humans are mainly exposed via food and beverages and the human dietary exposure has been 

estimated to be 15–60 ng OTA kg−1 b.w. per week for adult consumers in the EU [8,63]. Furthermore, 

many farm animals are fed with cereal-based diets exposing them to ochratoxins. Based on the available 

data on ochratoxin occurrence, it can be assumed that animals and humans are mainly exposed to OTA 

and to a much lesser extent to OTB and OTC. However, varying maximum exposure levels of all three 

forms as well as mixtures of different ratios may occur. 

A recent human biomonitoring study of 33 mycotoxins in the Belgian population revealed that nine 

of these were detected via LC-MS/MS whereby deoxynivalenol, OTA, citrinin and their metabolites 

were the most frequently detected [64]. Citrinin and OTA were present in very low concentrations  

(pg mL−1 urine) and contaminated 59% and 35% of the samples from adults, respectively, with the rates 

in children being even higher [64]. The estimated daily intake of OTA showed that about 1% of the 

investigated population possibly exceeded the tolerable daily intake level [64]. 

2.3. Toxicokinetics of Ochratoxins 

For the interpretation of in vivo data from toxicological reports an understanding of the kinetics of 

ochratoxins is crucial, including the absorption, distribution, metabolism, and excretion of the toxins [65]. 

The toxicokinetics of OTA and their toxicological implications for animals and humans have been 

extensively reviewed by various authors [7,39,53,66–73]. For example, the available kinetic data for rats 

indicate that strain, sex and age differences in OTA kinetics may account for the different sex and species 

sensitivities towards OTA [69]. Human data is rather limited, however, gender, season and geographic 

location seem to be most important factors [68]. 

Toxicokinetic studies employing ochratoxins other than OTA are rare [58,74–76]. For example, 

Mally and co-workers reported that OTB is more extensively metabolised and more rapidly eliminated 
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than OTA in F344 rats due to the lack of specific retention of OTB in the kidneys, which may explain 

the different toxicological outcomes in animals compared to in vitro approaches [58]. 

Based on the metabolism of animals and humans which includes hydrolysis, hydroxylation,  

lactone opening and conjugation [53], various ochratoxin metabolites can occur (Table 2, Figure 1). 

OTA can be enzymatically hydrolysed (e.g., by carboxypeptidase A, chymotrypsin) to the less toxic 

OTα by the bacterial microflora in the intestine as shown in ruminants and rodents [53,77,78]. 

Approximately 25% of ingested OTA is excreted as OTα in the urine of rats after reabsorption from the 

intestine [79,80]. OTα was also formed in OTA-exposed human bronchial epithelial cells in vitro [81]. 

Hydroxylated urinary metabolites of OTA include 4-hydroxy (4R- and 4S-) epimers, which are 

produced in liver [52,80,82] and kidney [80,83] by the action of various cytochromes P450 [80,82,84]. 

Exposed rats (i.p. or orally) excrete 4R-OH-OTA in their urine, together with the parent compound and 

OTα [85]. These 4-hydroxy metabolites are also produced by human, pig, goat, chicken and rat liver 

microsomes or human bronchial epithelial cells in vitro [52,80–82]. Furthermore, the 10-hydroxy 

metabolite is produced by rabbit liver and kidney microsomes and in human bronchial epithelial cells in 

culture, however, it has not yet been detected in vivo [80,81,84,86–88]. A recent study compared the  

in vitro metabolic profile of OTA in rat, chicken, pig, goat, cow and human liver microsomes [52]. This 

study resulted in the same six metabolites in all genera, i.e., 4S-OH-OTA, 4R-OH-OTA, 7′-OH-OTA, 

9′-OH-OTA, 5′-OH-OTA and OTB [52]. A semi-quantitative analysis showed that most of the OTA 

remained unchanged, confirming earlier reports that OTA is not primarily metabolised in the liver [52,53,79]. 

Furthermore, the metabolic capacity of human liver microsomes was higher compared to the other 

animals tested resulting in larger amounts of the metabolites [52]. Additional in vivo experiments in rats 

and chicken showed that OTA undergoes extensive metabolism after oral administration resulting in 

eight and six metabolites in rats and chicken, respectively [52]. These metabolites included 4S-OH-OTB 

and 4R-OH-OTB (in rats only) in addition to those found in vitro [52]. Again, parent OTA was the major 

compound in rat urine (64.0% ± 4.0%) and chicken excreta (56.0% ± 2.5%) [77]. The major metabolite 

was 4R-OH-OTA in rats (>20% vs. <10% in chickens) and 7′-OH-OTA in chickens (20% vs. 0.2%  

in rats) [52]. 

