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Abstract. Association rule mining can be combined with complex network the-
ory to automatically create a knowledge base that reveals how certain drugs cause
side-effects on patients when they interact with other drugs taken by the patient
when they have two or more diseases. The drugs will interact with on-target and
off-target proteins often in an unpredictable way. A computational approach is
necessary to be able to unravel the complex relationships between disease comor-
bidities. We built statistical models from the publicly available FAERS dataset
to reveal interesting and potentially harmful drug combinations based on side-
effects and relationships between co-morbid diseases. This information is very
useful to medical practitioners to tailor patient prescriptions for optimal therapy.

Keywords: comorbidity, side-effect, association rules, support, confidence, pharmaco-
epidemiology

1 Introduction

As people age and suffer from several illnesses, they will require more medications.
When individuals start taking several medications the chances that the drugs they take
will interact in harmful ways will increase. Drug-to-drug interactions are difficult to
predict as there are so many confounding factors at work - people vary in their genetic
predisposition and thus response to treatment, age, gender, and environmental factors
all play a role. Although every drug undergoes rigorous safety trials during its devel-
opment, these are conducted on participants using only the drug being investigated, it
is impossible to conduct the trial any other way. Our knowledge of drug-to-drug inter-
actions, side-effects and disease comorbidity is derived from healthcare record systems
and these are now starting to receive increased attention as a way of improving public
health and drug safety.

Collecting data on drug side-effects and carefully analyzing it can reveal much about
how drugs are acting in the body and should assist doctors tailor drug prescriptions for
their patients [12,11]. This is made possible by identifying shared biological pathways
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through similar side-effects. The USA and UK have online systems such as the FAERS
[16] and Yellow Card [5] databases in place for medical professionals to report incidents
when patients experience an adverse drug reaction (ADR). Unfortunately, there is a
great deal of noise present in these databases and in fact potentially the majority of
cases may be anecdotal and unreliable. For example a patient, in the early stages of drug
treatment may present themselves at the doctors complaining of headaches, dizziness
and feelings of nausea. Some symptoms may not be listed on the drug information
sheet and there is a chance it is not a result of taking the drug, perhaps the patient
has an additional undiagnosed condition or had taken medicine for flu. However, the
value of big data patient records comes from the luxury of being able to discard the
poor quality, noisy cases and to keep only a fraction [18]. Powerful statistical models
need only a few hundred high quality records to perform reliable comparisons that can
unravel the complex interactions between drug regimens, patient variability and random
chance.
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Annotate  with 
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Drug & side-effects data 
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Fig. 1: Overview of system operation, showing database sources, data flow and statis-
tical analysis. The user query initiates a search of the various databases resulting in a
knowledge base and ruleset related to the disease of interest.

Referring to figure 1 the system is intended to be used by healthcare specialists
wishing to test a hypothesis relating to the drugs their patients are currently receiving
for a particular disease, their patient may already have a second medical condition and
be taking medicine for this. The practitioner would like to query the system to see if
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anything is known about potential drug conflicts. Clearly, some drug-to-drug interac-
tions are already well known and there would be no need to use this system, but for
suspected combinations of drugs the system would be useful.

The process is initiated by a user query containing the disease(s) of interest which
accesses the various databases, the results of which are used to build statistical models
to assess drugs and to build the knowledge base. We briefly describe the key methods
and data.

Association rule mining and frequent item set analysis originated in market basket
analysis 20 years ago whereby trends and patterns in consumer purchasing activities
could be identified and used to increase profits [1]. Several companies use association
rules to influence customers to purchase items, most notably the Amazon recommenda-
tion facility which is based on an individual’s purchasing history and also the purchasing
history of others with similar tastes and preferences [3].

Association rule mining is now starting to receive attention in the bioinformatics
field where the majority of the data are binary or categorical in nature. So far, the bulk
of association rules research in bioinformatics appears to be oriented towards mining
Electronic Health Records (EHR) and Health Information Technology (HIT) on patient
clinical information [23] and little attention focused on drug-to-side-effects [22]. In
this paper association rules are used to uncover relationships between drugs, their side-
effects and co-interacting protein targets. However, it should be noted that the item
sets can only show the commonality of items as they appear in the database, however
by using association rules and a statistical measure we can imply strong correlation
between the associated items.

