
M cG a r ry, Kenn e t h a n d M cDon ald, S h a ro n (201 7) Co m p u t a tion al
m e t ho ds for t ex t mining u s e r pos t s on a pop ula r g a min g foru m
for ide n tifying u s e r exp e rie nc e iss u e s. In: Bri tis h H CI 2 0 1 7
Confe r e nc e Digit al M ak e Believe, 3-6 Jul 2 0 1 7, S u n d e rl a n d, UK.

Downloa d e d fro m: h t t p://su r e . s u n d e rl a n d. ac.uk/id/e p rin t /75 4 5/

U s a g e g u i d e l i n e s

Ple a s e r ef e r to t h e u s a g e g uid elines a t
h t t p://su r e . s u n d e rl a n d. ac.uk/policies.h t ml o r al t e r n a tively con t ac t
s u r e@s u n d e rl a n d. ac.uk.

Computational methods for text mining user posts
on a popular gaming forum for identifying user

experience issues.

Ken McGarry
School of Pharmacy and Pharmaceutical Sciences,

Faculty of Health Sciences and Wellbeing,
University of Sunderland, City Campus, UK.

ken.mcgarry@sunderland.ac.uk

Sharon McDonald
Faculty of Computer Science,

University of Sunderland, St Peters Campus, UK.
sharon.mcdonald@sunderland.ac.uk

The advent of the social web such as twitter, facebook and the numerous social forums have provided a rich source of data
representing human beliefs, social interactions and opinions that can be analysed. In this paper we show how extracting
user sentiment by text mining posts from popular gaming forums can be used to identify user experience problems and
issues that can adversely effect the enjoyment and gaming experience for the customers. The users posts are downloaded,
preprocessed and parsed, we label the posts as negative, positive or neutral in terms of sentiment. We then identify key
areas for game play improvement based on the frequency counts of keywords and key phrases used by the fora members.
Furthermore, computational models based on complex network theory can rank the issues and provide knowledge about
the relationships between them.

text mining, usability, games industry, graph theory

1. INTRODUCTION

The computer gaming industry is a highly profitable
business and in fact sales of computer games exceeds
the revenues of the movie making industry, one estimate
placed the gaming industry at $86 billion with Hollywood
at $36 billion UKI (2017). Many popular games have user
forums where players can post messages to each other
and to the designers of their games. The majority of posts
are requests to fellow players for help in solving difficult
puzzles at various levels of gameplay or requests to the
software developers for particular features they desire or
features they find irksome.

Over the past 10-15 years text mining has seen massive
expansion both in practical applications and research
theory Hearst (1999). Several, quite diverse areas such
as mining student feedback in educational domains
Romero and Ventura (2010); Kumar and Jai (2015),
automatically creating ontologys from text Missikoff et al.
(2003), mining student requests for help on programming
forums, mining customer emails/feedback for satisfaction
or pinpointing problems with products have all benefited
from this automated approach. There are many reasons
for this explosive growth but the main factor is that
the majority of human knowledge and experience is
in the form of the written word and not structured
databases Bose (2017). This presents some problems as

the information contained in natural language statements
is difficult to map to the rectangular/tidy data expected
by machine learning and statistical algorithms Wickham
(2011).

In recent years, usability and the delivery of an appropriate
user experience has become a key determinant of success
for digital products and services; particularly within the
computer games industry. Typically, usability and the user
experience are evaluated through two broad approaches
to evaluation: analytical methods and empirical methods.
Analytical approaches to evaluation, do not involve
users and include popular techniques such as heuristic
evaluation Nielsen (1993).

These techniques require that experts use their knowledge
of usability principles to inspect the product in order
to identify likely usability problems. However, while
these methods are fast and relatively inexpensive to run,
they have been widely criticised because of their lack
of predictive power: many issues identified by experts
never reveal themselves in actual use. Empirical methods
involve the collection of data from real users, either in
laboratory based usability tests where users are asked
to complete representative tasks and problems in user
are observed and field studies where researchers observe
interactions with technologies in their context of use.
These methods are considered to be more robust, however

c© The Authors. Published by BISL. 1
Proceedings of . . .