Glucuronidation of ochratoxins has been shown in rat liver microsomes [57] and in vivo in  

[3H]-OTA-exposed mice [89], where a large proportion of the biliary metabolites were ochratoxin 

glucuronides and sulphate conjugates [89]. Such conjugates were also detected in liver and intestinal 

tissue, although to a smaller percentage [89]. Also in pigs, glucuronide conjugates were detected in the 

bile [90]. In contrast, in in vitro experiments using primary rat and human hepatocytes, no ochratoxin 

glucuronide and sulphate conjugates were observed [91]. Pentose and hexose conjugates of OTA were 

detected in primary rat and human hepatocytes [91] and in the urine of rats [92]. Glutathione (GSH) 

conjugation is also an important mechanism in xenobiotic biotransformation and is generally a 

detoxification step, although it can result in bioactivation, in particular by formation of a thiyl radical, 

which favours the formation of peroxyl radicals. For example in E. coli, a cysteinyl-OTA conjugate has 

been detected [93]. Stable GSH-conjugates such as quinone-derived GSH-conjugates can be formed in 

the liver and can be biotransformed into cysteinyl conjugates in the kidney, which are then N-acetylated 

and excreted [94]. Most likely, GSH-conjugates are produced to a very low extent (1%) in vivo and, 

therefore, their detection is difficult and rarely reported [94,95]. 
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Figure 1. Overview of ochratoxin A (OTA) metabolites in animals and humans. Ochratoxins 

are differentially metabolised in various animals and humans depending on the metabolising 

enzymes present in liver, kidneys and/or gut. OTA, ochratoxin A; OTB, ochratoxin B; OTC, 

ochratoxin C; OTα, ochratoxin α; OTβ, ochratoxin β, OTHQ, OT hydroquinone; 4R-OH-OTB, 

4R-hydroxyochratoxin B; OP-OTA, lactone-opened OTA; 10-OH-OTA, 10-hydroxyochratoxin 

A; 4R-OH-OTA, 4R-hydroxyochratoxin A; 4S-OH-OTA, 4S-hydroxyochratoxin A;  

4S-OH-OTB, 4S-hydroxyochratoxin B. The respective metabolite is the main metabolite in 

the underlined taxa (for rodents, data of different authors is contradictory). Genera in 

brackets represent those where the metabolite has been detected, although it may be present 

in other animals or humans as well. Summarised from [52,53,92]. 

Lactone-opened OTA (OP-OTA) was detected as a metabolite in the bile in OTA-exposed (i.v.)  

rats, but not in the blood or the urine [86], whereas other researchers found it in bile and urine of  

OTA-exposed (i.v.) rats [96]. The mechanism of OP-OTA synthesis as well as its potential role in 

bioactivation of OTA still needs to be elucidated [39]. 

In all investigations, parent OTA was always the main compound detected followed by  

species-specific metabolites. 

2.4. Detection Methods for Ochratoxins 

Knowledge about the different ochratoxin group members begins with the ability to detect and 

characterise them. OTA was detected first in 1965 [1] and, with improving detection methods, more and 

more ochratoxin family members are being described with reports of newly detected metabolites as 

recently as this year [52]. 

The analytical methods typically used have been reviewed by various authors in recent years [69,97–99]. 

These methods are able to detect and distinguish between the various ochratoxin family members and 

metabolites, but are technically and financially demanding. In contrast, immunological methods are 

typically less expensive but can detect only one specific ochratoxin or cannot distinguish between 

different ochratoxins as comprehensively reviewed by Meulenberg [100]. Most of these assays have 
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been developed for the detection of OTA, however, at least one highly specific monoclonal antibody 

against OTB has also been successfully produced [101–105]. Although official monitoring programmes 

preferentially use analytical methods such as HPLC and LC-MS, immunological methods can be equally 

sensitive and reproducible [100]. 

3. Differential Toxicity of Ochratoxin Group Members 

The toxicological profile of OTA has been investigated in numerous studies and also extensively 

reviewed [6,7,54,63,69–73,106–138]. In summary, these studies showed that OTA is nephrotoxic, 

hepatotoxic, neurotoxic, teratogenic and immunotoxic in various animals and in vitro, with renal toxicity 

and carcinogenesis being the key adverse effects. Many studies of OTA from the last decade support a 

non-DNA-reactive genotoxic mechanism, which involves different epigenetic mechanisms mainly 

related to oxidative stress, compensatory cell proliferation and disruption of cell signaling and division, 

and these publications have been thoroughly reviewed by various authors [6,63,70,113,119,139,140]. 

However, a direct genotoxic mechanism involving OTA bioactivation and DNA adduct formation  

is also still discussed [115,120] and this mechanism is also consistent with some in vivo gene  

expressionresults [113]. In summary, the mode(s) of action of OTA, in particular for renal 

carcinogenesis, are still under debate. 

Various public health agencies and (inter)national authorities including the International Agency  

for Research on Cancer (IARC) [141], the European Food Safety Authority (EFSA) [8,142], the  

Joint FAO/WHO Expert Committee on Food Additives (JECFA) [128,143–146], the European 

Commission [5,147], the U.S. Department of Health and Human Services (National Toxicology Program, 

NTP) [148–150], and Health Canada [151,152] have evaluated the available data. Based on these 

evaluations, certain maximum limits for OTA in food have been set or proposed by the EU and Canada, 

ranging from 10 µg OTA kg−1 for dried fruits or instant coffee down to 0.5 µg OTA kg−1 for baby  

foods [6,147,153]. Egypt, Russia, China and Bosnia and Herzegovina have also established limits similar 

to that of European regulations [154,155]. OTA limits described in the Codex Alimentarius of the 

FAO/WHO have been adopted for example in the Arab States of the Gulf, Nigeria, Kenya and India. 

However, to date, no limits for OTA in foodstuffs have been set in many countries including the USA, 

Australia, New Zealand, Japan, Mexico or South Africa. Furthermore, there are no regulations for other 

ochratoxin group members in food and feed worldwide. 

3.1. Comparative Toxicity of Ochratoxin Group Members 

Comparative studies on more than two ochratoxins are very rare and no recent data are available.  