The databases used include Drugbank for the chemical properties and protein tar-
gets of the candidate drugs and SIDER4 for a comprehensive list of drug side-effects.
Furthermore, we used the Gene Ontology (GO) for providing details and characteris-
tics of specific proteins and products [2], the Disease Ontology (DO) which relates the
various diseases into a taxonomy [17]. KEGG is a store of biological pathways and
provides more information on the normal biological process of the cell and how they
can be affected by drugs [14].

The remainder of this paper is structured as follows; section two describes the sys-
tem architecture in terms of flow of information, the sources of data and the computa-
tional techniques we use; section three describes the results; section four is the discus-
sion; finally section five presents the conclusions and future work.

2 Methods

2.1 Programming environment

We implemented the system using the R language with the RStudio programming envi-
ronment. R is primarily a statistical data analysis package but is gaining popularity for
various scientific programming applications and is very extendable using packages writ-
ten by other researchers [15]. We used the following R packages: aRules [7], GOSim
[24]. Our R code and data files are freely available to all researchers on GitHub for
download: https://github.com/kenmcgarry/UKCI2017-AR
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2.2 Databases, ontologies and pre-processing

The Gene Ontology (GO), KEGG and Disease Ontology (DO) are used to annotate the
proteins and drug targets with additional information useful for a deeper interpretation
of the biological processes and structures [8,17]. The DO database contains knowledge
on 8,043 inherited, developmental and acquired human diseases. Through enrichment
analysis, the R package DOSim is able to explore the biological meaning of related
genes in terms of structure, function and hierarchy. The concepts in DOSim are orga-
nized into a directed acyclic graph (DAG) similar to a tree structure, the concepts are
linked through various relationships. The lower the term or concept is positioned in the
hierarchy then the more specific the term is, higher-up terms describe higher level or
more abstract concepts. The ontologies are used to tag the association rules with bi-
ological meaning, in the sense they provide the medical users some indication of the
pathways that are affected by the drugs, and how such pathways may lead to specific
side-effects being presented by the patient. Incidentally, this kind of information is use-
ful to drug companies as they are now desperate to reuse existing drugs (repurpose)
for potentially very different diseases to the ones they were originally designed to treat
[10,12,20].

The FDA (Food and Drug Administration) provide a freely available database called
the adverse event reporting system (AERS). Online reporting of FDA AERS occurs on a
quarterly basis, and began in January of 2004. Legacy records are available through the
National Technical Information Service on compact disc (on a fee basis) or downloaded
electronically. A quarterly AERS report contains several subsets of information:

– Demographics (DEMO); basic patient information.
– Drug types (DRUG); a list of drugs administered to patients.
– Indications (INDI); why they were given the drug initially.
– Outcomes (OUTC); the end result, e.g. hospitalisation, death.
– Reactions (REAC); side effect(s) experienced.
– Reporting sources (RPSR); where the information originated from.
– Therapy types (THER); how and when the drug was administered.

These seven subsets are linked using the primary key ID we can identify any patient
with the drugs, side-effects and diseases they suffer from. During the course of a year a
given patient may have more than one ADR and can appear several times. The data is
all text based and stored in flat files which we saved in (CSV) format to enable access
by our R programming environment.

As it pertains to the prediction of associations, all such reporting systems are inher-
ently acute in nature; the information they contain has already been filtered based upon
a close temporal association observed by those reporting to the databases. A prime ex-
ample of how analysis of such databases may be lacking in predictive powers would be
the development of cancers; a drug may induce the formation of a cancer, but the signif-
icant degree of latency between exposure and the formation of an observable symptom
will likely be too great for some possible causal agents to be considered worth entering
into the database.
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2.3 Association rule mining

In a database, when considering the occurrence of one item with another in the same
record (or transaction) represents an association. The frequency with which these items
appear together overall in the database may represent some important relationship or
trend. Several techniques are available such as the Apriori algorithm that can extract
rules which highlight these occurrences and their frequencies. Formally we can define
the following: where I = {I1, I2, . . . , Im} are a set of items. Let D be a collection of
transactions in a database, where each transaction t has a unique identifier and contains
a set of items such that t ⊆ I. A set of items is called an itemset, and an itemset with k
items is called a k-itemset.