Text mining user posts
McGarry • McDonald

Download posts

http://forum.techland.pl/

format posts:
stemming,
stopwords

clean posts:
remove punctuation,
Non text chars

Bing lexicon

Sentiment analysis

Visualise sentiment and keywords

Statistical analysis

n-gram and complex network analysis

UX summary

Create data
structures

Figure 1: System overview: data download, preprocessing and model building

they are more expensive and take considerably longer than
inspection approaches.

Our overall system operation is highlighted by figure 1.
The process is initiated by downloading the users posts
which is the basic unit of data. This is a user-submitted
text message enclosed into a block containing the user’s
details and the date and time it was submitted. Posts
are usually short but in fact can vary in size as users
communicate to previous posters, often providing detailed
information to assist other members. The posts can usually
edited or deleted my members. The posts have a certain
structure called threads where the original poster (OP)
creates a topic title. This first post creates the thread and
subsequent replies to this post follow in logical order.
The usual forum etiquette requires that subsequent posts
should be on-topic and not to deviate to other subjects
or issues, however this is often disregarded. Other useful
information include the total count of each user’s posts
count Nahm and Mooney (2002).

The R code used to perform the analysis and the datasets
we have used are freely available on GitHub from:
https://github.com/kenmcgarry/TextMiner

The remainder of this paper is structured as follows;
section two describes our methods, indicating the types
of data used and how we download and preprocessed it,
along with the computational statistics techniques used
to model this data, section three presents the results,
section four provides the discussion and finally section
five summarizes the conclusions and future work.

2. METHODS

We implemented the system using the R language with
the RStudio programming environment, on an Intel Xenon
64-bit CPU, using dual processors (3.2GHz) and 128
GB of RAM. R is primarily a statistical data analysis
package but is gaining popularity for various scientific
programming applications and is very extendable, using
packages written by other researchers R Core Team
(2015). It is freely available from CRAN and is supported
by a large community of researchers. Since it is an
interpreted language, R can be quite slow compared with a
compiled language such as C++ etc, however it is possible
to speed up R by recoding mission critical functions
in C++, the application described in this paper did not
require any speedups.

Referring to the system diagram presented in figure
1, we have used the following R packages, the TM
package by Feinerer which contains a comprehensive
set of functions for creating a corpus Feinerer et al.
(2008). The RVEST package enables web page scraping
of HTML documents creating data structures suitable
for parsing (https://github.com/hadley/rvest). The posts
are downloaded using special HTML functions from the
RVEST package that remove the embedded structural
information. The main URL with the OP topic is cut and
pasted from a browser into our R code, but subsequent
pages (each containing 25 posts) are automatically
downloaded.

In order to successfully extract the users posts we need
to know where in the HTML code the names for each
CSS (cascading style sheet) node in the webpage. This
unfortunately, has to be a manual process and we used
http://selectorgadget.com/ to identify the post main body

2

Text mining user posts
McGarry • McDonald

from the myriad of nodes in the web page. The names
are created by the web designers and obviously will
be different from website to website. Many other nodes
identify useful information such as the user names,
the dates, the titles, the number of posts each user
has submitted. Other nodes provide the usual HTML
formating for positioning of text and graphics objects and
are not useful to us. Once identified from the rest of
the nodes, the text nodes of the posts are preprocessed
by removing whitespace, newlines, tabs, punctuation, and
any special embedded characters.

The next process is to remove stopwords, and to stem the
document. This involves removing non informative words
such as “if” , “and”, “then” etc. Stemming simply replaces
similar words with their common root e.g. “walked”,
“walking” and “walker” become “walk”. This simplifies
the number of tokens required for text mining without
losing any meaning.

Sentiment analysis is conducted by the sentimentR
package, we group the posts according to their time stamp
and if there are any trends or patterns that occur over time
these should be identified. It is highly likely that when a
game is first introduced it may have either bugs or features
that the users are unfamiliar with or have difficulties with
and thus posts may have an overall negative sentiment.
This process is based on single words without any regard
for context or negation i.e. “I am not happy” would be
identified as positive statement rather than negative. We
use the Bing lexicon for a list of positive and negative
sentiment words.

We then take a more detailed approach whereby sentence
level manipulation is implemented so negation and
context may be better understood. The great challenge in
text mining user posts from a gaming forum is that many
of the words that would be normally associated as negative
by the lexicon are in fact either neutral or positive because
of the context of a violent shooting game.