For example, Xiao et al. investigated toxicity using three different models [86]. In HeLa S3 cells,  

a cytotoxicity ranking (LC50 (µM)) of OTA (5) > OTC (9) > OTB (54) > d-OA (163) > OTα (560) > 

OM-OTA (830) > DC-OTA (7600) > OE-OTA (10,100) was found [86]. Similarly, the minimum toxic 

dose (nmol disc−1) was determined in an antibacterial assay using Brevibacillus brevis: OE-OTA (1.1) 

> OTC (2.0) > d-OTA (5.5) > OTA (8.7) > OTB (54) > M-OTα (90) > OTα (390) [86]. Furthermore, 

the in vivo toxicity was tested in mice (i.p., 72 h) [86]. Here, no toxicity ranking could be established 

based on the chosen doses. At doses of 500 mg kg−1 b.w. all animals died within 72 h of dosing with 

OE-OTA, DC-OTA, OM-OTA or M-OTα, whereas there was no lethality at 200 mg kg−1 b.w. [86].  
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In comparison, OTA showed 30% and 90% lethality at 20 and 50 mg kg−1 b.w., respectively, and d-OTA 

showed no lethality at 50 and 200 mg kg−1 b.w. [86]. Further structure–activity analysis resulted in the 

conclusion that the toxicity of OTA is associated with its isocoumarin moiety and most likely with the 

lactone carbonyl group, but not with the phenyl hydroxyl group nor the iron-chelating properties [86]. 

In another study, Müller et al. compared the effects of different ochratoxin group members on extracellular 

radical formation in porcine blood monocytes and granulocytes and presented the following ranking 

(IC50 in ng mL−1 shown in parenthesis): OTA (89.1) > OTC (154.2) > OTA methylester (285.5) > OTB 

(>1000) = OTα (>1000) [156]. 

In summary, based on the limited data from the above studies, no clear general toxicity ranking can 

be drawn; however, OTA seems to be overall the most toxic, followed by OTC, OTB and OTα. 

3.2. Ochratoxin B (OTB) 

Most of the published data on ochratoxins other than OTA describes OTB toxicity. In vivo, OTB 

appears to be much less toxic than OTA as tested in rats, fish and poultry [58,157,158]. The first 

comparative study was performed in 1-day-old chicks resulting in oral LD50 values of approximately  

120 µg OTA (about 3.5 mg kg−1) and 1890 µg OTB (54 mg kg−1) [157]. Another early in vivo study in 

rainbow trout resulted in an LD50 (i.p.) of 5.53 mg OTA kg−1 b.w., whereas no deaths were observed 

with doses up to 66.7 mg OTB kg−1 b.w. [158]. Mally and co-workers showed in F344 rats that oral 

administration of OTB did not induce pronounced adverse effects (minor renal histopathology, no 

changes in clinical markers for renal damage) [58] whereas the same treatment with OTA resulted in 

necrosis and degeneration of the renal tubular epithelium [159] and altered renal function [58]. The same 

authors also provided an explanation for the observed lower in vivo renal OTB toxicity compared to 

OTA: this is due to an absence of specific retention in the rat kidney which leads to its differential 

toxicokinetics in vivo, including its more extensive metabolisation combined with a more rapid excretion 

than OTA [58,74]. In contrast, whole-body autoradiography revealed no difference in OTA and OTB 

distribution in rats [74,75]. Additional in vivo data was provided by Chattopadhyay and colleagues in a 

recent hematotoxicity study in Sprague-Dawley rats (250–320 g) [160]. All chosen hematological 

parameters were significantly changed after i.p. injection of 0.5 μg OTB when compared to vehicle-treated 

animals [160]. 

Much more data is available from in vitro studies, where the nephrotoxic, hepatotoxic and the 

immunotoxic effects have been investigated. Early studies on in vitro toxicity reported OTB to be less 

toxic than OTA [161,162]. For example, serum-free in vitro cytotoxicity testing in embryonic chick 

meningeal fibroblasts resulted in significantly higher toxicity (nearly 19-fold) of OTA compared to  

OTB after eight days of exposure as measured using the MTT or NR assay [162]. Cytotoxicity was also 

investigated in continuous kidney cell lines (LLC-PK1 and OK) with four cytotoxicity assay endpoints 

resulting in OTA being more toxic than OTB [161]. The acute toxicity of OTA and OTB was compared 

in HeLa cells, resulting in LC50 values of 54 µM and 5 µM for OTB and OTA, respectively [86]. More 

recent investigations have resulted in a more detailed picture, with some endpoints or cell models 

resulting in a lower or at least different toxicity of OTB compared to OTA [163] while others have 

suggested an equal toxicity [58]. For example, in the human-derived liver cell line HepG2, OTA but not 



Toxins 2015, 7 4262 

 

 

OTB caused induction of micronuclei and DNA migration, whereas OTB inhibited cell division at 

concentrations even lower than OTA [163]. 

Some studies directly compared OTA and OTB toxicity. An exposure to acutely toxic concentrations 

(µM range) of OTA and OTB typically resulted in a lower toxicity of OTB compared to OTA [58,161], 

which seemed to support the general belief that OTB is less toxic than OTA. However, this difference is 

typically only apparent after rather short exposure times, with differences becoming less significant the 

longer the exposure time. The degree of difference is also dependent on the cell type used. More detailed 

investigations of the acute effects (24–96 h) in different renal cells of human, porcine and rat origin 

resulted in a more complicated picture [164–167] (Table 3). 