A number of statistics are available to rank and order the association rules such as
the support, confidence and lift of a rule. The support of an itemset x in D, denoted
as σ(x/D), is the ratio of the number of transactions (in D) containing x to the total
number of transactions in D.

An association rule is an expression x ⇒ y, where x, y ⊆ I and x ∩ y = ∅. The
confidence of x⇒ y is the ratio of σ(x∪y/D) to σ(x/D). There are several association
rule interestingness measures available should the number of extracted rules be large in
number. The measures will select only those rules that have a certain statistical strength
and confidence, and thus prune down the number rules to a manageable size.

Perhaps more helpfully we can say from a shopping database:
{bread, cheese} x⇒ y {butter}

If a customer buys bread and cheese, then they are also likely to buy butter.
Lift is analogous to the relative response of patients and is of primary interest in

identifying novel adverse events as this metric accounts for the high frequency of some
consequences; e.g. nausea is a frequent consequence of many drugs combinations and
if confidence alone were used to order associations this consequence, and others like, it
would reduce the signal to noise ratio of the survey by appearing in every other record.

2.4 Related work

The MOAL (Multi Ontology At All Levels) system of Manda et al [9] is dedicated to
extracting meaningful patterns and relationships from the Gene Ontology. When pre-
sented a gene product/disease, MOAL will generate association rules across all three
sub-databases and use these to annotate the new gene products. Manda et al have also
developed their own interestingness metrics to evaluate and assess the discovered rules:
MOConfidence and MOSupport derive the necessary information from a cross-ontology
platform and select the most informative rules, thus pruning any superfluous informa-
tion. [13] Uncovering disease-disease relationships through the incomplete human in-
teractome. The DIseAse MOdule Detection (DIAMOnD) algorithm by Ghiassian used
a systematic analysis of connectivity patterns of disease proteins in the human interac-
tome [6]. Tatonetti analyzed drug interactions from adverse-event reports where they
discovered interaction between paroxetine and pravastatin that increased blood glucose
levels, thus warning doctors about this combination [19]. The work of Cai et al is simi-
lar to ours [4], they also use association rules but frame these in the context of Bayesian
networks in an attempt to explain causality. We use complex network theory to frame
our rules.
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3 Results

The drugs were first filtered to find the most frequent one hundred in recognition of
fact that these have a propensity to occupy the majority of drug entries (approx 47%
of the dataset) and that there is an apparent window of filtering that occurs around this
region in which the ratio of side effect per drug entry reaches a maximum before again
decreasing; the quantity of frequently occurring drugs filtered out can be easily adjusted
within the code to examine the extents of the filters impact. These highly frequent drugs
were then mapped back to the original drug list to mark patient entries containing them.
The primaryid of the patients consuming the more frequent drugs was extracted and
used as a master filter to remove all entries corresponding to those particular patient
cases from both the drug and side effect lists. This ID always us to uniquely identity
the patient and to link all known ADR’s this person has suffered along with drugs they
take, the diseases they suffer from. Since we are using one years worth of data (2016),
we also miss the patient’s history of previous ADR’s and their drugs. Although this is
not our objective in this work, we realize the importance of these databases to track
trends in disease development over time, the drugs used and perhaps discarded through
ADR’s.