We selected a set of keywords deemed important enough
to uncover user issues and problems based on their
occurrences highlighted by the wordcloud. Algorithm 1,
operates by searching for our list of keywords for their
occurrences in the corpus of posts. We chose a cutoff
parameter based on heuristic experimentation and 50 was
deemed to be a useful number. Complex network statistics
were calculated for each keyword individually and then
globally with all networks of keywords joined together.

3. RESULTS

The wordcloud presented in figure 2 highlights the relative
frequency of the keywords, the larger the size of a word
indicates it occurs quite often. This type of plot is useful
for a quick scan of frequently occurring themes or issues.
However, it is simply a “bag of words” method without

Algorithm 1 User keyword search/identification algo-
rithm

1: procedure SEARCHKEYWORDS(keywordlist, Corpus) . keywords
from wordcloud

2: do initialize
3: knum← get number of keywords in list
4: i = 1
5: iw = 0 . Words co-occurring with keyword i
6: CUTOFF = 50 . Value determined heuristically
7: end initialize
8:
9: for i ≤ knum do

10: iw ← Corpus . all co-occurring words for iw in Corpus
11: wcount[i]← get number of words
12: if wcount[i] > CUTOFF then
13: Cw[i]← iw . keep these words in new structure
14: end if
15: for j ≤ knum do
16: LCs[j]← CalcNetworkStatistics(Cw[j]) . calc

statistics of Cw
17: end for
18: end for
19: GCs← CalcNetworkStatistics(Cw) . call function for

global statistics of Cw
20: return Cw,Cs,GCs . Return top keywords with local and global

statistics

21: end procedure

any context of word order or relationships between them.
It is an attractive and highly visual way of representing
data but gives little in way of quantitative analysis. The
only additional means is to organise words in terms of
sentiment as per figure 3. Here we can see the positive and
negative classifications as classified per the lexicon (Bing)
we used.

Figure 2: Wordcloud for user posts to the Feature Requests
topic.

It should be noted that several lexicons exist, each will
provide slightly different classifications of words and
different term weightings. We selected the Bing lexicon
because of it wide applicability to text mining and did not
experiment and compare it with the other lexicons.

An example of the raw text posts appears in table 1,
the developer requests topic is the most useful source
of information from a usability perspective. Interesting
details can be gleaned from such as technology used e.g.
PC, Apple or Xbox and issues with RAM memory and
other system conflicts. Issues with bugs, glitches and other
software behaviors are usually reported here.

3

Text mining user posts
McGarry • McDonald

Figure 3: Wordcloud for All topics organized by sentiment.

text
I think that you should work on a house system so that you can just have your own ...
I would like too see new game achievements to have more things to do alone and...
To start, amazing job, I can’t get enough of this game! Here are a few things I ...
In the begining of the story when Crane had got bitten he needs antizin to prevent...
Just take a normal mode.I use LG too, playing on PS4, with just normal, no Vivid...
I would like to see better vibrations on the xbox one controller during combat like...
Dear Dying Light developersI would like it if you would repair a small one Coop...
There should be 4 players on each team and each should have to race to an ultimate...
Some things that I think should be added. 1. I think they should add a way that any...
i think hands down this game is by far the best iv’e played with zombies! I think much...

Table 1: Example of posts from Developer requests topic

The next stage is to conduct a sentiment analysis of all
the downloaded posts, the posts are in the sequential order
they appeared over time. Table 2 shows the first 10 posts in
the FAQ topic, The index number uniquely identifies each
post, with positive and negative counts, the net is simply
the overall sentiment after subtracting the +ve from the
-ne sentiments.

positive negative net index topic
1.00 1.00 0.00 1.00 FAQ
9.00 2.00 7.00 2.00 FAQ

13.00 14.00 -1.00 3.00 FAQ
10.00 3.00 7.00 4.00 FAQ
8.00 1.00 7.00 5.00 FAQ
9.00 10.00 -1.00 6.00 FAQ
4.00 3.00 1.00 7.00 FAQ
6.00 3.00 3.00 8.00 FAQ

15.00 10.00 5.00 9.00 FAQ
19.00 10.00 9.00 10.00 FAQ

Table 2: Count of positive and negative words with overall net
sentiment outcome for first 10 posts in FAQ topic

In table 3, we have displayed the top 15 words, their
sentiment class and the number of times they appear in
all posts. This is the data we use for the complex networks
and statistical calculations when creating word pairs and
word linkages.