Table 3. Comparative cytotoxicity of OTA and OTB. 

Cell Type  
(Gender) 

96 h EC50 24–96 h EC50 48 h EC50 

NR MTT CN NR MTT CN CV 

HKC (f) OTA ↑ OTA ↑ OTA ↑ n.d. n.d. n.d. OTA ↑ 

HKC (m) Equal Equal Equal Equal Equal Equal OTA ↑ 

PKC (f) Equal Equal Equal n.d. n.d. n.d. Equal 

PKC (m) Equal Equal Equal Equal Equal Equal Equal 

RPTC (f) OTA ↑ OTA ↑ n.d. n.d. n.d. n.d. n.d. 

RPTC (m) OTA ↑ OTA ↑ n.d. n.d. n.d. n.d. n.d. 

LLC-PK1 OTA ↑ OTA ↑ Equal OTA ↑ OTA ↑ Equal OTA ↑ 

NRK-52E n.d. n.d. n.d. n.d. n.d. n.d. OTA ↑ 

IHKE n.d. n.d. n.d. Equal Equal Equal n.d. 

HKC, primary human kidney cells; PKC, primary porcine kidney cells; RPTC, primary rat kidney cells; LLC-PK1, porcine renal 

cell line; NRK-52E, rat renal cell line; IHKE, human renal cell line; f, female; m, male; NR, neutral red uptake; MTT, MTT 

reduction assay; CN, cell number (direct counting); CV, cell number (crystal violet staining); OTA ↑, higher cytotoxicity 

of OTA compared to OTB; Equal, equal cytotoxicity of OTA and OTB; n.d., not determined; summarised from [166–168]. 

 

Figure 2. Comparison of cellular uptake of [3H]OTA and [3H]OTB. PKC, primary  

porcine kidney cells (male); HKC, primary human kidney cells (male). Columns represent 

means from at least three independent replicates ± SEM; modified from O’Brien et al. with 

permission [169]. 
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Equal toxicity of both ochratoxins in exposed LLC-PK1 cells was corroborated by LC-MS/MS 

measurement of intracellular levels of ochratoxins showing no difference in intracellular concentrations 

of OTA and OTB, indicating that, provided equal amounts of toxin are taken up by the cells, OTA and 

OTB may be equally cytotoxic [58]. These authors therefore confirmed the earlier hypothesis, that the 

differential toxicities observed in some cell types are likely to be due to differences in uptake and cellular 

protein binding [58], as studied in various renal models. For example, cellular uptake of [3H]OTB was 

shown to be consistently lower than [3H]OTA uptake [169] (Figure 2). Furthermore, primary renal cells 

accumulated more toxins than continuous cell lines with the difference being more prominent with  

OTA [168]. Binding experiments showed that OTA has a binding affinity to a range of renal proteins 

from humans, pigs, mice and rats with species-specific binding patterns [169–172] (Table 4). Specific 

[3H]OTB binding was observed to be consistently lower than that of [3H]OTA, however, the same 

binding rank-order was determined for both toxins, i.e., human > rat > pig > mouse [169,172]. 

Furthermore, the specific binding was at least 2.5 times higher with [3H]OTB, when compared with 

[3H]OTA [169,172]. 

Table 4. Comparison of [3H]OTA and [3H]OTB protein binding characteristics. 

Species  
(Gender) 

[3H]OTA [3H]OTB 

p SB  

(pmol mg−1 Protein) 

SB  

(%) 
n 

SB  

(pmol mg−1 Protein)

SB  

(%) 
n 

Human (m) 21.4 ± 4.5 20.5 ± 4.1 6 1.25 ± 0.15 52.9 ± 10.7 3 0.0002 

Human (f) 23.1 ± 4.7 22.0 ± 4.3 4 3.79 ± 2.04 73.6 ± 4.0 3 <0.0001 

Rat (m) 10.2 ± 3.7 10.1 ± 3.4 14 0.44 ± 0.42 31.2 ± 15.0 8 <0.0001 

Rat (f) 14.2 ± 6.3 11.5 ± 4.7 10 0.73 ± 0.39 43.3 ± 11.4 6 <0.0001 

Pig (m) 3.4 ± 1.0 3.3 ± 0.9 8 0.19 ± 011 27.2 ± 13.0 5 0.0002 

Pig (f) 2.1 ± 0.7 2.0 ± 0.6 8 <LOD <LOD 2 n.c. 

Mouse (m) 0.9 ± 02 0.9 ± 0.2 6 0.16 14.3 1 n.c. 

Mouse (f) 1.5 ± 0.6 1.5 ± 0.5 9 <LOD <LOD 2 n.c. 

Means ± SD; SB, specific binding; n, number of replicates; LOD, limit of detection; p values are shown from two-tailed  

t-tests and refer to the comparison of SB(%); n.c., not computable; modified from O’Brien et al. with permission [169]. 

The binding data obtained ex vivo correlated well with the in vivo toxicokinetic profiles of OTA which 

were studied for example in fish, quail, mouse, rat and monkey [76]. The elimination half-life varied 

from 0.68 h after oral administration to fish, up to 840 h after intravenous administration to monkey [76]. 