Table 1: Data mining parameters for Apriori algorithm on the FAERS dataset
Parameter Value
Number of patients remaining in dataset 364,368
Number of drug and side effect observations in filtered dataset 19,790
Number of unique drug and side effect observations in filtered dataset 15,743
Apriori minimum support threshold 0.000005
Apriori minimum confidence 0.000001
Apriori minimum rule length 3
Apriori maximum rule length 3
Number of association rules initially generated 718,662
Number of association rules when constrained for drug antecedent and side effect consequent 778,820
Rules with at least ten observations present 368

Rules are then generated in the form of an antecedent (left hand side, LHS) =>consequent
(right hand side, RHS) relationship. Table 1 shows the initial setup for the association
rule algorithm and the early set of results. Finally, the rules generated were filtered to
remove those with less than ten observations, those with none unique side effects (as
many similar drug combinations produce similar side effects) and sorted by lift crite-
rion. The results were validated by comparing to Stockleys interaction checker available
via British National Formulary.

In figure 2 the frequency of observations (drugs and side effects) per patient case
after filtering off cases containing most frequent hundred drugs and subsequently cases
containing the hundred most frequent side effects. The majority of patients have around
ten or less observations in their records. 364,368 unique patients under examination,
displaying 15,743 observations (drugs or side effects) at an array density of 0.02%.

Referring to figure 3 illustrates the distribution of rules found on the basis of their lift
over the number of times they were observed. When data mining, it can be useful to have
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Fig. 2: number of side-effects per pa-
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Fig. 3: number of rules per patient
case

the axes include all possible values as it is one of the few occasions available to visually
survey for anomalies in transformations; the datasets themselves are far too large to
survey by eye. Rules that will be investigated further are encircled with a perimeter.

In figure 5 the highest lift associations made ten or more times. The rule will be
stated along with its number of observations and lift. It will be proceeded by an expla-
nation of the medical terminology, then any and all interactions listed by Stockleys and
the rules predictability.

Rather than sift through the extracted rule-base, a health-care practitioner who is
interested in a specific disease or indication and wishes to control how the rules are
extracted they need to get the correct text name or UMLS code for their query. The
system at the moment is highly sensitive to case/spelling and words used. Future work
will address these shortcomings and make the system more robust to user errors and
differences in nomenclature.

This produced six rules with low support but high confidence, the lift criteria was
substantive. These are shown in table 3, the PU entry refers to Product used for unknown
indication which is a frequently occurring item for the majority of drugs and implies
that they are used for off-the-label diseases. Conversely, taking the problem the other
way around what can association rules tell us about the comorbidities a patient can
suffer from if they do develop Atrial fibrillation? Table 4 displays these rules.

The next stage was to calculate and integrate semantic similarity between our co-
morbid diseases identified by the association rules and to pull out any valid connections
between them. Whilst the scope of the work described in this paper is beyond formal
knowledge representation of any gene-disease associations using Gene Ontology (GO),
we have Disease Ontology (DO) which provides a consistent description of gene prod-
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rules support confidence lift
1 {Low density lipoprotein increased} => {Cardiovascular event prophylaxis} 0.20 82.64 397.15
2 {Cardiovascular event prophylaxis} => {Low density lipoprotein increased} 0.20 55.02 397.15
3 {Low density lipoprotein increased} => {Blood cholesterol increased} 0.18 76.80 90.20
4 {Blood cholesterol increased} => {Low density lipoprotein increased} 0.18 12.50 90.20
5 {Myelofibrosis} => {Product used for unknown indication} 0.20 46.14 1.36
6 {Cardiac failure} => {Product used for unknown indication} 0.18 40.84 1.21
7 {Epilepsy} => {Product used for unknown indication} 0.22 30.18 0.89
8 {Chronic myeloid leukaemia} => {Product used for unknown indication} 0.22 24.03 0.71
9 {Schizophrenia} => {Product used for unknown indication} 0.23 28.40 0.84