In order to assess the likelihood of the sentiment analysis
misinterpreting words because of negation we ran an
analysis searching for the number occurrences of “not”
and listing the words it precedes. In figure 4 we can see
that like and good have the highest scores at 42 and 18
respectively. Taking the not into account will make our
sentiment more negative and should really mean not like
and not good.

word sentiment n
1 love positive 495
2 safe positive 411
3 dead negative 363
4 kill negative 355
5 hard negative 312
6 fun positive 289
7 cool positive 281
8 damage negative 274
9 infected negative 269

10 awesome positive 241
11 skill positive 213
12 nice positive 209
13 easy positive 206
14 survival positive 193
15 survivor positive 172

Table 3: Count of positive and negative words with individual
sentiment classification for top 15 words in all topics

Keeping track of the potential for bias through negation,
we performed the sentiment analysis as shown in figure
5 for the four main topics. Each column in figure 5
represents approximately 10 posts taken in consecutive
order as they were posted by the forum members. It will
be noted that Feature requests has accumulated far more
posts than the other three topics. This is to be expected, as
any issues are reported here.

Figure 4: Word sentiment misclassification based on negation by
not

We find that the Feature requests topic is consistently
negative in terms of its sentiment. The Developer Tools
topic is generally negative as this contains posts from
those trying to modify the game based on their own
programming skills user the software development kit.
This is a complex and generally frustrating endeavor, and
from reading the posts majority of gamers find the task
difficult and their efforts do not succeed. The Frequently
asked questions topics starts negative but builds up to
a small overall positive sentiment. The Following topic
is very well received as this was the second game in

4

Text mining user posts
McGarry • McDonald

Developer Tools Feature requests

Frequently asked questions The Following

0 10 20 30 40 0 50 100 150 200

0 2 4 6 8 0.0 2.5 5.0 7.5

−100

−50

0

−100

−50

0

Topic sentiment

S
en

tim
en

t

Figure 5: Sentiment analysis for four main topics

the series with the bugs, glitches and annoying (game
spoiling) features were more or less solved.

Using Algorithm 1 we are able to assess the impact of
the keywords selected as important for usability analysis
based on hubness and centrality measures. The initial set
of 18 keywords was used to create complex networks of
co-occurring keywords, but only if the keyword appeared
more than 25 times, else it would be discarded. This
produced a list of 10 usable keywords and their co-
words that would be investigated further. The keywords
are shown in table 4 along with the number of co-words.

keyword No of co-words
inconvienince 0

problem 0
confusion 0

complicated 0
issue 5

obstacle 0
glitch 0

bug 0
annoying 14

stupid 8
unfair 0

difficult 35
hard 269
bad 80

issues 8
hate 15

wrong 18
cheat 3

Table 4: Keywords that appeared more than 25 times were
retained, these produced between 5-269 co-words. A zero entry
indicates the keyword was discarded

We then built a complex network and preformed the
statistical analysis on it structure and connectivity
patternsfor the top 20 co-words as defined by hubness.
However, the over all structure of the network consisted
of 226 nodes (words) with 704 connections between them.

The modularity was 0.79, this is a unit-less measurement
that exists between 0 and 1, the closer to unity it suggests
there is structure between the words - rather than a random
connection pattern. The avepath was 4.76 and this relates
to the average distance of the path between any two words.
The closeness, betweenness, hubness and power will vary
for each word depending on number of connections.

The use of the power measure (Bonacich) attempts to
define cliques of individuals that may cooperate as a
group and is borrowed from social web mining and is
probably more controversial in text mining. The value
indicates the effect of one’s neighbour’s connections on
ego’s power. Where the attenuation factor is positive
(between zero and one), being connected to neighbours
with more connections makes one powerful. On the other
hand, if a node (word) has neighbors who do not have
many connections to others, those neighbors are likely
to be dependent on that node, making it more powerful.
Negative values of the power factor (between zero and
negative one) compute power based on this idea. Thus a
node may not have many connections but may well have
the ‘right’ connections to powerful nodes.