A comparative study in rats showed that the biological half-life (t1/2) as well as the maximal serum 

concentration was different with OTA and OTB [70]. OTA showed a t1/2 of 170 h (i.v.) or 120 h (p.o.), 

whereas that of OTB was much shorter, i.e., 12 h (i.v.) or 18 h (p.o.) [76]. The maximal serum 

concentrations were 2100 ng mL−1 (i.v.) or 390 ng mL−1 (p.o.) and 760 ng mL−1 (i.v.) or 120 ng mL−1 

(p.o.) for OTA and OTB, respectively. Furthermore, the binding parameters were determined by 

equilibrium dialysis resulting in unbound fractions of ochratoxins in rat (0.02% OTA vs. 0.9% OTB), 

monkey (0.08% OTA vs. 2.7% OTB), and humans (0.02% OTA vs. 2% OTB) [76]. Plasma protein 

binding of OTA was studied in various animals after the oral or intravenous administration of  

50 ng g−1 b.w. resulting in a free fraction of toxin in plasma of <0.2% in all subjects investigated except 

fish where the equivalent figure was 22% [76]. 
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Dietrich and colleagues performed further testing with respect to the reversal of toxic effects. After 

48 h of exposure (10 µM) with subsequent replacement of the medium, they demonstrated recovery from 

the cytotoxic effect for OTA in some cell models, i.e., in LLC-PK1, NRK-52E and NRK-49F, but not 

in human and porcine primary kidney cells [166]. In contrast, only the fibroblast cells (NRK-49F) were 

able to recover from the toxic effects of OTB [168]. These observations further support the conclusion 

of differential cytotoxicity of OTA and OTB in different cell models. 

Comparative studies were also undertaken with respect to chronic toxicity. For this, an in vitro model 

of sub-chronic repeated exposure to OTA and OTB was employed to generate ochratoxin-derived 

subpopulations of human and porcine proximal tubular cells (HKC, IHKE, PKC, LLC-PK1) [167,173–175]. 

Comparison of growth characteristics showed marked changes in almost all cell types, however, a 

comparison between OTA and OTB showed no difference between the different cell subpopulations [167]. 

Acute challenge experiments with these cell subpopulations resulted in generally decreased sensitivity 

towards OTA- and OTB-mediated cytotoxicity [167]. 

The immunotoxic effects of OTB were studied in isolated human neutrophils where all parameters 

studied were decreased at µg mL−1 concentrations, indicating a weakened immune defence [176,177]. 

In porcine monocytes, extracellular radical formation was inhibited by OTA almost completely at 1 µg mL−1, 

whereas the inhibition by OTB was lower [156]. OTA impaired the IL-2 production and IL-2 receptor 

expression of activated T lymphocytes, which was prevented when the cells are pre-incubated with OTB 

prior to OTA exposure [178]. 

Other comparative toxicity investigations included the examination of mutagenicity and genotoxicity. 

For example, OTA induced SOS-DNA repair without metabolic activation at concentrations of  

0.1–4 mM in E. coli, whereas OTB up to 4 mM was inactive [93,179]. The same was shown for induction 

of micronuclei and DNA migration assays, whereas both toxins failed to induce mutations in 

Salmonella/microsome assays [163]. 

Differential toxicity has also been shown for OTA and OTB in developmental toxicity models. OTB 

and OTA both caused craniofacial malformations in the FETAX (Frog Embryo Teratogenicity Assay 

Xenopus) with the effects of OTA being more severe than those of OTB [180]. OTA also caused reduced 

embryo growth, whereas OTB did not [180]. The authors suggested that this differential embryotoxicity 

is at least in part due to the higher levels of OTA being accumulated within the embryos as shown by 

uptake experiments using [3H]OTA and [3H]OTB [180]. Investigations by other authors revealed that 

OTA and OTB also inhibited differentiation and protein synthesis in prechondrogenic mesenchymal 

cells from the limb buds of 4-day chick embryos with IC50 values of 1.9 µM and 6.2 µM for OTA and 

OTB, respectively [181]. Furthermore, OTB had no effect on the aminoacylation of phenylalanine tRNA 

catalysed by mice liver phenylalanyl-tRNA synthetase, whereas OTA showed a concentration-dependent 

effect [182]. Furthermore, OTB showed no antagonistic effect on the in vivo protein synthesis inhibition 

caused by OTA in hepatoma tissue culture cells [182]. 

In summary, today’s knowledge on comparative toxicity of OTA and OTB must differentiate between 

in vivo and in vitro effects. OTB is clearly less toxic in vivo compared to OTA as shown in various 

models. It has been shown that OTB is more readily eliminated and had a lower affinity for plasma 

proteins, which partly may explain its lower toxicity. In contrast, both toxins can be similarly acutely 

cytotoxic in vitro provided that similar amounts are taken up and are intracellularly bound, although 

several results may suggest a different molecular mechanism of chronic toxicity compared to OTA. 
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Furthermore it can be assumed that the small structural difference (chlorine in OTA vs. hydrogen in OTB) 

although not responsible for the toxicity, may be crucial for the differential uptake and binding in cells. 

3.3. Ochratoxin C (OTC) and Other Ethyl or Methyl Esters of Ochratoxins 

In an early study, oral LD50 values were reported for OTC (216 mg animal−1) and OTA (166 mg animal−1) 

in day-old chicks [183]. Later, the acute cytotoxicities of OTA and OTC were compared in HeLa S3 

cells, resulting in comparable LC50 values of 9 µM and 5 µM for OTC and OTA, respectively [86]. 

