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Abstract 

Barley contains dietary fibres such as beta-glucan, which are not easily hydrolysable 

by the avian gastrointestinal enzymes but are linked to possible prebiotic properties.  

Prebiotics are non-digestible food ingredients that selectively encourage the growth 

of beneficial (probiotic) bacteria in the animal gut. A major advantage of prebiotics 

is their potential to compensate for the reduction in prophylactic antibiotic use. It is 

suggested that incorporating prebiotics into animal feed as supplements can 

modulate animal guts towards ensuring greater immunity against pathogens.  

The source and physicochemical condition of a prebiotic is key to its functionality. 

In the case of cereals, location on the grain and extraction method of prebiotics plays 

a vital role on its viability. Eight varieties of barley were investigated in this study, 

with grains separated into nine fractions, FR1 – FR9, by pearling, and each fraction 

analysed for its biochemistry and how it affects the growth of a probiotic bacterium 

- Lactobacillus acidophilus in a simulated poultry gut. Results showed an increase 

of beta-glucan from FR1 to FR9. The reverse was the case for protein. FR6 – FR8, 

supported the highest growth of L. acidophilus, with high amounts of beta-glucan. 

Multiple regression analysis, showed a strong correlation between bacterial growth 

patterns observed and beta-glucan in FR1 – FR8. However, FR9 with a high beta-

glucan content, supported a relatively low amount of bacterial growth, which was 

attributed to the presence of unavailable nutrients in this fraction.  

This research contributes information on the precise distribution of potentially 

prebiotic substances in eight barley varieties, with FR6 – FR9 standing out. This 

could form the basis for further research on the prebiotic property of barley in terms 

of prebiotic structure and mode of action, for use in poultry feed supplementation.  
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1.0. Chapter One: General Introduction 

1.1 . Overview  

The poultry industry is an important supplier of nutrients, especially protein, to 

human diet. However, it is plagued with zoonotic microorganisms such as 

Campylobacter and Salmonella which cause food poisoning in humans. These 

microorganisms are naturally occurring and controlling their invasion has been very 

challenging even with the use of prophylactic antibiotics (Choct, 2001). Zoonotic 

microorganisms, aside from the fact that they can cause morbidity and mortality in 

animals, also cause diseases to humans who consume contaminated animal 

products, which could lead to hospitalisation and even death. Food poisoning by 

contaminated chicken products is a very common occurrence. In 2009, 17,000 

people were admitted for food poisoning in England and Wales, 88 of these died. In 

2011, 72,000 laboratory-confirmed cases of Campylobacter poisoning were also 

reported in England, and this number increased to 500,000 cases in 2013, with 60% 

to 80% attributed to chicken sources (Takatsuki, 2013). Farmers have experienced 

huge economic losses due to food poisoning relating to zoonotic microorganisms 

such as Salmonella, Campylobacter and Escherichia coli as well as a results of 

other poultry diseases like bird flu (FAO, 2015). Poultry disease is responsible for 

about 20 percent loss of the gross value of poultry production in developed 

industries. This figure is a lot higher in developing countries (FAO, 2015). 

For decades, antibiotics have been used at sub-therapeutic levels (incorporated in 

animal feed as additives) as a means of preventing pathogenic colonisation of farm 

animals. These antibiotics have improved the health status and growth rates of farm 

animals and have been termed antibiotic growth promoters (AGPs) (Gaggìa et al., 

2010). This prophylactic antibiotic use has been combined with very strict hygiene 
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control at all levels of animal production, to ensure safe animal production, and has 

been considerably effective for the past fifty years (Castanon, 2007). However, 

concerns about the development of antibiotic resistant microorganisms brought 

about a ban on their use in animal breeding in Europe (Choct, 2001). The withdrawal 

of sub-therapeutic antibiotics, however, increases the risk of farm animals being 

colonised by pathogens (Edens, 2003).  The need for a continuous production of 

farm animals safe for consumption has put the animal industry under immense 

pressure to search for alternatives. One area of current research in this regard is 

the provision of more natural alternatives that can be incorporated in animal feed as 

supplements, which can modulate animal guts towards ensuring greater immunity 

against harmful pathogens. The nature of an alternative to antibiotics in animal feed 

is however, very important because it should have a significant and sustainable 

beneficial impact on animal production, be safe for animal and human consumption, 

easy to apply and store, and provide a substantial return on investment (Cheng, 

2014). Examples of these alternatives include prebiotics, probiotics, organic acids 

and enzymes (Choct, 2001). Prebiotics and probiotics are derived from naturally-

occurring sources and their use does not generally lead to any serious 

repercussions. For instance, prebiotics are mostly carbohydrates derived from 

plants such as cereals, onions, Jerusalem artichokes and chicory roots (Hajati and 

Rezaei, 2010).  

This research work is centred on assessing one of these alternatives – prebiotics, 

with barley serving as the possible source, focusing on its effect in poultry feed, in 

terms of microbial proliferation relative to positive poultry health. Prebiotics are ‘non-

digestible food ingredients that beneficially affect the host by selectively stimulating 

the growth and or activity of one or a limited number of bacteria in the colon’ (Gibson 
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and Roberfroid, 1995). In other words, the presence of prebiotics in animal feed, 

impacts positively on animal health by encouraging the growth of ‘probiotics’.  

Probiotics are microorganisms that include the group of lactic acid producing 

bacteria, which are normal constituents of the animal gut flora. They can also be 

intentionally introduced into the gut, as they are helpful in maintaining an appropriate 

balance of the intestinal microbiota. They ferment a range of feedstuff to produce 

short chain fatty acids, which in turn prevent the proliferation of harmful bacteria in 

the gut by lowering the gut pH (Choct, 2001). They are officially defined as ‘live 

microorganisms which when administered in adequate amounts, confer a health 

benefit on the host’ (Gaggìa et al., 2010) Examples of the most common probiotics 

include Lactobacillus and Bifidobacterium; others include organisms of the genus 

Enterococcus, Bacillus and Saccharomyces. Their presence in poultry gut has been 

linked with several health benefits such as inhibiting the growth of pathogens 

(Abudabos et al., 2015). These organisms have a long history of safe use and some 

of such organisms have been officially approved by the European food standard 

agency as probiotics (EFSA-ECDC, 2009). This research will focus on how 

prebiotics from barley can positively affect the growth of a probiotic species of 

Lactobacillus - L. acidophilus.  

As mentioned earlier, prebiotics are mostly carbohydrates and some proven 

examples include fructo-oligosaccharides (FOS), galacto-oligosaccharides (GOS), 

transgalacto-oligosaccharides (TOS) and lactulose (Gaggìa et al., 2010), most of 

which are available commercially (Fahey et al., 2011). In poultry birds, diets 

containing FOS has shown positive effects in body weight gain (Yang et al., 2008). 

The list of potential prebiotics is, however, very large and current research seeks to 

prove their value. Potential prebiotics of interest in this research, include beta-glucan 
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and resistant starch obtained from barley. Beta-glucan and resistant starch belong 

to a class of food substances known as dietary fibre (DF). In nutritional terms, DF 

has been defined as any polysaccharide that reaches the hindgut undigested, which 

is a primary property of prebiotic substances. Dietary fibres have also been defined 

as the edible part of plants or analogous carbohydrates, which resist hydrolysis by 

alimentary tract enzymes (Charalampopoulos et al., 2002). DF are fermented by 

probiotic gut microbes to produce short chain fatty acids (SCFA), such as butyrate, 

acetate, lactate, propionate, valerate and isovalerate. A study by Tsukahara and 

Ushida (2000) reported a higher SCFA production in birds fed plant based diets, 

compared to those fed animal based diets due to the fact that the cecal microbiota 

of birds are not adapted to animal base diets. DF have been linked to various health 

benefits in poultry and have also been shown to confer some anti-nutritive effects 

when included in poultry diets. Both effects are dependant on dosage and 

administration. Dietary fibre in barley is classified either as water soluble, examples 

of which are beta-glucan and arabinoxylan; or as water insoluble such as lignin, 

cellulose and hemicellulose (Charalampopoulos et al., 2002). The inclusion of 

dietary fibre in poultry diets from various sources have been reported to modify the 

composition and quality of gut microflora population, both in-vitro and in-vivo 

(Dunkley et al., 2007; Jiménez-Moreno et al., 2011). 

In general, the consumption of barley has been described as beneficial to animal 

health. Feeding whole grain barley to poultry is a common management practice in 

Europe, Canada and Australia (Biggs et al., 2007), and it has been noted that 

feeding whole barley to male chicks improved feed digestibility. Taylor and Jones 

(2004) reported that the inclusion of 20% whole barley in feed mix before pelleting 

led to an overall better performance and alteration in gut structure, showing a 
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smaller proventriculus and a larger gizzard. The gizzard governs many physiological 

aspects of the gastrointestinal tract (GIT) in poultry, including synchronization of 

digestion and absorption processes (Svihus, 2011). A healthy gizzard therefore 

ensures feed particle size reduction, excellent feed flow, gastroduodenal refluxes 

and enhanced digestive secretions.  More importantly, however, this research is 

concerned with the prebiotic property barley can confer on poultry feed in terms of 

proliferation of poultry gut microbes. Barley grains and germinated barley feed stuff 

have been cited as a possible sources of prebiotics (Patterson and Burkholder, 

2003).  

 

The health of poultry is most commonly directly proportional to the state of its 

gastrointestinal tract (GIT). The GIT is the organ with the largest surface area and 

metabolic capacity in poultry, just like other animals (Brouns et al., 2002). The gut 

serves as a reservoir of various microorganisms which impacts on poultry health 

and can pose significant health risks to humans who consume poultry birds. A 

healthy gut depends on a delicate balance between diet, mucosa (digestive 

epithelium and overlying mucus layer), and the microbiota. These three interact in 

a dynamic equilibrium that ensures an efficient functioning of the digestive system 

(Yegani and Korver, 2008). Poultry feed serves as a source of nutrient to the bird, 

as well as to the gut microorganisms. Provision of balanced feed formulations is 

therefore key to the control of microorganisms in poultry, as well as in the 

development of the gastrointestinal tract. Poultry chicks show slower intestinal 

development with delayed access to feed compared to those fed immediately after 

hatching (Potturi et al., 2005). In the post hatch period, intake of feed triggers rapid 

development of the GIT, with the small intestine developing more rapidly than the 
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rest of the body mass. During this period, the chick transits from utilizing energy 

from the yolk to the usage of exogenous carbohydrate feed (Noy and Sklan, 1999). 

