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Summary: The use of graphene as polymer reinforcements within composite materials for 

lightweight purposes is addressed in this work. For that purpose, a multi scale strategy 

embedding the constitutive law of each phase is accounted for through mean-field technique 

for obtaining the mechanical properties. Using the Mori-Tanaka micro-mechanics scheme, 

the effective non-linear behaviour is predicted for various micro-parameters such as the 

aspect ratio and volume fractions. The results show an enhancement of the equivalent macro 

stress-strain response with low aspect ratio corresponding to platelets-like inclusions. Also, 

the volume fraction is seen to improve the composite response. The results compare the 

contribution of graphene platelets versus that of carbon and glass fibres for lightweight 

structures with enhanced mechanical responses. 
 

 

1 INTRODUCTION 

The current pressure growing on automotive manufactures to have strong decarbonisation 

targets and to reduce annual CO2 emissions has led to the development of advanced 

composite materials (ACM) that offer substantial weight reduction while improving strength. 

The automotive industry, as one of the largest and critical sectors within the global economy, 

is widely viewed as an area of the greatest volume use for ACM in the future for production 

of light vehicles. Therefore, the design of the new generation of vehicles should be developed 

aiming for individual mobility whilst also retaining safety, environmental friendliness and 

affordability [1]. However, the use of ACM in structural vehicle body applications has been 

far less extensive [2]. Significant hurdles remain with respect to their improved performance, 

manufacturability, cost, and modelling [3]. As a consequence, considerable materials science 

effort and new material discovery need to be developed to overcome these hurdles. 

Graphene is at the centre of an ever growing academic and industrial interest because it can 

produce a dramatic improvement in mechanical properties at low filler content [4]. Indeed, 

one of the most immediate application for graphene resides in composite materials [5]. To 

take a full advantage of its properties, integration of individual graphene sheets in polymer 

matrices is important. Exceptional physical as well as thermomechanical properties, a high 
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surface/volume ratio and low filler content of graphene make it a promising candidate for 

developing the next-generation of polymer composites [6-8]. Graphene has been used to 

increase stiffness, toughness and thermal conductivity of polymer resins by a large margin [9-

12]. However, many challenges, including the lack of constitutive material modelling for high 

performance structural applications can affect the final properties and applications of 

graphene composites. 

In this work, it is aimed to address the constitutive modelling of graphene based polymer 

composite materials for understanding its contribution in the enhancement of polymer matrix 

composites for lightweight structural applications. Graphene is considered as platelets 

embedded within a rate-independent elasto plastic matrix phase. The composite response is 

therefore computed under a boundary value problem by applying static or kinematic 

admissible loading. Mean field homogenisation scheme for instance the Mori-Tanaka is used 

to obtain the overall response of the composite. 

2 MEAN FIELD HOMOGENISATION FORMALISM 

A macroscopic homogeneous and microscopic heterogeneous materials is selected under a 

representative volume element RVE as depicted by Figure 1. The associated boundary-value 

problems are formulated, in the terms of uniform macro field traction vector or linear 

displacement fields. The RVE is assumed to be in equilibrium and its overall deformation 

compatible. Also the body forces and inertia term are neglected.  

 

 
Figure 1: 3D schematics of a RVE of platelets reinforced polymer 

 

These general considerations are restricted to the case of a linear constitutive law under small 

transformation approximation. They can be summarised like: 

 , 0ij j   (1) 

  , ,

1

2
ij i j j iu u    (2) 

where ij , ij  and iu  represent respectively the components of the stress and strain tensors 

and the elastic displacement. At each point r  in the RVE, the local elastic constitutive law is 

written such as: 

      ij ijkl klr c r r   (3) 

The scale transition is now introduced to make the relationship between the micro scale 

(local) and macro scale (global) elastic properties. It consists firstly in the localisation step by 

the global strain tensor A  such as: 

    ij ijkl klr A r E    (4) 

The second step of the scale transition is the homogenisation which employs averaging 

techniques to approximate the macroscopic behaviour: 
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ij ij
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Replacing Eq. (4) in Eq. (3) and combining the result with Eq. (5), leads to the effective 

properties given by: 

    
1eff

ijkl ijmn mnkl

V

C c r A r dV
V

   (7) 

Or in others terms 
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C c A  (8) 

with I
c , I

A , If  the uniform stiffness tensor, the strain concentration tensor and the volume 

fraction of phase I respectively. Using, the Eshelby’s inclusion concept [13], the final 

expression of the global strain concentration tensor is given by an iterative procedure [14] 

such as: 
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where
I

a  states for the local strain concentration tensor and 
0J J  c c c . 

IJ
T represents the 

interaction tensor between inclusions. In the case where the interactions between inclusions 

are neglected i.e 0IJ T  (most of cases in the open literature), the local concentration tensor 
I

a  reads more simple expression: 

 

  
1

11
0: : :I II I I


            

I I Sa T c c c  (10) 

where S  represents the Eshelby’s tensor [13]. Its expression depends on the aspect ratio 

c a   of the ellipsoidal inclusion of semi-axis  , ,a b c  and the material properties of the 

surrounding matrix 
0

c . Under the Mori-Tanaka MT [15] assumptions, the global strain 

concentration tensor of the matrix is expressed as [14, 16]: 
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leading to the effective MT properties through Eq. (8) such as: 
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3 DERIVATION OF NON LINEAR TANGENT OPERATORS 