10 {Cardiovascular event prophylaxis} => {Blood cholesterol increased} 0.19 53.49 62.83
11 {Blood cholesterol increased} => {Cardiovascular event prophylaxis} 0.19 13.07 62.83
12 {Gait disturbance} => {Multiple sclerosis} 0.29 42.76 9.39
13 {Multiple sclerosis} => {Gait disturbance} 0.29 3.69 9.39
14 {Gait disturbance} => {Product used for unknown indication} 0.51 75.65 2.24
15 {Prostate cancer} => {Product used for unknown indication} 0.26 22.21 0.66
16 {Pulmonary hypertension} => {Product used for unknown indication} 0.36 34.84 1.03
17 {Bipolar disorder} => {Product used for unknown indication} 0.19 28.08 0.83
18 {Seizure} => {Product used for unknown indication} 0.22 29.41 0.87
19 {Deep vein thrombosis} => {Product used for unknown indication} 0.24 33.42 0.99
20 {Ankylosing spondylitis} => {Product used for unknown indication} 0.19 13.57 0.40

Table 2: Top scoring rules for all indications based on lift criteria

lhs rhs support confidence lift
6 {Cerebrovascular accident prophylaxis,PU,Thrombosis prophylaxis} {Atrial fibrillation} 0.00 0.99 47.30
3 {Cerebrovascular accident prophylaxis,Thrombosis prophylaxis} {Atrial fibrillation} 0.01 0.98 47.03
5 {Cerebrovascular accident prophylaxis,PU} {Atrial fibrillation} 0.01 0.80 38.31
4 {PU,Thrombosis prophylaxis} {Atrial fibrillation} 0.00 0.77 36.83
2 {Cerebrovascular accident prophylaxis} {Atrial fibrillation} 0.01 0.76 36.35
1 {Thrombosis prophylaxis} {Atrial fibrillation} 0.01 0.63 30.04

Table 3: Comorbidities associated with Atrial Fibrillation generated six rules. It sup-
ports the question : What problems are patients likely to suffer from before developing
Atrial Fibrillation? The left hand side (LHS) contains the antecedent and the right hand
side (RHS) contains the consequent. Where: ∗PU (Product used for unknown indica-
tion)

ucts with disease perspectives, and is essential for supporting functional genomics in
disease context.

The comorbidities are identified using their local identifiers in DO. A number of
measures can be used to rank semantic similarity, here we used the Wang criterion
as it reflects the biological plausibility better than other measures because of the way
semantic similarity of the DO terms are calculated, using both the locations of the terms
in the DO graph and their relations with their ancestor terms [21].

Wang(A,B) =

∑
t∈TA∩TB

SA(t) + SB(t)

SV (A) + SV (B)
(1)

For the Wang equation, where SA(t) represents the S-value of DO term t related to
term A and SB(t) is the S-value of DO term t related to term B.



Automated knowledge generation 9

 

Fig. 4: Top five ADR’s ranked by lift criteria

3.1 Ontology integration

Individually, each method of data analysis provides important information in a specific
area. However, further value of comes from the integration of these disparate sources of
knowledge in a principled way. We use a variation of the Jaccard similarity coefficient
to integrate the many sources of heterogenous information into a coherent entity for
decision making.

Score = diseaseij + drugsij + sideeffectsij + DO-similarityij + GO-similarityij

Score indexij =
|F (Di) ∩ F (Dj)|
|F (Di) ∪ F (Dj)|
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lhs rhs support confidence lift
2 {Atrial fibrillation} {Cerebrovascular accident prophylaxis} 0.01 0.60 36.35
4 {Atrial fibrillation} {Product used for unknown indication} 0.01 0.39 1.14
1 {Atrial fibrillation} {Thrombosis prophylaxis} 0.01 0.37 30.04
3 {Atrial fibrillation} {Hypertension} 0.00 0.11 3.18

Table 4: Comorbidities associated with Atrial Fibrillation generated four rules. It sup-
ports the question what problems will patients suffer from if they develop Atrial Fib-
rillation? This time the left hand side (LHS) contains the antecedent and the right hand
side (RHS) contains the consequent. Where: ∗PU (Product used for unknown indica-
tion)

Where F (Dj) are the features of interest, such as disease, side-effects, the drugs
F (Di). The rules are then reevaluated using these scores and re-ranked. Implementing
the equation produces a matrix with the diagonal containing the Jaccard score for the
combination of association rule and the attached ontological terms.
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Fig. 5: Correlation matrix for the disease similarity

The strongest correlation is between hypertension and cerebrovascular disease (.66),
hardly a novel discovery but does reveal that this method is useful for integrating asso-
ciation rules with the semantic similarity of any disease.