The digestive tract of poultry birds is short, compared to other domestic animals. It 

therefore takes a relatively short time for the feed to pass through the digestive tract, 

hence, a short time is available for nutrients to be absorbed. To compensate for this, 

birds require easily digestible nutrients in their diets. Poultry farmers sometimes 

administer exogenous nutrients such as arginine and β-hydroxy-β-methyl-butyrate 

into the amniotic fluid at days 17 and 18 of incubation to enhance the development 

of intestinal villi and the chick’s ability and capacity to digest disaccharides (Yegani 

and Korver, 2008).The frequency and type of feed is therefore critical for the 

morphological, biochemical and molecular changes of the intestine (Geyra et al., 

2001).  

Poultry feed these days are no longer just intended to satisfy hunger but to provide 

required nutrients in the right amount, to improve the physical of birds, and also 

prevent nutrition related diseases (Roberfroid, 2000). In the past, there was the 

tendency for farmers to overformulate diets due to insufficient information on nutrient 

requirement .This practise is however no longer acceptable because it is wasteful 

and can cause pollution.  

Poultry feed, like most animal feed, is tending towards functional food these days. 

Mark-Herbert (2004) defined functional foods as ‘food products fortified with special 

constituents that possess advantageous physiological effects that improve general 

body condition and decrease the risk of some diseases’. There are however 

conflicting arguments for what qualifies as a functional food. A study by Spence 

(2006), said that probiotics and prebiotics in poultry feed can be classified or labelled 

as ‘enriched products’. Other studies have classified cereals as functional foods with 
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prebiotic properties (Vitaglione et al., 2008). This has been attributed to the 

relationship between the consumption of cereal whole grain and the reduced risk of 

many diseases. ‘Functional cereals’ have also been defined as cereals containing 

high amounts of fibres such as beta-glucan, arabinoxylan, oligosaccharides and 

resistant starch (Bigliardi and Galati, 2013).  

 In Europe, the main cereals used in poultry diet are wheat and barley. Wheat and 

barley are both lower in feeding value (about 70-80%) than maize which is typically 

used in the United states (Jacob and Pescatore, 2012). The research reported in 

this project, however, focuses on the use of barley in poultry feed as a possible 

source of prebiotics, not as a direct feed. On a general note, the inclusion of barley 

in poultry diet has been reported to be both beneficial and antinutritive, due to the 

presence of dietary fibres which are not hydrolyzable by the avian gastrointestinal 

enzymes. An important member of the dietary fibre family is beta-glucan. Among all 

cereal grains, barley and oat contain the highest levels of beta glucan. It is usually 

concentrated in the inner aleurone and subaleurone cell wall layer of barley (Arzu 

Baman, 1999). The antinutritive property of barley does not make it an excellent 

choice for poultry feed, however, its use as a feed supplement can confer some 

health benefits. This is because poultry have a certain need for dietary fibre and 

when the diet does not provide minimal amount of this nutrient, birds can show 

abnormal behaviour, including litter consumption and feather pecking (Hetland et 

al., 2005). The level of fibre required for optimal performance depends on the source 

of fibre, age of bird and the trait being studied (Mateos et al., 2012).  Broilers 

particularly require a minimal amount of fibre in their diet to optimize litter quality, 

feed intake, nutrient digestibility and production performance (Hetland et al., 2003). 

Inclusion of barley in chicken feed has  been studied extensively with results 
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showing various effects based on levels of inclusion, method of inclusion and the 

barley cultivar used (Jacob and Pescatore, 2014).  

 

1.2. Barley 

Barley is a cereal that has been grown mainly for feed and malting purposes for 

decades and varieties that have not met the malting standards are also listed as 

feed grade. Currently, barley  is also grown for animal feed and other uses such as 

ethanol production, due to the fact that it can be grown cheaply and easily. 

Compared to maize and wheat, barley has a higher photosynthetic activity, thus 

reducing the level of nitrogen fertlizer required for its production (Karley et al., 2011). 

It is a short season and early maturing crop adapted to a wide variety of climates. 

The deep root system of barley ensures nutrients and water uptake even in very dry 

climates (Jacob and Pescatore, 2014). Its has also been reported that barley 

distillers dried grain with solubles (DDGS) contain higher amounts of proteins and 

lysine, making it a better source of DDGS than maize (Moreau et al., 2011).  

Varieties of barley are classified in several ways, based on seasons, as winter or 

spring barley, based on number of seeds on stalk, as two-rowed or six-rowed barley; 

and based on presence of hull, as hull or hull-less varieties (Jadhav et al., 1998). 

The nutritional composition of barley is, usually, dependent on the geographical 

location, growing conditions, cultivars, condition of harvest and storage. These 

factors have lead to varied reports on the nutritional compostion of barley. However, 

on a general note, barley grain has been reported to be made up of about 60 % 

starch and 22 % fibre (Knudsen, 1997). Other components include non starch 

polysaccharides, proteins and lipids. The lipid content of barley is about 2 to 3 %, 
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mostly located in the germ (Åman et al., 1985). Protein amounts depend largely on 

the cultivar. Six-row cultivars have higher amounts of about 13.5%, compared to  

about 11% of two row cultivars (Jacob and Pescatore, 2012). Other substances of 

importances in barley as mentioned earlier, are the non starch polysaccharides also 

known as DF.  

Figure 1.1 below shows the different layers of the barley kernel. The barley kernel 

is divided into the husk, pericarp, testa and aleurone layers, which make up about 

14% of the kernel; and the germ and endosperm regions, which make up the 

remaining 86%, with the endosperm comprising about 80-85% of the entire kernel. 

As shown in the figure below, the chemical components of barley are 

heterogeneously distributed across the grain. Currently the different layers of a 

barley grain can be fractionated by processing technologies such as milling, sieving 

and debranning or pearling (Charalampopoulos et al., 2002) and each fraction 

studied independently.   
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Figure 1.1: Layers of a barley grain 
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In this research, eight varieties of two-rowed barley (Pearl, Propino, Concerto, 

Cassata, Maris otter, Munton, Chevalier and Tipple), were analysed for their 

chemical content, and how three out of eight varieties affect the growth of 

Lactobacillus acidophilus in a simulated poultry gut in-vitro in relation to prebiotic 

properties. Whole grains of these varieties were systematically fractionated by 

pearling into nine fractions (FR1 - FR9) and each fraction analysed biochemically 

for the presence of possible prebiotic substances. This method of fractionation was 

employed because the chemical components in barley grains, as mentioned ealier, 

are heterogeneously distributed, hence the need of a proper mapping techinique to 

pin point fractions of the grain containing prebiotic properties of interest. The effect 

of fractions from three varieties obtained on the growth of Lactobacillus acidophilus 

(a probiotic microorganism) was monitored thereafter to determine which fractions 

of the grain encouraged the growth of Lactobacillus acidophilus. 

Lactobacillus acidophilus is an internationally certified probiotic (Hill et al., 2014) 

commonly found in poultry birds. Studies have shown that its growth is supported 

by prebiotics and dietary fibres (Charalampopoulos et al., 2002). However, it shows 

the lowest growth rates compared with other Lactobacillus, as a result, it is not 

commonly used in growth studies (Charalampopoulos et al., 2002; Lee and 

Salminen, 1995). The growth of Lactobacillus acidophilus in this study will therefore 

be of interest due to its difficult growth requirements, as fractions that support its 

growth will possess the essential nutrients and excellent growth conditions required 

by Lactobacillus acidophilus, which could then be related to other species of 

Lactobacillus. 
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1.3.  Research Questions: 

1. How relevant are the dietary components of barley grain to its ability to 

affect poultry health positively by encouraging the growth of probiotics when 

used as a feed supplement? 

2. What is the prebiotic potential of barley varieties (with specific emphasis 

on grain fractions) and how do they affect the growth of Lactobacillus 

acidophilus (a probiotic gut microbe) in a simulated poultry gut? 

 

1.4. Aims 

1. Determination of beta-glucan, resistant starch, sugar, protein and FAN 

content in nine fractions of eight barley varieties. This was done to determine 

if different fractions vary in their concentration of these components across 

the barley grain. 

2. Determination of the effect of barley fraction on the growth of Lactobacillus 

acidophilus in a simulated poultry gut. This was done with the aim of 

determining which fraction (FR1 – FR9) encourages the best bacterial growth 

and how this relates to its chemical composition.  

2.1. The method used in point ‘2’ above will separate chemical components 

(nutrients) in barley fraction extracts that are easily digested from those 

that are not, using a model poultry digestive system. This is because 

undigested chemical compounds in feed items could be possibly 

prebiotic, hence the aim to determine how these undigested compounds 

affect the growth of the test probiotic bacteria. 
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3. Determination of growth pattern of the test bacteria in extracts containing 

both digested and undigested nutrients for comparison with growth patterns 

obtained from barley fractions containing only undigested nutrients, with the 

aim of determining prebiotic effects. 

4. Correlation of bacterial growth patterns of interest with the chemical 

compositions of growth media (extracts) with the aim of determining possible 

causes of growth patterns. 
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2.0.  Chapter Two: Literature Review 

2.1. The Poultry Gut 

The poultry gut is made of five distinct regions – the crop, proventriculus, gizzard, 

small intestine (duodenum, jejunum and ileum) and the large intestine (caecum 

colon and rectum) Figure 2.1. These regions contain a diverse community of 

bacteria, fungi, protozoa and viruses. Among all the regions of the gastrointestinal 

tract, the duodenum has the lowest population of bacteria and the caecum the 

highest. The caecum is an organ of interest in this research. This specialized organ 

is located at a blind end between the small intestine and the large intestine. It 

provides a nutrient rich habitat for millions of bacteria, thus providing a site for 

bacterial fermentation of undigested food particles, which may be prebiotic in nature. 

Most researchers suggest that the caeca is the primary site of fermentation in poultry 

GIT (Jamroz et al., 2002; Marounek et al., 2005). The shape, size and capacity of 

this organ varies amongst poultry birds. For instance, grouse species have a 

caecum that amounts to about 24% of the body weight, while chicken caeca makes 

only 1% of the body weight (Redig, 1989). 

Over 200 different bacteria species have been isolated from the poultry gut, most of 

which are strict anaerobes (Józefiak et al., 2004).  Microbes of poultry GIT can be 

generally divided into potentially pathogenic or beneficial. Pathogenic bacteria are 

usually involved in intestinal infection, putrefaction and toxin formation, while 

beneficial organisms are involved in enzyme production, stimulation of the immune 

system and inhibition of the growth of harmful microbes (Jeurissen et al., 2002). The 

poultry microbiota, is therefore presumed to play a multidimensional role including 

digestion, metabolism, pathogen exclusion, immune stimulation and vitamin 
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synthesis (Mulder et al., 1997; Salminen et al., 1998), such that a disruption of the 

system may affect the health of the bird negatively. 