The main word that is central and occurs many times is
‘hard’ , the betweeness measure for this word is 18,442
well in excess of any other word. The word ‘idea’ has a
value of 7,203 the rest of the words have tiny fractional
values. Betweeness is based on the idea of shortest paths
between nodes (words), and is a measure of how a given
node stands ‘between’ the other nodes in a network -
the higher the value then that node is very central in the
network.

5

Text mining user posts
McGarry • McDonald

4. DISCUSSION

There are several limitations to our study such as we
only used one games forum, we would have to make
our software more generic to tackle this. The initial
activities in post downloading are manual in nature and
this would have to be repeated for other forums. It
became quite clear early on that the normal lexicon
based approach of assigning every word in English a
score that is either negative or positive is very inefficient
for the this particular application. For example words
such as “scary”, “damage”, “enemy” and “kill” are very
negative scores but in fact these words are generally
expressing satisfaction on the part of the gamers as
they are describing what appeals to them in game play.
The wordclouds were useful in providing keywords to
augment the terms we had devised prior to running the
analysis.

• Hard - refers to difficulty of last level, impossible
for some players to complete the game.

• Video scenes - spoils pace of game

• Time critical missions - complete the mission in 3-5
minutes. (some are very difficult)

• Locked doors - requiring a lockpick.

• Guns - limited in variety.

• Cheating - in multiplayer mode, access to better
weapons.

• Cannot save game - uses ‘safe-houses’ for respawn
should your character die.

The overall response to the game (Dying Light) by the
customers is very positive, bugs and issues having been
sorted by the development team over a short period of
time. Purchase and maintenance of the game is through
the Internet, so downloads of fixes/patches are easy to
obtain.

• Fun - majority of players enjoy the game.

• Ideas - suggestions for various improvements.

• Sequel - keen to have updates on progress on Dying
Light 2.

However, many nodes or words such as the use of
number ‘4’ to represent text speak for ‘for’ and were
uninformative for our purposes.

5. CONCLUSION

Overall, the system was able to detect trends in sentiment
over time as the gaming product became more mature and
bugs/issues were sorted out. However, the usual method of
sentiment analysis does give a rather skewed picture of the

usability issues. The Graph theoretic statistics provided
a better understanding of the usability issues than mere
frequency count of individual words. The bi-grams of
co-occurring words can now be linked together for a
deeper analysis of the issues. As far as we are aware, our
approach is novel for detecting patterns or issues in game
usability.

6. ACKNOWLEDGMENT

The authors would like to thank Julia Silge for providing
her helpful information on tidytext.

REFERENCES

(2017 (accessed March 15th, 2017)). The games
industry in numbers, the Association for UK Interactive
Entertainment.

Bose, S. (2017). RSentiment: A Tool to Extract
Meaningful Insights from Textual Reviews, pp. 259–
268. Springer Singapore.

Feinerer, I., K. Hornik, and D. Meyer (2008). Text mining
infrastructure in r. Journal of Statistical Software 25(1),
1–54.

Hearst, M. (1999). Untangling text data mining. In
Proceedings of ACL ’99: the 37th Annual Meeting
of the Association for Computational Linguistics, pp.
126–136.

Kumar, A. and R. Jai (2015). Sentiment analysis and
feedback evaluation. In in 2015 IEEE 3rd International
Conference on MOOCs, Innovation and Technology in
Education (MITE), pp. 433–436.

Missikoff, M., P. Velardi, and P. Fabriani (2003). Text
mining techniques to automatically enrich a domain
ontology. Applied Intelligence 18, 323–340.

Nahm, U. and R. Mooney (2002). Text mining with
information extraction. In U. Nahm and R. Mooney. Text
Mining with Information Extraction. In Proceedings of
the AAAI 2002 Spring Symposium on Mining Answers
from Texts and Knowledge Bases.

Nielsen, J. (1993). Usability Engineering. Academic
Press, Boston, USA.

R Core Team (2015). R: A Language and Environment for
Statistical Computing. Vienna, Austria: R Foundation
for Statistical Computing.

Romero, C. and S. Ventura (2010). Educational data
mining: a review of the state of the art. IEEE
Transactions on Systems, Man and Cybernetics. Part C
Appl. Rev. 40(6), 601–618.

Wickham, H. (2011). The split-apply-combine strategy
for data analysis. Journal of Statistical Software 40(1),
1–29.

6

	Introduction
	Methods
	Results
	Discussion
	Conclusion
	Acknowledgment