Within the RVE, let us assume that one or more phases behave elasto-plastically. Referring to 

the work by Doghri and Ouaar [17] at least two tangent operators can be defined: the 

“continuum” (or elasto-plastic) 
ep

C tangent operator, which is derived from the rate 

constitutive equation, and the “consistent” (or algorithmic) 
lgaC tangent operator, which is 

solved by a discretisation in the time interval  1,n nt t  . These tangent operators are related to 

the rate of the constitutive equation as follows: 
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They are derived from the classical 2J flow rule: 
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The “continuum” (or elasto-plastic) 
ep

C tangent operator yields: 
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while the “consistent” (or algorithmic) 
lgaC tangent operator is given by: 
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 (16) 

In equations (15) and (16),   denotes the material shear modulus while 
el

C represents the 

elastic stiffness tensor and  R p  is the hardening stress function with p  the accumulated 

plastic strain. N  represents the normal to the yield surface in the stress space. 
tr
eq denotes a 

trial elastic predictor of eq . 
dev

I  stands for the deviatoric part of the fourth order symmetric 

identity tensor. The knowledge of internal variables such as p  and 
tr
eq  is important for 
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computing the algorithmic tangent operator in Eq. (16). A detailed procedure about the 

update of internal variables can be found in Azoti et al. [18]. lga
C  will be later used to 

determine the overall composite behaviour using the MT scheme by Eq. (12). 

 

4 NUMERICAL RESULTS AND DISCUSSIONS 

The numerical algorithm for solving the overall response of the composite material is shown 

by Figure 2. The start point of the algorithm is the partition of strain increment E between 

the matrix phase and inclusions. To this end, Voigt assumption is used to state the strain 

increment in the inclusions (GPL) while an average technique expresses the strain increment 

in the matrix (polymer). Next, the algorithmic tangent operator of each phase is computed 

using Eq. (16). Due to its robustness, the generalised mid-point rule [17] is applied on the 

algorithmic tangent operator to derive the global strain concentration tensor I
A . Finally, the 

effective properties are obtained using Eq. (12) after a convergence checking.  

 

 
Figure 2: Numerical algorithm for overall response of 2-phases composite 

 

For application, 2-phases composite is considered. The RVE is subjected to uniaxial loading. 

The load is given in terms of macro stain increment  E = E.  with 
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 1 1 2 2 3 3

1

2
e e e e e e       . The matrix is an elasto-plastic Polymer PA6-B3K with an 

isotropic hardening in power-law   mR p kp  whereas the graphene inclusions are 

considered elastic. The properties of the matrix and the inclusions are reported in Table1 
 

Matrix (Polymer PA6-B3K) Inclusions (Graphene 

G2NAN) 

0E  0  Y  k  m  
IE  I  

2000 MPa 0.39 60.5 MPa 63 MPa 0.4 1000 GPa 0.22 

 

Table 1: Phases properties of a Graphene-reinforced polymer composite 

 

 

Figure 3: Aspect ratio variation for 0.1If   

 

 

Figure 4: Volume fraction variation for 0.01   

 

Figure 3 depicts the evolution of the effective equivalent stress-strain behaviour versus the 

graphene aspect ratio  . For different values of   the overall response is well bonded 

between the responses of the matrix as well as the graphene. Also, it can be observed an 

increase in the overall response with respect to the decrease of  . Therefore, lower values of 
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0.1   corresponding to platelets-like inclusions show a good reinforcement character than 

circular-like inclusions i.e 1  . In addition, the variation of the volume fraction is 

analysed. The equivalent macro stress-strain response versus different volume fractions 

0.01; 0.05; 0.1; 0.15If   is shown by Figure 4. The model predictions reproduce a trend 

similar to that of the matrix. The composite stress-strain response shifts towards higher 

stresses with the increase of the inclusions volume fraction. An enhancement of the 

mechanical properties is therefore noticed with the volume fraction. Herein the predicted 

stress-strain curves are also well bounded between the matrix and inclusions responses. Also, 

due to its low density and high Young modulus ( 31.06 /I g cm  ; 1000 GPaIE  ) 

compared to its counterpart fillers like carbons fibres ( 31.76 /cf g cm  ; 240 GPacfE  ) or 

glass fibres ( 32.6 /gf g cm  ; 85 GPagfE  ) for nearly same Poisson’s ratio, Graphene 

platelets demonstrate, in Figure 5, an enhancement of the overall mechanical properties at 

very low volume fraction 0.01If  . This observation opens ways for consideration GPL in 

the design of high strength lightweight components and by consequence a promising 

approach for reducing CO2 emissions. 
 

 

 

Figure 5: Overall response versus the nature of reinforcement for 0.01   

 

 

5 CONCLUSION 

The applicability of graphene-based polymer composite materials is made by studying the 

non-linear effective behaviour of a 2-phases composite. The properties of the graphene are 

assumed continuous while an elasto-plastic polymer is considered for the matrix. The Mori-

Tanaka micro-mechanics scheme derives the effective response of the composite versus the 

aspect ratio of the graphene sheet and its volume fraction. The results show an enhancement 

of the equivalent macro stress-strain response with low aspect ratio corresponding to 

platelets-like inclusions. Also, the volume fraction is seen to have a good improvement on the 

composite response. With respect to lightweight materials, the results show that GPL are 

promising candidate and highlight their reinforcement effect versus carbon and glass fibres in 

the design of lightweight structures with high mechanical responses. 
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