Digestion in chickens starts in the mouth and oesophagus (figure 2.1), with the 

secretion of amylase by the salivary gland, which breaks down complex 

carbohydrates (Jacob and Pescator, 2013). However, very little digestion takes 

place here, due to the minute amount of enzyme secreted and the low retention 

time. The digesta is then moved to the crop, where it is stored for a while and 

softened by microbial enzymes. The crop is dominated by Lactobacilli and serves 

as the first major defence against pathogens. Lactobacillus in the crop reduces the 

passage of pathogens further down the digestive tract (Classen et al., 2016). 

Digestion therefore begins primarily in the proventriculus, which is also known as 

the true stomach. Hydrochloric acid and pepsin from the intestinal wall are added at 

this point to the digesta to lower the pH and initiate protein digestion. The digesta 

moves on to the gizzard for proper grinding and mixing, and then to the small 

intestine where the final enzyme digestion takes place with the addition of pancreatic 

juice, bile and bicarbonate. Pancreatic juice containing pepsin further breaks down 

proteins, while bicarbonate counters the effect of the hydrochloric acid from earlier 

stages of digestion thus increasing the digesta pH to a strong alkaline. Lipase from 

the pancreas, is responsible for lipid digestion. The digestion process to this point 

takes about two hours and is almost complete. Nutrients are ready to be absorbed, 

while undigested food passes on to the caeca where they are digested by resident 

bacteria, which could be probiotic or pathogenic. Prebiotics, will be selectively 

digested by probiotics while non prebiotic undigested nutrients will be digested by 

either probiotic or pathogenic microbes. The entire digestion process takes about 

six to eight hours (Jacob and Pescator, 2013). 
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Figure 2.1: The poultry gastrointestinal tract.                       
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The alimentary tract of a newly hatched chick is usually sterile. In poultry, the 

absence of a normal flora in the intestine is considered a major factor in the 

susceptibility of chicks to bacterial infections. Newly hatched chicks rapidly gain 

microbes from their parents and the surrounding environment. The health of the 

parent bird and type of organisms present in the environment is very vital to the 

health and survival of the chick. If chicks gain beneficial bacteria, they form a 

protective barrier, which lines the gut, thus preventing the growth of other harmful 

bacteria. This principle is commonly known as competitive exclusion. The theory 

suggests that the commensal microbes will dominate attachment sites on the gut 

cells, as a result, reducing the opportunity for attachment and colonisation by 

pathogens (Edens, 2003). Another proposed mechanism is that the intestinal 

microbiota is able to secrete compounds, such as volatile fatty acids, organic acids 

and antimicrobial compounds known as bacteriocins that either inhibit the growth of 

pathogens or make the environment unsuitable for them (Edens, 2003). Some of 

the microorganisms gained by chicks in the early days could, however be potentially 

pathogenic to poultry. For example, Clostridium, which causes necrotic enteritis, are 

usually isolated from young birds. Necrotic enteritis, is quite common in poultry 

production regions of the world (McDevitt et al., 2006). Toxins produced by the 

bacterium are responsible for intestinal necrotic enteritis. Clostridium perfrigens is 

widespread and can contaminate the hatchery, growing and breeder houses as well 

as processing plants (Craven et al., 2003). The lesions of necrotic enteritis are 

usually very serious and destructive to the poultry gut (Long et al., 1974). 

Clostridium perfrigens as mentioned earlier, is considered as part of the normal 

poultry gut microbiota.  Other predisposing factors must therefore be present to 

produce clinical necrotic enteritis. Damage to the Intestinal mucosal caused by the 
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parasitic coccidiosis in poultry is usually considered as one of the most important 

predisposing factors (McDevitt et al., 2006). Salmonella, Campylobacter and 

Escherichia coli are also regularly isolated from healthy older birds. These bacteria, 

however, do not always produce intestinal disturbances due to a healthy balance of 

the intestinal microbiota. In fact, intestinal disorders in poultry are usually caused by 

disturbances resulting from antibiotic treatment, hence, the need for more natural 

disease prevention feed supplements. Apajalahti, (2004), have shown that one day 

after hatching, bacterial densities in the ileum and caecum of broiler chicks reach 

108 and 109 cells per gram of digesta respectively. The number of microbes reach 

109 per gram of ileal digesta and 1011 per gram of caeca digesta during the first 

three days post hatch and remain relatively stable for the following 30 days. 

A healthy gut consists predominantly of Enterobacteriaceae, Enterococcus and 

Lactobacillus in the first few days of life (Van der Wielen et al., 2001). Lactobacillus 

species appear in significant amounts at four days of life, up to 108 – 1010/ g 

(Józefiak et al., 2004). Bacteriodes and Eubacterium are established after two 

weeks (Józefiak et al., 2004). Lactobacillus species dominant in poultry birds are 

Lactobacillus acidophilus, Lactobacillus salivarium and Lactobacillus fermentum 

which are all certified probiotic organisms (Józefiak et al., 2004). During the first 2 

to 4 days post hatch, Streptococcus and Enterobacteriaceae colonise the small 

intestine and caecum. In the caeca of juvenile birds, the bacteria population is 

different from that found in the small intestine. Actually, as early as three days of 

age the number of Enterobacteriaceae and Enterococci in the caeca start to decline 

probably due to the increase in volatile fatty acids (acetate, butyrate and 

propionate), produced by Lactobacillus and other probiotics. A study by Amit-

romach et al, (2004) showed that analysis of the microbial luminal contents of 
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different small intestine sites examined indicated that among six bacteria species 

examined, only Lactobacillus was consistently detected in all intestinal regions. 

Poultry diet plays a key role in the proliferation of beneficial and pathogenic 

microorganisms. Substances in poultry diet that serve as energy sources for 

beneficial probiotic bacteria, are dietary fibres from plant sources. Examples as 

mentioned earlier include resistant starch and beta-glucan.  

Traditionally, in the UK, the definition of dietary fibre includes only non-starch 

polysaccharides like beta-glucan and lignin, and did not include resistant starch 

(Sharma et al., 2008). However, currently, naturally occurring resistant starch, such 

as found in whole grains, and other plants and food items, are considered dietary 

fibres in the UK. Also resistant starches added to foods for health benefits are 

classified as functional fibre under the American Association of Cereal Chemists, 

(AACC) and the National Academy of sciences (NAS) definitions, 2002 (Sajilata et 

al., 2006). In the early stages of prebiotic research, resistant starch, identified as 

retrograded starch was described as the fraction of starch that could not be 

hydrolysed without prior chemical dispersion (Englyst and Englyst, 2005). It is often 

regarded as colonic food, instead of a prebiotic due to the fact that it is not fermented 

solely by probiotic bacteria (Ogueke et al., 2010). Resistant starch positively 

influences the functioning of the digestive tract and microbiota, just like other 

prebiotics, though its fermentation rate is slower than other prebiotics.  Overall, it 

was argued that since resistant starch behaves physiologically as a fibre, it should 

be retained in the total dietary fibre assay (Haralampu, 2000). Resistant starch has  

also been described as starches which are not broken down by digestive enzymes 

for a variety of reasons. Depending on the reason, they are classified as RS1, RS2, 

RS3 and RS4. RS1 results due to physical inaccessiblity of starch granules to 
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digestive enzymes while RS2 are  resistant starches which results due to insufficient 

preprocessing that produces ungelatinized resistant granules. RS3 are obtained 

when starchy foods are cooked and allowed to cool while RS4 result due to chemical 

modification of starchy substances in food items. The type of resistant starch 

obtained therefore determines its fermentative property by gut microbes. 

 

 

Figure 2.2: Barley beta-glucan. 

 

Beta-glucans are linear or branched polysaccharides of D-glucose monomers linked 

together by beta-glycosidic bonds and has been termed as possible prebiotic 

substances. Cereal beta-glucans are usually linear (figure 2.2), while those from 

bacterial origins are usually highly branched (Vannucci et al, 2013). Generally, beta-

glucans have immuno modulating effects, however, its source, determines the 

degree of its effect (Bohn and BeMiller, 1995; Eccles, 2005).  It has been reported 

that beta-glucan having branched chains are more effective than those with a linear 

structure (Bohn and BeMiller, 1995). Both beta-glucan and resistant starch are 

fermented by probiotics to produce SCFA. However, the profiles of SCFA produced 

are slightly different. Resistant starch is known to produce large amounts of 

butyrates, which is the prime energy substrate of the colonocyte, more than any 
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other prebiotic (Brouns et al., 2002). Van der Wielan et al (2001) demonstrated the 

production of SCFA by the fermentation activities of poultry cecal probiotics. 

SCFA serve as additional souces of energy to poultry and are linked to low gut pH 

which inhibits the growth of pathogenic micro organisms. Insoluble dietary fibre also 

has an abrasive action as it passes along the GIT, causing endogenous losses of 

mucin and thus modifying the composition of commensal and pathogenic bacteria 

capable of adhering to the mucus layer (Montagne et al., 2003a), (Apajalahti, 2004). 

SCFA production in poultry gut have also been reported to have a toxic effect on 

Enterobacteriaceae and to cause a 50-80% reduction in Salmonella (McHan and 

Shotts, 1993). Apajalahti (2004) reported that barley based diets increased the 

number of probiotics such as Lactobacillus while corn and sorghum based diets 

increased Enterococcus in broiler chicken. Oat based diets were reported to 

encourage the growth of Escherichia coli and Lactococcus, while rye based diets 

increased the number of Streptococcus in poultry gut. 

Several studies have reported that dietary fibres have a significant effect on poultry 

gut anatomy, development and function. For instance, it has been widely reported 

that the ingestion of dietary fiber has lead to an increase in size and length of the 

digestive organ of poultry birds (Iji et al., 2001). A report by Steven and Hume (1998) 

showed that high amounts of plant fibre and chitin in poultry diet resulted in birds 

with relatively larger digestive tracts. In his study, he measured the relative length 

of intestinal segments in 644 specimens, representing 24 orders, 51 families, 124 

genera and 166 species of birds and concluded that the most developed caeca were 

found in granivores and species whose diet contained high levels of plant fibre or 

chitin. Duke (1984) also reported from a study that high-fibre fed turkey had a 25 % 

increase in cecal size. The increase of the digestive organ often occurs as a result 
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of the viscocity created by dietary fibre in the poultry gut. Increased digesta viscosity 

in the small intestine, leads to high rates of villus cell losses (atrophy) which results 

in increased crypt-cell production. Increased crypt depth further leads to increase in 

size of the digestive organ. Mixed linked beta-glucan, obtained from barley and oat, 

have shown this effect largely in poultry (Bedford and Classen, 1993; Montagne et 

al., 2003a). The effect of the importance of the viscous property of prebiotics have 

been proven in several studied where changes in the morphology of the small 

intestine in poultry have been observed, when poultry birds are feed with diets 

supplemented with water soluble synthetic viscous polysaccharides (Klis and 

Voorst, 1993; Smits et al., 1998). Increase in size of the digestive organ, has 

beneficial effects on poultry health in that it provides a larger surface area, thus 

ensuring enhanced nutrient absorption. Villus height and crypt depth correlates 

positively with empty body-weight gain and dry matter intake (Montagne et al., 

2003a). Another advantage of dietary fiber in poultry diet, is the positive effect it has 

on gizzard development and functionality including enhancement of digestive 

secretions, such as hydrochrolic acid, bile acids and other endogenous enzymes. 