Furthermore, an antibacterial assay with B. brevis resulted in minimum toxic doses (MTDs, nmol disc−1) 

of 8.7 ± 1.7 and 2.0 ± 0.5 for OTA and OTC, respectively [86]. OTC was also identified as comparably 

cytotoxic to OTA in human embryonic (HEK293) and renal carcinoma (A498) cell lines [184]. Based 

on the above results, OTC is considered to be similarly toxic to OTA. 

Further data have shown that OTC and OTA exposure leads to various immunomodulatory effects 

(e.g., metabolic activity, mitogen-induced proliferation, ROS formation, production of the cytokines  

IL-6 and TNF-α, phagocytic behaviour, nitrogen oxide synthesis and cell surface markers) in  

porcine mononuclear cells [185] and in the human monocyte/macrophage line THP-1 [186] at low 

concentrations (10–1000 ng mL−1). Similar concentrations of OTA and OTC suppressed significantly 

the formation of free oxygen radicals by porcine monocytes and granulocytes [156]. Long-term exposure 

of THP-1 cells to OTC and OTA (15 days, 1 ng mL−1) resulted in increased mitochondrial activity and 

production of IL-6, disturbed cell membrane integrity and inhibited cell proliferation and TNF-α and  

IL-8 production [187]. 

An early in vivo study in young rainbow trout with ethyl esters of OTA and OTB showed that  

these compounds were lethal to trout when administered i.p. over 10 days with LD50 values of 3.0 and 

13.0 mg kg−1 b.w. for OTA and OTB ethyl esters, respectively [158]. OTα ethyl ester was non-toxic at 

a level of 3.9 mg kg−1 b.w., which is equivalent to 13.72 µmol kg−1 (=LD50 of OTA) [158]. In comparison 

to OTA, the methyl ester of OTA was less toxic than OTA in day-old chicks [183]. Also, OTB methyl 

and ethyl esters were found to be non-lethal to orally exposed day-old ducklings [188]. 

In summary, OTC seems to be similarly acutely toxic in vivo and in vitro compared to OTA, however, 

whether the mode of action of OTC and OTA is the same remains to be elucidated. Other ochratoxin 

ethyl or methyl esters show lower toxicity compared to OTA. 

3.4. Ochratoxin α (OTα) and Ochratoxin β (OTβ) 

Unfortunately, there are not many published studies including data on OTα and OTβ and most of  

the available data considers OTα only. For OTβ, only its occurrence as metabolite has been investigated. 

To our knowledge, no toxicity data is available. However, based on its structure, it may be assumed that 

OTβ shows similar behaviour to OTα. 

Creppy and co-workers investigated the immunotoxic effect of OTα in BALB/c mice using an 

immunosuppression assay after exposure to a single dose of OTα of 1 µg kg−1 i.p. [85]. Here, OTA 

caused an approximately 90% reduction of the IgM and IgG response, whereas OTα showed no effect [85]. 

The same researchers reported that the growth rate of Morris hepatoma cells (HTC cells) was 

massively decreased with OTA, whereas OTα had no effect on proliferation [189]. The acute toxicity 

was also compared in HeLa cells, resulting in EC50 values of 560 µM and 5 µM for OTα and OTA, 
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respectively [86]. A recent report compared the acute cytotoxicity (24 h) in IHKE cells and calculated 

an EC50 of 0.5 µM for OTA, whereas OTα was non-toxic up to 50 µM [190]. 

The neurotoxic effects were also investigated with OTA showing pronounced inhibition of various 

parameters (dehydrogenase activity, lysosomal activity, total cell culture protein, neurofilament 68 kD 

content) in cultures of embryonic brains of Tetra SL chick stage 29 at low nM concentrations and 8 days 

of exposure, whereas OTα showed no effect up to 15 µM [55]. In addition, ochracin (also termed mellein) 

was tested, resulting in weak cytotoxic effects at high concentrations (µM-mM) [55]. 

Others investigated genotoxic effects, resulting in induction of SOS-DNA repair in the E. coli PQ37 

strain in the absence of an exogenous metabolic activation system at concentrations of 0.1–4 mM OTA, 

whereas OTα was inactive [179]. OTA induced also sister chromatid exchanges in cultured primary 

porcine urinary bladder epithelial cells (PUBEC) after 5 h of exposure at pM to nM concentrations 

without apparent cytotoxicity [191]. The same effect was observed with OTα, although higher concentrations 

were necessary (up to 10 µM) [191]. 

OTα is much less toxic (approximately 100 fold) than OTA as shown in various investigations [85,86]. 

Apparently, the isocoumarin moiety alone is not effective but must be bound to phenylalanine to exert 

toxic effects. 

3.5. Hydroxyochratoxins 

Also, for hydroxyochratoxins, only a very limited amount of data exists. Some data exist for  

4R-OH-OTA: this was shown to be equally cytotoxic compared to OTA in Morris hepatoma cells  

(HTC cells) and this toxicity could be prevented by phenylalanine [189]. Furthermore, both OTA and 

4R-OH-OTA inhibit protein synthesis, which could be prevented by phenylalanine and could be 

attributed to their binding on the phenylalanine sites of phenylalanyl-tRNA synthetase [189]. The same 

group also investigated the immunotoxic effects in BALB/c mice using an immunosuppression assay, 

resulting in similar toxic effects of 4R-OH-OTA and OTA on the IgM and IgG response [85].  