4 Discussion

We processed and analyzed 162,744 patient entries, 24,641 unique drugs and 8,025
unique side effects were surveyed over four hours in a referenced study, using an ap-
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proximately similar methodology, yielding 2,603 association rules at a minimum obser-
vation occurrence of 50. The results presented here began with 3,045,688 patients en-
tries, 8,106 unique drugs, 16,248 unique side effects, was completed in approximately
ten minutes and produced 78,820 association rules that were further refined to 368 at
a minimum observation occurrence of just 2. An 18 fold increase in the number of pa-
tients that can be examined and 24 fold reduction in the time required has been achieved.

Some drug interactions were not found in Stockleys because the active ingredients
used were not recognised; e.g. HYPROMELLOSE 2910 (4000 MPA.S) is not listed,
but hypromellose is. Whilst no interactions were found for some drugs, the side effects
for a drug alone could suggest the possible outcome. Alternatively, someone skilled
or otherwise in the field of pharmacology could likely predict some of the outcomes
based on medical experience. The approach on which this work was based employed
the skills of a pharmacovigilance expert to assess the results for predictable interactions.
Drug names were used verbatim here, and no attempt was made to further guess at the
likelihood of a possible interaction outcome as, in practice, an algorithm lacking such
worldly knowledge would be incapable of doing this without first having a reference for
such predictable interactions, and it is the application of algorithms to medical records
that is of interest.

There are interesting observations present; for instance, that the combination of anti-
psychotics results in bleeding and bruising, even though these drugs are thought to be
highly specific to neuronal functionality. Assurance that the methodology followed is
able to detect rare events is exemplified by ANENOCOUMAROL + LEVOFLOXACIN
→ International normalized ratio increased and EFAVIRENZ + ETONOGESTREL→
Pregnancy with implant contraceptive; both rare occurrences per Stockleys and high lift
results where obtained.

In terms of the association rule generator (Apriori) we found that the candidate gen-
eration could be extremely slow based on the number of elements in LHS (pairs, triplets,
etc.). Furthermore, the candidate generation process could generate duplicates depend-
ing on the implementation. The counting method iterates through all of the transactions
each time.

During our analysis we found if a pathology is frequently encountered, such as
heart attacks, a connection may not be drawn between the outcome and its possible
causal agent being a particular drug or combination of them. As a result, it is likely that
such chronic conditions are under-represented in the current works. Conversely, some
entries may be over-reported as a result of media attention, accidental data entry, legal
issues, a product being newer to the market.

The issues involved with the FAERS database have proven difficult to resolve, the
manner in which the FDA list sequences of events for a particular patients entry has
changed over time. In its totality, the database is neither entirely structured or unstruc-
tured in form; information not only moves location within the database, with some fields
being deleted, created or translocated, the associated field headers also change. Demo-
graphics such as gender was originally listed as gndr-cod and subsequently as sex. The
same field, like others, has also moved location within the database.
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5 Conclusions

There may be better approaches for finding less frequent (more novel) patterns, as apri-
ori itself is fundamentally intended for finding frequent patterns. Huge quantities of the
results apriori generates from medical records are just very common, very well known
side effects; warfarin + aspirin → bleeding is a common discovery in the literature.
However, when searching for more novel observations, it is more appropriate to reverse
that, starting at the lower frequencies and working up towards the frequent rules. We
achieved something roughly similar with the software we developed by first filtering off
all the patients consuming frequent drugs and experiencing frequent side effects before
running the algorithm; around half of the all the drug entries correspond to just 10 drugs
in the FDA records. Future work will involve a more effective highlighting of unique
drug combinations which may be achieved by initially filtering on a combinatorial ba-
sis instead; only excluding drugs that form frequent combinations. This would be most
rapidly achieved using the first pass (FP-growth) hierarchical tree algorithm.
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