The synchronization of the entire digestive and absorption process is controlled by 

the gizzard (Hetland and Svihus, 2001; Svihus, 2011). 

 

2.2. The Poultry Industry  

Poultry products contribute greatly to human nutrition while providing employment 

and income for commercial and backyard farmers. Traditionally, poultry birds were 

raised in small-scaled backyard farms with household waste, materials from the 

environment and crop residues serving as feed. This method developed into semi 

commercial production systems, housing about 50 - 500 birds. Birds in this system 
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were also fed farm mixings of locally available items (Ravindran, 2013). In both 

methods, there are usually cases of disease outbreak due to poor hygiene and lack 

of information on good cultural practices. The poultry industry has however grown 

to be a multifaceted production system, with an expanded scope and size of farming 

practises. Currently, there exist large commercial farms that operate highly 

mechanised integrated production units, which cover breeding flock, hatcheries, 

feed mills, disease controlled production units, slaughtering and packaging plants. 

Also included in some production lines, are distribution centres. A vast knowledge 

on the interdependence of these units has made poultry farming very successful in 

the world today (Ravindran, 2013).  Also available are constant updates on modern 

methods of hygienic cultural practises, feed requirements as well as disease control 

measures. 

The poultry industry is one of the largest in livestock production, producing meat 

and eggs for millions of people both in developed and developing countries. About 

58 billion chickens are slaughtered for meat annually in the world (FAO, 2013). 

Poultry products are a rich source of amino acids like lysine, threonine, methionine 

and cysteine. They also serve as a source of lutein which functions in the prevention 

of cataract which is a major cause of blindness in developing countries (Farrell, 

2013). Poultry meat has also been reported to be the cheapest of all livestock and 

is seen as a healthier option compared to red meat (Farrell, 2013) because of the 

following reasons. Fat from chicken is made of desirable mono-saturated fat and is 

a good source of essential polyunsaturated fatty acids (PUFAs) like omega (n) – 3 

fatty acids, with just about one third of its entire meat, made of less healthy saturated 

fat. It also does not contain trans-fat which contributes largely to coronary heart 

disease. Poultry meat also supplies vitamins and minerals. 100 g of chicken meat 
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can supply the recommended dietary intake (RDIs) of niacin for an adult, and also, 

a hen’s egg contains about 53µg iodine/100g edible portion, which is approximately 

33 percent of the RDI for an adult (Farrell, 2013). 

Poultry products are a good source of high quality protein for low-income earners 

whose diets are typically high in carbohydrates but low in protein. In 2012, poultry 

meat production was recorded as 103.5 million tonnes globally (FAO, 2013). This 

figure was higher than bovine meat (beef and veal) which recorded 67.5 million 

tonnes. The industry saw a steady growth with an annual average of 4 percent 

globally between 2005 and 2012 (FAO, 2013), contributing its fair share to global 

meat production. The poultry industry is contributing millions of dollars to various 

countries economy, suppling considerably healthy products. It is expected that 

global meat consumption per person will reach 36.3kg by 2023, with poultry meat 

contributing 72 percent which is 2.4kg more than the average in 2012 (FAO, 2013). 

Also, the average age for meat chicken to reach the market weight of 2 kg has 

steadily decreased from 63 days in 1976 to 35 days in 2009 (Ravindran et al., 2009). 

The steady growth of the poultry industry can be attributed to demand for cheaper 

and healthier meat, advances in breeding techniques and genetic progress in 

poultry strains for meat and egg production. Also in recent times, the introduction of 

mechanized poultry production, integrated poultry production and a better 

knowledge on feed requirement in the line of functional feed has added more value 

to the poultry industry. 

2.3. Poultry Feed 

Poultry feed represents the most important and largest expenditure in poultry 

production, covering about 70 % of total production cost (Ravindran, 2013). Getting 
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feed formulation right to a large extent determines profit margins in poultry 

production. The principal role of feed is to provide nutrients that birds will digest and 

utilize for growth and development. However, with increased demand for healthier 

birds and consumer satisfaction, poultry feed is no longer just intended to satisfy 

hunger and growth requirements but  also to improve the health status of birds while 

preventing nutrition related diseases (Roberfroid, 2000). Without the right feed 

formulation therefore, poultry will underperform, causing problems for farmers and 

consumers alike. Figure 2.2 below describes the essential components required for 

the efficient functioning of the poultry gut.  

 

 

 

Figure 2.3: Schematic representation of the gut ecosystem (Montagne et al., 2003b). 

Each element interacts with the other in order to maintain a dynamic equilibrium, 

ensuring functioning of the digestive system and lack of pathology, a state defined 

as gut health. 
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Poultry farmers therefore always seek the best balanced diet formulation at the least 

cost while maintaining the standards set by National Research Council (NRC). The 

NRC is the operational arm of the National Academy of Sciences (NAS), established 

in 1863. The NRC is the benchmark for research, judicial and regulatory information 

concerning poultry feed requirements. The basic feed requirements for poultry were 

first published by the NRC in 1944 and have been reviewed frequently since then 

(NRC, 1994). Information from the NRC on animal feed is used globally as gold 

standard for regulatory purposes. Figures published were derived from a 

compilation of an extensive literature review on experimentally determined levels of 

nutrients requirements for poultry feed by various researches and studies published 

over the years prior to its first publication. The poultry nutrient requirements 

published by NRC in 1994 is currently viewed as the minimal nutrient requirement 

for poultry and they include carbohydrates, proteins/amino acids, fats, vitamins, 

minerals, water and non-nutritive feed additives  (NRC, 1994). All of which will 

supply energy and building blocks for growth and egg production, as well as prevent 

deficiency symptoms (Applegate and Angel, 2014). Figures published by NRC have 

also evolved further over the years and now cover a wider spectrum including 

nutrient requirement per unit of diet, return on investment on nutrient used, disease 

prevention and nutrient responses (Applegate and Angel, 2014).  

Lessons and Summers, (2001) defined poultry nutrient requirement as ‘the minimum 

amount of nutrient required to produce the best weight gain, feed efficiency and the 

lack of any signs of nutritional deficiency’. With a wide range of ingredients available, 

extensive mathematical calculations are now required to ensure poultry feed meets 

all health and nutrient requirement standards (see chapter 6). In 2010, the USDA in 

a bid to build a systematic integrated approach to better animal research and 
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development launched the National Animal Research Support (NARS) project. One 

of its key objectives was to focus on developing and improving technologies which 

will provide software platforms with feed ingredients data bases and modelling 

information for feed compositions which will enable farmers calculate feed 

requirements mathematically (Applegate and Angel, 2014) for the best production 

results. The scope of poultry nutrition has increased to include ideas from biology, 

immunology, microbiology, molecular biology and biotechnology. The focus is also 

now on ensuring production of healthy birds with highly efficient feed conversion 

rates. It has been observed that the presence of indigestible nutrients are the major 

cause of inefficient feed conversions rates (Ravindran and Son, 2011). These 

indigestible nutrients have however, been found to possess some health benefits 

(Gaggìa et al., 2010). Poultry have high metabolic rates, hence, have high nutritional 

needs. It is worthy to note that several factors influence minimum nutrient needs of 

poultry birds. These include genetics, sex, variety and stage of production as well 

as environmental factors. This has led to the current concept of ‘nutrient responses’ 

in addition to nutrient requirements (Applegate and Angel, 2014). Poultry feed is 

therefore currently modelled on responses based on desired end products. This 

approach is gradually replacing static requirements presented in tabular forms. For 

instance, research has shown that chicken meat and eggs can be enriched further 

with essential nutrients unlike any other type of meat. A principle where very small 

changes in poultry diet constituents, in terms of additives, could show huge positive 

differences in poultry health, meat and egg qualities. Farmers have keyed into this 

principle and are producing poultry feed tailored to specific needs. A study by Yu et 

al, (2008) showed that the selenium content of chicken breast meat increased from 

8.6 µg to 41 µg/100 g by the addition of 0.24 mg organic selenium per kilogram of 
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feed (Yu et al 2008). Selenium is a powerful anti-oxidant that plays a major role in 

the prevention of cancer. Another study by Surai, (2000), showed that 

supplementing the diet of laying birds with 0.4 mg organic selenium per kilogram of 

feed increased selenium content of 100 g edible egg from 20 µg to about 60 µg. The 

RDI of selenium is 55 µg for an adult (Farrell, 2013). Also, inexpensive 

supplementation of poultry diet with 5 mg potassium iodide increased iodine content 

of a 60 g egg from 26 µg to 88 µg, which is more than 50% of an adults RDI (Röttger 

et al., 2011). About one billion people suffer from iodine deficiency – a major cause 

of goitre and mental retardation (Farrell, 2013). In the light of the above, poultry feed 

are being developed to test the effect of prebiotics and probiotics substances with 

desirable qualities on poultry health and products, despite the problem of variation 

of nutrient composition and formulation versus nutrient delivered to birds. These 

new feed models are designed from already existing basic feed requirements, which 

are then developed and analysed as alternative feeding regimes under existing 

husbandry condition and are used as a means of comparing potential versus actual 

performance (Applegate and Angel, 2014). Current feed models also have various 

challenges because of differences in individual responses with a particular 

environment and feed management system.  

 

2.3.1. Carbohydrates  

The major source of energy for poultry is dietary carbohydrates mostly in the form 

of starch, which is derived mostly from maize in the United States. Farmers in the 

United States are the world’s largest producers of poultry.  Others sources of energy 

include wheat, sorghum and barley, which are common in other parts of the world 

(Moran, 1985a). Maize is used commonly as an energy source because of its high 
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digestibility and palatability, with the added advantage of being free of anti-nutritive 

factors. In recent times, a lot of maize has been diverted for use in the biofuel 

industry thus cutting the supply of maize to the poultry industry. However, by 

products from the biofuel industries are recycled back to the poultry industry as feed. 