4-OH OTA resulted in no mortality after six days when injected i.p. into male Wistar rats at a dose of 

40 mg kg−1 b.w. [192]. 10-OH OTA was found to be non-genotoxic (DNA adduct formation) in bronchial 

epithelial cells (WI 126 VA) [81,88]. Finally, no toxicity data are available for 4R-hydroxyochratoxin B 

(4R-OH-OTB) and 4S-hydroxyochratoxin B (4S-OH-OTB) to date. Other hydroxyochratoxins (5′-OH-

OTA, 7′-OH-OTA, 9′-OH-OTA), which differ from OTA in the hydroxylation at specific sites of the 

phenylalanyl group, were detected as metabolites in vitro and in vivo just very recently [52] and no 

toxicity data are available to present. 

Based on some of the results above, it may be concluded that hydroxylation of ochratoxins  

(in particular 4R-OH-OTA) does not obviously affect their toxicity. 

3.6. Ochratoxin Quinone (OTQ)/Hydroquinone (OTHQ) 

It has been shown that OTA undergoes an oxidative dechlorination process to generate a quinone 

(OTQ)/hydroquinone (OTHQ) redox couple like other chlorinated phenols, which may play a role in 

OTA-mediated toxicity [56,193]. Indeed, OTHQ generated DNA adducts in the absence of metabolic 

activation in human bronchial epithelial (WI26) and human kidney (HK2) cells. These results were 

obtained using the [32P]-postlabeling technique and the necessary confirmation by mass spectrometry is 
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still lacking [56]. However, other researchers did not find OTAQ/OTAHQ metabolites in liver and 

kidney microsomes from rat or mouse [87,194]. 

In summary, data on OTAQ/OTAHQ metabolites are still too limited to provide meaningful conclusions. 

3.7. Lactone-Opened OTA (OP-OTA) 

The in vivo toxicity of OP-OTA was tested in rats and mice. OP-OTA was more toxic than  

OTA in rats when administered i.v. (3/4 rats died within 6 h vs. 2/4 with OTA at 500 µg animal−1  

(200 ± 15 g b.w.) [86]. Interestingly, no lethality was observed after i.p. injection [86]. The same  

effect was observed in mice (6 weeks old, n = 10), where no lethality after 72 h at i.p. doses up to  

500 mg kg−1 b.w. occurred, whereas in the same experiments OTA resulted in 90% dead animals after 

injections of 50 mg kg−1 b.w. [86]. These authors suggested that the more polar OP-OTA is, the less 

readily it is taken up in the rodents when given i.p. compared to OTA [86]. Whether other factors may 

be involved such as enhanced metabolism (first pass effect) or elimination was not investigated. 

In addition, no toxicity was detected in Brevibacillus brevis at a concentration of 350 nmol/disc, 

whereas the minimum toxic dose for OTA was 8.7 ± 1.7 nmol disc−1 [86]. 

Overall, the available data suggests that the toxicity of ochratoxins may be related to the lactone 

carbonyl group. 

3.8. Conjugated Ochratoxin Forms 

To date, no toxicity data has been reported for glucuronidated ochratoxins or pentose and hexose 

conjugates. Only in bacteria (E. coli PQ37), the formation of a cytotoxic thiol-containing derivative was 

suggested [93]. Conjugation is typically a detoxification step, however, bioactivation might be possible. 

3.9. Synthetic OTA Analogues 

Investigations with synthetic analogues of OTA mostly included substitutions of phenylalanine with 

other amino acids. For example, in an early study, the alanine and leucine analogues of OTA were i.p. 

administered to trout and caused no death at dose levels of 4.49 and 5.06 mg kg−1 b.w., respectively [158]. 

These doses were equivalent to 13.72 µmol OTA kg−1 b.w. (=LD50 of OTA) [158]. Later, Creppy et al. 

synthesised eight different analogues of OTA [195]. Their effects were investigated in comparison to 

OTA, OTB and OTα on yeast tRNA amino acylation and on growth and protein synthesis of HTC  

cells [195]. All analogues showed inhibitory effects in the three test systems, although to a lesser degree 

than OTA, whereas OTB and OTα were ineffective [195]. 

Based on these results, it can again be concluded that phenylalanine is important for the toxicity of 

OTA, as the toxicity was always reduced if phenylalanine was substituted by another amino acid. 

3.10. Structure–Activity Relationship 

In summary, current knowledge about the toxicity of ochratoxins suggests that the hydroxyl, carboxyl, 

chlorine, and lactone groups of ochratoxins substantially affect their toxicities in various models. 

Furthermore, the biological reactivity of ochratoxins seems to be enhanced by the presence of the 

phenylalanine moiety, although this group is not essential for toxicity. 
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4. Toxicity of Mixtures of Mycotoxins 

In nature, co-occurrence of mycotoxins is often observed. One mould species may produce many 

different mycotoxins, and the same mycotoxin may be produced by several species [110,196–200]. 

Considering this coincident production, it is very likely that humans and animals are always exposed to 

mixtures rather than to individual compounds. This is particularly true for OTA, OTB, citrinin, penicillic 

acid and occasionally for patulin as these are all produced by a number of Penicillium and Aspergillus 

species [110,200]. Furthermore, other mycotoxins such as fumonisins and aflatoxins have been 

frequently detected together with OTA [62,110,199]. Currently, little is known about mycotoxin interactions 

although combined exposure is clearly more relevant to real-life situations [2,3,110,114,200]. Further 

challenges may occur worldwide due to climate change as this may influence the occurrence of 

mycotoxins due to geographic shifts in the distribution of major cereal cropping systems and potentially 

favourable climatic conditions for toxin producing organisms [201,202]. 