For example, distillers dried grains with soluble, DDGS, are recycled back as a good 

source of amino acids (Ravindran, 2013). Energy requirement is a very important 

factor to consider in poultry feed formulation. This is because it determines largely 

the feed cost. The appropriate amount of energy ensures the lowest feed cost per 

unit of poultry product (NRC, 1994). Most poultry birds eat just enough to meet their 

energy needs hence energy concentration serves as a basis for setting other 

nutrient requirements (Leeson and Summers, 2001). Some studies have shown that 

feed intake may not necessarily be proportional to changes in energy concentration 

(Leeson and Summers, 2001; Thomas et al., 1961). Energy in poultry feed is 

classified as metabolizable energy (AME) which is the amount of energy available 

in the feed for use by birds to meet their daily metabolic needs. Energy needs, unlike 

most other nutrient requirements, vary with amount of physical activity and 

environmental temperature. The amount of energy in poultry feed might also affects 

the intake of other nutrients because high-energy content usually decreases feed 

intake (NRC, 1994).  

Other sources of energy such as barley contain high amounts of polysaccharides 

and oligosaccharides, most of which are not easily digested by poultry hence, are 

not classified as good energy sources and therefore used commonly with enzymes 

by farmers. Some of these polysaccharides have been linked to some negative 

effects in the digestive process. For instance, beta-glucan, a non-starch 

polysaccharide in barley increases the viscosity of the digesta, which further 
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interferes with nutrient utilization (Bedford et al., 1991). However these 

polysaccharides have been termed possible prebiotics, and have been linked to 

encouraging the growth of probiotic bacteria in poultry gut (Bigliardi and Galati, 

2013). The poor performance of growing birds fed barley based diets has been 

known for decades and was initially associated with the high fibre content of the hull 

of the grain, however, hull-less varieties have shown similar effects (Kaldhusdal and 

Hofshagen, 1992; Riddell and Kong, 1992). It has been shown that beta-glucan was 

responsible for this effect (White et al., 1981). Beta-glucan has a high water holding 

capacity, which results in gel formation, thus increases the intestinal viscosity of the 

digesta. The level of viscosity in a barley feed is indicative of the amount of beta-

glucan present. White et al (1981) isolated beta-glucan from barley, added it to a 

maize based diet, and reported a reduction in growth performance as well as an 

increase in the viscosity of the digesta samples collected. Although various reports 

have linked increased viscosity with barley-based diets with water-soluble beta-

glucan, Gohl et al (1978) reported that soluble arabinoxylan might also be an 

associated factor. Fuente et al (1995) indicated that poultry digesta viscosity 

accounts for 97% of the variations in the AME in barley-based diets. The viscous 

nature of the digesta could also cause an increase moisture content of poultry litter 

as more time is required for the complete mixing of a viscous intestinal content. This 

is usually not possible due to the relatively short nature of the poultry digestive tract 

and the flow rate of the digesta, which results in sticky droppings and a reduction of 

the air quality of the poultry house.  

High intestinal viscosity is often linked with digestive health problems in poultry. A 

decrease in digesta passage rates makes colonisation with potentially pathogenic 

bacteria easier (Yegani and Korver, 2008). Chicken fed barley-based diets have 
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shown increased incidences of necrotic enteritis associated with increased levels of 

Clostridium perfrigens in the gut (Kaldhusdal and Hofshagen, 1992; Riddell and 

Kong, 1992). Necrotic enteritis is a breakdown of the intestinal wall commonly 

caused by Clostridium perfrigens, an anaerobic bacterium often found in the small 

intestinal tract of poultry. At low levels, Clostridium perfrigens does not pose any 

health risk to poultry, however, at higher levels necrotic enteritis can result in serious 

poultry disease. Antibiotics have been used prophylactically and therapeutically to 

check the problem in the past (Immerseel et al., 2004), however, with the ban on 

prophylactic antibiotics in poultry feed and increased cost of biosecurity, poultry 

farmers are turning to functional food as alternatives to control poultry diseases. 

Other studies, conversely have reported various advantages of including barley in 

poultry diet. These advantages are however dependent on the amount and level of 

inclusion. It is commonly accepted that an increase in dietary fibre reduces feed 

intake in poultry. However, different authors have demonstrated that the inclusion 

of moderate amounts of insoluble dietary fibre does not affect voluntary feed intake 

in broilers (González-Alvarado et al., 2007; Jiménez-Moreno et al., 2011, 2009), in 

turkey (Sklan et al., 2003) and laying hens (Almirall et al., 1995). The inclusion of 

fibre in poultry diets has shown enhanced intestinal function and modification of the 

composition and quality of the gut microbiota population both in vitro and in vivo 

(Dunkley et al., 2007; Jiménez-Moreno et al., 2011). 

Current research on the topic of functional feed has reported conflicting arguments 

on what qualifies as a functional feed, its usage and labelling. A recent review of 

functional foods revealed that research in this area is driven by already existing 

nutritional information and directives on food additives regulation (Bigliardi and 

Galati, 2013). Of all functional food researched, prebiotics and probiotics have taken 
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centre stage. Cereals contains high amounts of indigestible substances and have 

been studied widely for their potential to act as functional foods (Vitaglione et al., 

2008). These cereals are known as ‘functional cereals’ and they have been defined 

as cereals containing high amounts of dietary fibres such as beta-glucan and 

arabinoxylan; oligosacharrides such as galacto- and fructo- oligosacharrides; and 

resistant starch (Bigliardi and Galati, 2013). Cereals studied include oat and barley, 

which contain about 11.5 % - 27.1 % dietary fibre, with barley usually containing the 

highest amounts. The research is driven by the relationship between the 

consumption of cereal whole grain and the reduced risk of many diseases 

(Vitaglione et al., 2008). The beneficial effect of cereals is also attributed to the 

presence of associated phenolic compounds such as hydroxycinnamic acids which 

are released by the degradation of cereals by intestinal microbes. These phenolic 

compounds are absorbed through the intestine into the blood stream where they 

then exerts health benefits (Vitaglione et al., 2008).  

Barley can be included in poultry feed as an energy and fibre source. However, the 

amount of fibre and non-starch polysaccharides needs to be controlled to obtain 

beneficial effects. For instance, it has been shown that soaking barley grains in 

water before inclusion in poultry diets, causes positive effects on bird performance. 

The positive effect was linked to the reduction of water-soluble beta-glucan and the 

activation of endogenous enzymes in cereal grains capable of degrading them 

(Annison and Choct, 1991). Water soaking can reduce beta-glucan content as this 

effect was also noticed with high moisture storage (Svihus et al., 1997). High 

moisture storage has however been linked to fungal contamination (Jacob and 

Pescatore, 2012). Barley based diets can also be pelleted to enhance its quality, as 

pelleting was reported to reduce digesta viscosity, caused by the presence of beta-
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glucan, by 45% (Pettersson et al., 1991).   This research also recommends that 

using fractionation techniques, fractions of barley grains containing high amounts of 

beta-glucan can be removed and later reintroduced as supplements, at the right 

amounts in poultry feed to obtain the best results. Fractionation of barley grains can 

be easily achieved by modern techniques of pearling. In barley botanical 

components, the majority of dietary fibres generally occur in decreasing amount 

from the outer pericarp to the endosperm (except arabinoxylan, which is also a 

major component of endosperm cell wall material) (Izydorczyk and Dexter, 2008).  

 

2.3.2. Fats  

Fats in poultry diets are sources of energy. Oxidation of fat yields large amounts of 

energy in animal cells. Their presence therefore ensures a healthy supply of energy. 

Other advantages of fats are that they improve the palatability of the diet and 

increase intestinal retention time, allowing for complete digestion and absorption of 

nutrients (Sell et al., 1987). There are no specific requirements for fat in poultry diet 

however requirements for linoleic acid, an essential fatty acid have been 

demonstrated (Ensminger et al., 1990). Sources of fats include vegetable oils such 

as soy and corn oil. Some feeding trails indicated that addition of fat improved the 

performance of chicks on barley-based diets (Edney et al., 1989). In these studies, 

barley was used to replace maize on a weight for weight basis. The improved 

performance seen was reported to be most likely due to increased energy content 

in the diet with the addition of fat, rather than a reduction on the effects of beta-

glucan present in barley. 
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2.3.3. Proteins and Amino Acids 

Protein and amino acids are required by poultry for development of bone, muscles, 

organs and other body parts. They supply building blocks for structural tissues. 

Nutritionally, amino acids are classified as essential or non-essential. Essential 

amino acids need to be provided in poultry feed, while non-essential amino acids 

can be synthesized by birds. Essential amino acids include lysine, methionine, 

threonine, tryptophan, isoleucine, histidine, valine, phenylalanine and arginine with 

particular requirement depending on the bird type. For instances, broiler chickens 

have very high demands to meet growth needs, since they are reared for meat 

(NRC, 1975). Sources of protein could either be plants or animals. An excellent 

source of plant protein for poultry is soybean, which contains about 40 to 48 percent 

crude protein with a right balance of essential amino acids. Fish meal and bone meal 

are sources of animal proteins (Ravindran et al., 2009). There are also commercially 

available amino acids such as methionine, lysine, threonine and tryptophan that can 

be purchased and included in poultry diets (Ravindran, 2013). 

The digestion and almost complete absorption of protein takes place primarily in the 

small intestine, however, amino acid residues from undigested feed also pass to the 

caeca, where they are fermented by resident bacteria, which replace the protein 

residues with bacterial proteins with different amino acid profiles, thus aiding amino 

acid synthesis. The origin of protein residues that reach the caeca depends on a 

number of factors including the presence of anti-nutritive substances in the poultry 

feed, which could inhibit protein digestion. Protein sources in poultry diets are a 

heterogeneous mixtures of various proteins, which are digested at different rates in 

the small intestine. They also have various linkages with other carbohydrates and 

lipids in the diet, such that the composition and interactions of these substances 
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determine the entire digestive process, which in turn determines feed conversions 

rates (Hughes and Choct, 1999). Non-starch polysaccharides and phytate are 

examples of anti-nutritive factors that depress protein digestion and utilisation due 

to the high viscosity the cause in the poultry gut (Bryden and Li, 2010; Hughes and 

Choct, 1999). It has been reported also that not all protein that reach the caeca are 

from feed sources but rather of endogenous origin such as remains of digestive 

enzymes or shed mucosal cells caused movement of fibrous feed along the 

digestive tract (Bryden and Li, 2010). Table 2.1 below summarises nutritional 

components of cereals used in poultry feed. 

 

Table 2.1. Nutritional components of cereal grains (per 100g) 

Cereal grain Energy 
(Kcal) 

Water 
(g) 

Carbohydrate 
(g) 

Protein 
(g) 

Fat 
(g) 

Minerals 
(g) 

Barley (pearled) 352 10.09 77.72 9.91 1.16 1.11 
Corn (field) 365 10.37 74.26 9.42 4.47 1.20 
Millet 378 8.67 72.85 11.02 4.22 3.25 
Oats (Oatmeal) 384 8.80 67.00 16.00 6.30 1.90 
Rye 335 10.95 69.76 14.76 2.50 2.02 
Sorghum 339 9.20 74.63 11.30 3.30 1.57 
Wheat (hard red 
winter) 

327 13.10 71.18 12.61 1.54 1.57 

Source:  Gebhardt et al, 1978. Composition of foods. Agricultural hand book 
no.8-20, US department of agriculture. 
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2.3.4. Non-Nutritive Feed Additives  

Also included in poultry diets, are a range of non-nutritive additives, which function 

in ensuring improved health and performance of poultry birds. Examples include 

enzymes, antibiotics, probiotics, prebiotics, etc. Examples of non-nutritive feed 

additives are summarized in table 2.1 and 2.2. 

2.3.4.1. Enzymes  

Poultry birds do not produce non-starch polysaccharide degrading enzymes and are 

therefore unable to hydrolyse non-starch polysaccharides present in the grains they 

consume. Non-starch polysaccharides dissolve in water to produce sticky 

substances, producing a gel-like mixture in poultry gut thus, leading to a reduction 

in gut performance (Campbell et al., 1989; Ward, 1995). Enzymes are used as feed 

additives to overcome the anti-nutritive effects of arabinoxylans (in wheat and 

triticale), beta-glucans (in barley) and phytate (in all plant feedstuffs) thus, reducing 

digesta viscosity, improving the overall nutrient availability and feed value which 

encourages a balanced growth of microorganisms in the gut (Khattak et al., 2006). 

Enzyme supplementation improved broiler performance with both high and low-

viscosity barley cultivars with a more positive response recorded in high viscosity 

extract cultivars (Campbell et al., 1989). The enzymes are typically of fungal or 

bacterial origin (Bedford and Apajalahti, 2000).  

Poultry feed enzymes increase the feeding value of barley, reduced the variations 

in available nutrients and the incidence of wet litter common in birds fed barley-

based diets. The beneficial effects of enzyme supplementation include non-starch 

polysaccharide hydrolysis of grains, eliminating the nutrient-encapsulating effect of 

the cell wall, which then results in the release of some available sugars (Guenter, 
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1993). The aleurone layer of barley is multicellular, unlike other cereals with single 

cell layers (Jacob and Pescatore, 2012).  Supplementing barley-based diets with 

enzymes can also alter the microbiota in the digestive tract. Jozefiak et al (2010) 

reported lower numbers of the potentially pathogenic Enterobacteriaceae and 

increased number of Bifidobacteria with the addition of beta-glucanase to barley 

based poultry diet. Mathelouthi et al, (2002), reported that the addition of beta-

glucanase in barley-based broiler diets reduces the viscosity of the intestinal 

contents and slowed the growth of Escherichia coli. Rodriguez et al, (2012) 

compared supplementing barley-based broiler diets with a feed enzyme cocktail 

(xylanase and beta-glucanase), a prebiotic (inulin), a probiotic 

(Enterococcufaecium) and a probiotic and prebiotic combination, and concluded 

that they all had beneficial effects on the intestinal microflora of the broilers.  
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Table 2.2: Non-Nutritive Feed Additives Commonly used in Poultry Feed 

Formulations 

Additive  Example  Reasons for use 

Enzymes Xylanases, beta 

glucanases, phytase 

proteases  

To overcome the anti-nutritive effects of 

arabinoxylans (in wheat and triticale), β 

glucans (in barley) or phytate and proteases 

(in all plant feedstuffs); to improve the overall 

nutrient availability and feed value 

 

Antibiotics1  Avilamycin, 

viginiamycin, zinc 

bacitracin, avoparcin, 

tylosin, spiramycin 

To control harmful bacterial species in the 

gut; to improve production efficiency; as a 

prophylactic measure against necrotic 

enteritis 

 

Coccidiostats Moneensin, 

salinomycin, narasin 

To prevent and control the clinical symptoms 

of coccidiosis 

 

Pigments Xanthophyll (natural 

and synthetic) 

To increase yolk colour in eggs and to 

improve the skin colour and appearance of 

carcasses 

 

Antioxidants  Butylated hydroxyl 

toluene (BHT), 

butylated hydroxyl 

anisole (BHA), 

ethoxyquin 

To prevent auto-oxidation of fats and oils in 

the diet 

 

 

 

Antifungals   To control mould growth in feed; to bind and 

mitigate the negative effects of mycotoxins 

1 The use of avoparcin, zinc bacitracin, spiramycin, virginiamycin and tylosin 

phosphate as animal feed additives was banned in the European Union in 1998.                                                                             

Envisaging a total ban on in-feed antibiotic use, a multitude of feed additives 

(individually and in combination) are currently being tested. 
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Table 2.3: Non-Nutritive Feed Additives Commonly Used in Poultry Feed 

Formulations (cont.) 

Probiotics Lactobacillus, 

Bifidobacteria 

To provide beneficial lactic 

acid species  

 

1. Prebiotics 

 

FOS, GOS, inulin 

 

To bind harmful bacterial 

 

2. Organic acids 

 

Propionic acid, diformate 

 

To lower gut pH and prevent 

the growth of harmful bacterial  

3. Botanicals  Herbs, spices, plant 

extracts, essential oils 

 

To prevent the growth of 

harmful bacteria 

Antimicrobial 

proteins/peptides 

4.  

Lysozyme, lactacin F, 

lactoferrin, α-lactalbumin 

 

To prevent the growth of 

harmful bacteria 

 

1 The use of avoparcin, zinc bacitracin, spiramycin, virginiamycin and tylosin 

phosphate as animal feed additives was banned in the European Union in 1998.                                                                             

Envisaging a total ban on in-feed antibiotic use, a multitude of feed additives 

(individually and in combination) are currently being tested. 

 

2.3.4.2. Antibiotics (Sub-Therapeutic) 

Control of zoonotic microorganisms has been a major challenge for animal 

breeders. For decades, antibiotics have been used at sub-therapeutic levels as a 

means of preventing pathogenic colonisation. Poultry feed is usually not sterile, 

containing a lot of foreign bodies such as bacteria and antigens. The gut lining 

serves as the only interface between the bird and these foreign materials, which like 

all foreign materials, whether pathogenic or not, are able to stimulate immune 

responses (Huang et al., 2005). Early passage of feed through the gastrointestinal 

tract therefore stimulates the proliferation of stem cells, to withstand environmental 
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antigens, thus creating a wide repertoire of antibodies (Uni, 1998). Different bacteria 

species have different nutrient and growth requirements. The nutrient and chemical 

composition of poultry digesta determines to a large extent, the microbial 

composition (Apajalahti, 2004). In the 1940s, it was discovered that animals that 

were fed dried mycelia of Streptomyces containing chlortetracycline residues, 

showed better growth rates. This improved growth performance was attributed to 

observed better animal health status because of the prevention of pathogenic 

invasion and improvement in feed conversion efficiency. This led to further research 

and the conclusion that antibiotics ensured efficient nutrient availability and 

absorption by causing the host intestinal epithelium to be thinner thus reducing 

intestinal microbial load (Ohimain and Ofongo, 2012), which implies a reduction of 

harmful bacteria, thus promoting animal health. Antibiotics have therefore been 

included as an additive in animal feed for use as growth promoters (AGPs) since 

the 1940s until 2006, when a ban was placed on their use (Richards et al., 2005). 

The use of antibiotics at sub-therapeutic levels came with little or no initial concern 

because of an argument which stated that the residue of antibiotics in animal 

produce was not enough to cause allergic or toxic reactions in humans and was 

therefore negligible (Edens, 2003). As a result, their use was approved by 

governments all over the world for the past 50 years without any reservations, up 

until 2006. For example, bacitracin and lincomycin were classified by the World 

Health Organisation as neither critical nor highly important antimicrobials 

(FAO/WHO, 2006).  These antibiotics therefore, according to a report are of limited 

or no importance to human medicine; hence their use will not pose any negative 

effect on humans (Smith, 2011). The use of antibiotics as AGPs has recorded 

tremendous success in the poultry industry. Choct (2001) reported 3-5% increase 
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in growth and feed conversion efficiency with the application of AGPs. It was also 

reported that the use of AGPs in poultry has been effective in the prevention of 

necrotic enteric (Immerseel et al., 2004). In 1951, the Food and Drug Administration 

agency of the United States approved the use of antibiotics without prescription as 

a feed additive for farm animals (Edens, 2003). States in the European Union also 

adopted similar regulations that approved the use of antibiotics as an animal feed 

additive between 1950 and 1960 (Castanon, 2007). Below is a table showing 

antibiotics that were approved nationally for inclusion in animal feed without 

veterinary approval in the European Union until the imposition of the ban.  
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Table 2.4: Antibiotics, which were permitted as, feed additives only in 

national poultry feeds in Europe 

Source: (Castanon, 2007) 

 

 

 

 

 

 

 

 

Antibiotic Species of 

Animal 

Maximum 

Content and 

Period of 

Authorisation 

Legislative 

Reference 

Bacitracin 

manganese, 

neomycin, tylosin, 

sotramycin 

 

Only national 

restriction 

November 25, 

1970 – June 30, 

1976 

Directives 70/524, 

75/296 

Hygromycin B Only national 

restriction 

November 25, 

1970 – December 

31, 1976 

 

Directives 70/524, 

75/296, 76/603 

Erythromycin  Only national 

restriction 

November 25, 

1970 – June 23, 

1976 

 

Directive 70/524, 

75/296, 76/603 

Erythromycin Chicken for 

fattening 

20ppm, June 24, 

1976 – December 

31, 1978 

Directives 76/603, 

78/58 
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Table 2.5: Antibiotics, which were permitted as, feed additives only in national 

poultry feeds in Europe (cont.) 