Data on combination toxicity is still rather limited and often contradictory, however, the available 

data on OTA toxicity in combination with other mycotoxins was comprehensively reviewed in 2013 [110]. 

In summary, most of the studies addressing the combined effect of OTA with other mycotoxins showed 

additive or synergistic interactions when binary mixtures were tested and data on multiple mixtures is 

very rare [110]. Since the publication of that review, a few more reports have been published and these 

are summarised below [203–207]. 

Rumora et al. investigated the individual and combined toxicity of OTA and citrinin in porcine 

proximal tubular cells (PK15 cells) and showed that mitogen-activated protein kinases (MAPKs) were 

differentially activated [203]. Based on their results, the authors suggested that Ca2+ might be an 

important player in the observed in vitro toxicity [203]. These toxins were also tested by Anninou et al. 

on human hepatoma cells (Hep3B), in combination with sterigmatocystin, a precursor of aflatoxin 

biosynthesis, which resulted in additive or antagonistic genotoxic and cytotoxic effects at low 

concentrations (pM-nM) [208]. Föllmann and colleagues tested OTA in combination with citrinin and 

its main human metabolite dihydrocitrinone (DH-CIT) in Chinese hamster lung fibroblasts (V79 cells) 

using the neutral red uptake assay, the in vitro micronucleus assay and flow cytometry [205]. The main 

outcome of this study, i.e., that mixtures of OTA and citrinin exerted mainly additive effects and that 

synergism was observed with high micromolar concentrations only [205], confirms some of the earlier 

results obtained in other cells and/or with other endpoints [209–212]. Similar results with OTA and 

citrinin were obtained by Gayathri et al. in human hepatocarcinoma cells (HepG2) [213]. 

Clarke and co-workers investigated OTA in combination with aflatoxin B1 (AFB1) and fumonisin B1 

(FB1) in human intestinal cells (Caco-2), Madin Darby bovine kidney cells (MDBK) and murine 

macrophage cells (Raw 264.7) using the MTT and neutral red assays [207]. Binary combinations  

showed additive effects, whereas tertiary combinations of OTA, FB1 and AFB1 resulted in synergistic 

effects [207]. Further studies employed more sensitive high content analysis (HCA) resulting in synergistic 

interactions of binary mixtures of OTA and FB1 [204]. In contrast, recent in vivo investigations by 

Corcuera et al. of the combined toxicity of OTA and AFB1 in orally exposed male F344 rats resulted in 

an antagonistic genotoxic interaction as tested via the micronucleus and comet assays [214]. 

Li and co-workers investigated the liver and ovarian toxicity of OTA in combination with the 

mycotoxin zearalenone in human hepatoma cells (HepG2) and murine ovarian granular cells (KK-1) [206]. 
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Exposure to equi-effective mixtures resulted in additive effects with respect to cell viability (WST-8 

assay), whereas differential effects were observed with the endpoint of ROS generation [206]. Further 

research included also other targets such as intestinal cells or lung cells, for example, Cano-Sancho and 

co-workers reported an increased cytotoxicity of binary combinations of OTA and deoxynivalenol on 

Caco-2 cells [215]. Šegvić Klarić et al. investigated subtoxic spore extracts from typically co-occurring 

grain mill aeromycota in combination with OTA on human lung adenocarcinoma cells (A549) and 

observed significant DNA damage and cell death with additive interactions [216]. 

In summary, the combined effect of OTA with other mycotoxins showed mostly additive or synergistic 

interactions. Depending on the concentrations applied and the in vitro models employed, however, 

antagonistic interactions have also been detected. Data on multiple mixtures are still incomplete. 

5. Summary and Final Remarks 

The biosynthesis as well as biotransformation of ochratoxins has not been elucidated in detail so far. 

Several naturally occurring forms, metabolites and conjugates have been reported and characterised  

in vitro and/or in vivo, while the toxicity of other detected forms remains to be described. Based on the 

publication record on ochratoxin metabolism, it can be concluded that humans and animals are mainly 

exposed to the ingested parent compounds and to a much lesser extent to their (species-specific) metabolites. 

The current toxicological database indicates the crucial importance of certain structural components 

such as the hydroxyl, carboxyl, chlorine, and lactone groups of ochratoxins with respect to cellular 

uptake and binding. The bioavailability seems to be further enhanced by the presence of the 

phenylalanine moiety, although this group is not essential for toxicity. The structural differences of the 

ochratoxin group members may explain most of the experimental outcomes observed in various models. 

Nevertheless, the contribution of metabolites to OTA toxicity is still rather unclear and further research 

is needed. 

The underlying mechanisms of toxicity of the ochratoxin group members still need to be elucidated. 

Although recent advances mainly support a non-DNA-reactive, genotoxic mechanism for OTA, there is 

also evidence of other mechanisms involving OTA bioactivation and OTA-DNA adduct formation. 

Whether or not other ochratoxin group members show the same mode of action remains to be 

investigated. However, there are indications that at least OTB may have a different molecular mechanism 

of chronic toxicity compared to OTA. 

Given the potential chronic human exposure to the naturally occurring forms, metabolites, conjugates 

and mixtures with other mycotoxins, a better understanding of the toxicokinetics and the mechanisms of 

toxicity of the ochratoxin group is necessary to provide adequate human risk assessments. 
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