 Source: (Castanon, 2007) 

 

 

 

 

Bacitracin-

methylene-

disalicylate 

Poultry (excluding 

ducks, geese and 

laying hens) up to 

10wks old 

 

20ppm, April 29, 

1975 – December 

31, 1977 

Directives 75/267, 

75/296, 76/603 

Lincomycine  Poultry (excluding 

ducks, geese and 

laying hens) up to 

10wks old 

10ppm, March 5, 

1974 – June 30, 

1981 

Directives 74/180, 

75/296, 76/603, 

78/58, 79/139, 

79/553, 80/618, 

80/1139 

 

Mocimycin  Chickens for 

fattening 

5ppm, August 1, 

1978 – November 

30, 1983 

 

Directives78/743, 

80/1156, 82/91, 

82/822 

Nosiheptide Chickens for 

fattening 

10ppm, 

November 16, 

1977 – December 

3, 1986 

Directives 79/1011, 

80/1156, 82/91, 

82/822, 83/466, 

84/349, 85/342, 

85/520 

 

Ardacin  Chickens for 

fattening 

7ppm, January 

20, 1995 – 

November 30, 

1997 

Directives 94/77, 

95/55, 96/66, 97/72 



44 
 

2.3.4.2.1. The Ban on Sub-Therapeutic Antibiotics in Animal Breeding 

Antibiotics approved for use as AGPs were those that can be absorbed by the 

digestive tract and were administered in minute and manageable amounts. Their 

continuous use however created some concerns in some quarters. There was fear 

over the very possible risk of development of antibiotic resistant microorganisms in 

farm animals, with possible transfer of these resistant microbes along the food chain 

through meat and milk (Mathur and Singh, 2005; Salyers et al., 2004). As a result, 

the World Health Organisation  (1997) and the Economic and Social Committee of 

the European Union  (1998) concluded that the continuous use of antibiotics at sub-

therapeutic levels in farm animals reared for food, was a public health issue 

(Castanon, 2007). In 1999, about 30 percent of all antibiotics used in Europe went 

into animal feeds amounting to an estimated 3.52 million kilograms of antibiotics 

entering into the human system through chicken and pork alone (Edens, 2003). 

Several other reports emerged that emphasized the risk. For example the 

occurrence of vancomycin-resistant Enterococci (VRE) in Australia was linked to the 

use of glycopeptide avoparcin as a growth promoter (Collignon, 1999). Other 

examples include reports of antibiotic resistant microorganisms found in Czech 

Republic poultry industry, as summarised in table 2.6. 
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Table 2.6: Antibiotic resistance of E. coli (128 strains), Staphylococcus (88 

strains), and Enterococcus (223 strains) found in Czech Republic poultry 

industry 

Antibiotic E.coli Staphylococcus Enterococcus 

Amikacin  8/128 - - 

 

Ampicillin 65/128 - 3/228 

 

Ampicillin/Sulbactam 0/128 4/88 3/228 

 

Aztreonam  8/128 - - 

 

Cefazolin  8/128 - - 

 

Cefpirome  8/128 - - 

 

Cefoperazone  8/128 - - 

 

Cefoperazone/sulbactam 8/128 - - 

 

Cefotaxime  8/128 - - 

 

Ceftazidime  8/128 - - 

 

Cefuroxime  8/128 - - 

 

Cefoxitin  8/128 - - 

 

Ciprofloxacin  13/128 - - 

 

Chloramphenicol  11/128 3/88 16/228 

 

Clindamycin  - 17/88 - 
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Table 2.7: Antibiotic resistance of E. coli (128 strains), Staphylococcus (88 

strains), and Enterococcus (223 strains) found in Czech Republic poultry 

industry  

Antibiotic E.coli Staphylococcus Enterococcus 

Erythromycin  - 35/88 135/228 

 

Gentamycin  8/128 - 16/228 

 

Merpenem  8/128 - - 

 

Netilmicin  8/128 - - 

 

Nitrofurantoin  - - 78/228 

 

Ofloxacin  13/128 12/88 117/228 

 

Oxacilin  - 4/88 - 

 

Piperacillin  48/128 - - 

 

Piperacillin/tazobactam 0/128 - - 

 

Streptomycin  - - 51/228 

 

Telcoplanin  - 0/88 12/228 

 

Tetracycline  125/128 13/88 183/228 

 

    

Trimethoprim/sulfamethoxazole 18/128 - - 

 

Vancomycin  - 0/88 12/228 

Source: Kolar et al., 2002. 
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In January 2006, a ban was placed on the use of antibiotics as growth promoters 

due to the associated risk of selecting for antibiotic resistance in microbial flora 

(European Union (a), 2003; European Union (b), 2003). Some negative side effects 

were expected from the removal of AGPs since there were no ready alternatives 

towards prevention of pathogenic colonisation of healthy farm animals. These 

negative effects included a massive drop in animal productivity due to increased 

animal mortality from diseases, reduction of feed conversion efficiency, poor growth 

as well as increase in the use of therapeutic antibiotics on diseased animals 

(Casewell et al., 2003). It was also estimated, that US consumers would pay $1.2-

2.5 billion more due to expected increased cost of production (Gill and Best, 1998). 

A report by Danish integrated Antimicrobial Resistance Monitoring and Research 

Program in 2008, revealed that the use of therapeutic antibiotics in all food animals 

increased by 110% between 1998 and 2008 due to a gradual phasing out of AGPS 

(Smith, 2011). The blanket ban on all AGPs has since been described as unwise, 

unscientific, unwarranted and counterproductive (Smith, 2011). The removal of 

AGPs has put the animal breeding industry under immense pressure to provide 

alternative feed additives toward ensuring animal health. Currently, research in this 

regard is centred on more natural alternative that could be implemented at primary 

levels of animal production. Research on the modulation of animal gut microbiota 

using alternative feed additives like probiotic, prebiotics, organic acids, and 

enzymes towards prevention of invasion by pathogens is currently creating room for 

fascinating possibilities like the total replacement of in-feed antibiotics with equally 

competent natural alternatives (Gaggìa et al., 2010). 
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2.3.4.2.2. Alternative to AGPs 

The poultry industry like every other food processing industry is expected to deliver 

healthy products that are safe and free from contamination to consumers 

irrespective of the ban on prophylactic antibiotics. Despite efforts to achieve safe 

poultry products delivery, there have been many outbreaks of food poisoning and 

cases of food borne diseases resulting from consumption of contaminated poultry 

products over the years (Takatsuki, 2013). It is common knowledge that 

Campylobacter and Salmonella are the major causes of contamination of poultry 

products.  Contaminated products when consumed by humans, cause illnesses and 

infections known as zoonosis. The spread of Campylobacter is very rapid in chicken; 

therefore, reduction in the number of infected birds helps reduce associated risk to 

consumers. Campylobacteriosis has been reported to be the most frequently 

reported zoonotic disease in humans in the European Union (Hugas et al., 2009; 

Westrell et al., 2009). The European food safety authority (EFSA) also reported that 

poultry is the major source of sporadic campylobacteriosis in humans (EFSA-ECDC, 

2009). In 2007, one year after the ban of AGPS, 151,995 people were affected by 

Salmonella in Europe (EFSA-ECDC, 2009). In Europe, 26 % of fresh broiler meat 

tested positive to Campylobacter in 2007 (Westrell et al., 2009). A recent report by 

the Food Standards Agency, United Kingdom stated that about 73% of fresh shop-

bought chicken tested positive for the food poisoning bug Campylobacter in a year-

long study by the Agency (Food Standards Agency, 2015). As a result, a lot of effort 

is being put into the search for alternative solutions to the problem contamination of 

poultry products by pathogens, outside the use of prophylactic antibiotics. It has 

been noted however, that advances in studies of these alternatives requires a multi-

disciplinary approach of dieticians, nutritionist, microbiologists, clinicians and 
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immunologists to produce relevant and applicable results. Prebiotics as an 

alternative, has however been reported to have many positive effects on poultry 

intestinal health, mucosa integrity, feed intake and microbial growth rates (Mateos 

et al., 2012).  

2.3.4.3. Prebiotics  

Prebiotics, as defined earlier, are ‘non-digestible food ingredients that beneficially 

affect the host by selectively stimulating the growth and or activity of one or a limited 

number of bacteria in the colon’ (Gibson and Roberfroid, 1995). Prebiotics have also 

been defined as ‘carbohydrates that selectively stimulate some or all of the 

beneficial organisms in the microbial balance which in turn affects the host in a 

beneficial way’ (Kolida and Gibson, 2011). In simple terms, prebiotics can be said 

to be dietary substances, usually carbohydrates that encourage the growth of 

beneficial lactic acid bacteria in the animal gut by serving as an energy source. 

There are however other ideas that suggest a modification of the definition of 

prebiotics. It has been suggested that prebiotics should be named and defined 

according to their specific function in the animal gut by the addition of specific 

qualifiers.  For example, bifidogenic prebiotic, immune-modulating prebiotic, 

anticancer prebiotic, anti-adhesive prebiotic, etc. (Fahey et al., 2011).  Certain 

companies define prebiotics as ‘oligosaccharides that are fermented in the colon’. 

Known sources of prebiotics include plants like chicory, bananas, cereals, onions, 

leek, garlic, asparagus and Jerusalem artichoke. Large amounts of prebiotics 

extracted from chicory roots are available commercially. Plant cellulose and chitin 

are the most abundant polysaccharide in nature and oligosaccharides derived from 

these are common in most food ingredients (Fahey et al., 2011). Information on 

other plant sources of prebiotics are currently gathering momentum.  
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For a substrate to qualify as a prebiotic, it must pass unhydrolysed and unabsorbed 

in the upper part of the gastrointestinal tract to the caecum, colon or large intestine 

where it can serve as an energy source for microbes. In addition, it must be able to 

alter the microbial flora to favour a healthier composition and must be a selective 

substrate for a limited number of bacteria commensal to the caecum/colon. The 

ability to induce systemic effects that are beneficial to the host’s health is a must for 

prebiotic substances, which must also have a chemical structure that can be 

documented (Hajati and Rezaei, 2010). Table 2.8 below, summarises the properties 

of a prebiotic substance. 
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Table 2.8: Prebiotic and Gastrointestinal Function 

Region of GI tract Prebiotic character 

Upper GI tract  Resistant to digestion 

 Retarded gastric emptying 

 Increased oro-caecal transit time 

 Reduced glucose adsorption and low 

glycaemic index 

 Hyperplasia of small intestine 

epithelium 

 Stimulation of secretion of intestinal 

hormonal peptides  

  

Lower GI tract  Acting as food for colonic microbiota 

 Acting as substrate for colonic 

fermentation 

 Production of fermentation end 

products (mainly SCFAs) 

 Stimulation of saccharolytic 

fermentation 

 Acidification of colonic epithelium 

 Stimulation of secretion of colonic 

hormonal peptides 

 Bulking effect on stool production 

 Regularization of stool production 

(frequency and consistency) 

 Acceleration of caeco-anal transit. 

 Source: Gaggia et al., 2010. 
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Carbohydrates that have qualified as prebiotics are mainly non-digestible 

oligosaccharides (NDOs) and fibres. Table 2.9 shows a list of some commercially 

available prebiotics. Several substances possessing the criteria mentioned above 

are qualified to be called prebiotics, while others are still undergoing further testing. 

Table 2.10 shows a list of proven prebiotics and potential prebiotic substrates.  

 

 

Table 2.9: List of Some Commercially Available Prebiotic.  

        Commercial Prebiotic Carbohydrates 

Prebiotics Chemical Structure Degree polymerization (DP) Purity (%) 

NutraFlora P-95 
 

Gluα1-2-[βFru-1-2]n 
 

2–4 
 

97% FOSb  
 

Raftilose P95 
 

Gluα1-2-[βFru-1-2]n 
 

2–7 
 

95% FOSb  
 

Raftilose P95 
 

Gluα1-2-[βFru1-2]n 
 

2–7 
 

95% FOSb  
 

Inulin-S 
 

Gluα1-2-[βFru-1-2]n 
 

2–60 
 

>99% Inulinb  
 

Raftiline HP 
 

Gluα1-2-[βFru-1-2]n 
 

>23 (average) 
 

>99% Inulinb 
 

Purified GOS 
 

Gluα1-4-[βGal-1-4]n 
 

2–4 
 

>99% GOSc 
 

Where Glu = Glucose; Fru = Fructose; Gal = Galactose; b = based on manufacturer's 

analysis and c = approximate composition after purification. 
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Table 2.10: Proven Prebiotics and Potential Prebiotics 

Proven Prebiotics Fructooligosaccharides(FOS, 

oligofructose and inuline) 

Galactooligosaccharides (GOS) 

Transgalcto-oligosaccharides (TOS) 

Lactulose (Gaggia et al., 2010). 

 

Potential Candidate Prebiotic 

Substrates 

Germinated barley feed stuff 

Gentio-oligosaccharides 

Gluco-oligosaccharides 

Gluconi acid 

Hemicellulose rich substrate 

Isomalto-oligosaccharides 

Lactoferrin derived peptide 

Lactosucrose 

Mannan oligosaccharide 

Melibiose oligosaccharides 

N-acetylchito-oligosaccharide 

Polydextrose 

Resistant starch 

Beta-glucan 

Soybean oligosaccharides 

Sugar alcohols 

Xylo-oligosaccharides 

Glycooligosaccharide 

Lactitol  

Multooligosaccharide  

Staclyose 

Raffinose (Patterson & Burkholder, 

2003). 
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2.3.4.3.1. Mode of Action of Prebiotics 

Prebiotics function by lowering the gut pH through lactic acid production as a result 

of the fermentation of probiotics in the gut. Low gut pH discourages the growth of 

most pathogenic microorganisms (Gibson and Roberfroid, 1995).The terminal 

sugars of prebiotics can interfere with receptors on pathogens thus preventing them 

from being attached to the intestinal wall (Morgan et al., 1992; Bengmark, 2001). 

Prebiotics also stimulate the immune system by increasing anti-inflammatory 

cytokines and decrease pro-inflammatory cytokines (Monsan and Paul, 1995). 

2.3.4.3.2. Prebiotics in poultry 

Prebiotic supplementation of poultry diets modifies fermentation profiles of birds by 

increasing the total SCFA which in turn decreases the intestinal pH (Zduńczyk et 

al., 2006).  Prebiotic research on poultry has been performed since 1990, with a 

large database of research accessible in the area. Prebiotics in broiler diets have 

been shown to increase intestinal Lactobacilli counts in poultry (Baurhoo et al., 

2007; Xu et al., 2003). Other researchers have reported increased Bifidobacteria 

and decreased Clostridia, Salmonella and Streptococci in poultry as a result of 

prebiotic supplementation (Cao et al., 2005; Spring et al., 2000). 

A literature review on the inclusion of prebiotics in poultry diets revealed a lot of data 

on the inclusion of proven prebiotics in poultry diets but data on inclusion of possible 

prebiotics were limited. Proven prebiotics have been reported to have some positive 

effect on body weight gain and feed conversion ratio in poultry birds. Some 

examples are summarised in the table 2.11 below. 
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Table 2.11: Effect of Prebiotics on Poultry Diet 

Source: (Yang et al., 2009) 

Parameter  Prebiotics Response 

(%) 

Reference 

Weight gain 

(g/bird) 

FOS 

 

 

 

 

Transgalactooligosaccharide 

 

Stachoyse  

 

Chitosan  

 

Isomaltooligosaccharide  

+5 

+2 

+6 

+8 

 

0 

 

-3 

 

+2 

 

+5 

 Li et al., 2008 

(Biggs et al., 2007) 

(Zhang et al., 2003) 

(Xu et al., 2003) 

 

(Biggs et al., 2007) 

 

(Jiang et al., 2006) 

 

(Huang et al., 2005) 

 

(Zhang et al., 2003) 

 

Body weight 

(g/bird) 

 

FOS 

 

+3 

 

+1 

 

(Yusrizal and Chen, 

2003) 

(Waldroup et al., 1993) 

 

Feed conversion 

ratio 

FOS 

 

 

 

 

 

 

 

 

Transgalactooligosaccharide 

Stachoyse    

+2 

+3 

0 

 

+6 

+6 

-1 

-1 

 

+3 

+4 

 Li et al., 2008 

(Biggs et al., 2007) 

(Yusrizal and Chen, 

2003) 

(Zhang et al., 2003) 

(Xu et al., 2003) 

(Waldroup et al., 1993) 

(Biggs et al., 2007) 

 

(Jiang et al., 2006) 

(Huang et al., 2005) 
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On a general note, barley consumption has been linked with various health benefits 

due to the presence of beta-glucan, thus the need for proper investigation into its 

mode of action (Jacob and Pescatore, 2014). One mode of action of beta-glucan at 

exerting health benefits is its ability to increase the viscosity of poultry intestinal 

digesta. Varying reports on the effectiveness of beta-glucan could be attributed to 

difference in terms of source or changes in its structure during processing. The 

modification or alteration of this character during extraction or food preparation, 

could therefore affect its effectiveness. As a result, commercial producers of beta-

glucan concentrates always seek the best extraction methods to ensure 

preservation of the bioactive component of cereal grains.  A study by Vasanthan 

and Temelli (2008) analysed fractionation and extraction technologies for beta-

glucan in cereals and reported that fractions or particles obtained during dry 

fractionation, depending on the extent of grain size reduction, vary in beta-glucan 

content. Dry fractionation and wet separation technologies were evaluated in the 

study, which stated that dry fractionation processing involve grain particle size 

reduction to produce meal and flour, which could then be further used in wet 

processing technologies for separation and concentration of desired chemical 

component. According to the same report, the choice of separation methods are 

dependent on the type of cereal used and the aim of the processing. Pearled grains 

are commonly used as ingredients in soups while fractions obtained from pearling 

are used as raw materials for animal feed formulations. Pearling as a dry 

fractionation method was reported to be more suitable for barley grain fractionation 

compared to oat grains. Other researchers have also reported on the suitability of 

this method (Sumner et al., 1985; Zheng et al., 2000). Oat grains have been reported 

to exhibit extensive grain breakages during pearling. Also, challenges on separation 
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of pearled grains from pearled fractions have been reported in oat, due to its 

relatively high lipid content. This fact makes extraction of beta-glucan from oat a bit 

difficult, as dry milling technologies like pearling are usually the starting procedure 

for other separation processes like wet processing, targeted at beta-glucan 

extraction especially for experiments involving grain fraction effects.  

Various studies have provided data on the inclusion and effect of wheat, oat and 

barley fractions in poultry diets. However, comparing all three cereals mentioned, 

studies on the inclusion of barley fractions are limited compared to studies on wheat 

and oat. A study by Svihus and Gullord (2002), on the effect of chemical content 

and nutritional value of wheat, barley and oat in poultry, showed similarities in the 

AME values of the three cereals. However, a modification of their chemical 

composition, with the addition of enzymes produced varying beneficial effects on 

poultry health. It was concluded in the study that AME values might have a limiting 

effect on predicting the nutritional value of cereals in broiler chickens. AME values 

have limited the use of cereals like barley in poultry feed. Several studies have 

shown varying AME values with the addition of barley to poultry feed, which has led 

to the underutilisation of barley in poultry feed. As mentioned earlier, this effect is 

due to the viscous nature of barley.  

In a related study, Amerah (2009), analysed the effect of diluting a wheat-based 

poultry diet with insoluble fibre sources on bird performance, nutrient utilisation, 

digestive tract development  and ileal microbiota profile of broiler chicken and 

concluded that AME was unaffected by the dietary treatment. The results also 

showed that microbial compositions were however, affected by the treatment with 

magnitude of the effect dependant on the particle size of the fibre used. In order 

words, the inclusion of fibre with prebiotic effect is beneficial to poultry. However, 
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proper knowledge on source, type and level of inclusion is critical to achieving the 

best results. Mateos (2012), reported that fibre is essential in poultry diets and 

recommended the inclusion of moderate amounts of 2 – 3% fibre in poultry diet, 

which could be in the form of coarse, insoluble fibre such as oat hull. The study 

analysed responses of high levels of dietary fibre sources varying in physical and 

chemical characteristics. Jørgensen et al (1996) also studied the effect of how the 

source and level of inclusion of a dietary fibre affects development of the 

gastrointestinal tract and energy metabolism in broiler chicken. Results from the 

study revealed that the length of the GIT increased with the level of fibre inclusion. 

The effect was particularly high for the weight and length of the caecum. In relation 

to the fibre sources, oat bran showed the best results, compared to wheat bran and 

pea fibre. The levels of digestibility of all nutrients however decreased with 

increasing fibre levels.  

The positive effect of prebiotics have also been demonstrated in their ability to 

replace in feed antimicrobials. Baurhoo et al (2007) evaluated the effect of lignin 

and MOS as a potential alternative to antibiotic growth promoters in broiler chickens. 

Results from the study revealed that broiler performance was similar in birds fed sub 

therapeutic antibiotics compared to those fed antibiotic free feeds containing either 

MOS or lignin. Positive effects were also recorded in gut structure and microbiota 

for birds fed MOS and lignin. There was increased jejunum villi height and a higher 

number of goblet cells per villus as well as a higher Lactobacillus count in the caeca 

of the treatment groups.  

Despite the positive results obtained by the inclusion of dietary fibres or prebiotics 

in poultry feed, repeat experiments have been shown to be inconsistent. Some 

researchers purchase commercially available prebiotics without a clear attention to 
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the source and specific structure of the prebiotics purchased. Such that commercial 

prebiotic from different supplies might yield different results. In the case of cereal 

fractions or cereal obtained dietary fibres, the variety of the cereal as well as the 

location on the cereal of the dietary fibre may also affects its functionality as a 

prebiotic substance. Also dietary fibre extraction methods might also affect their 

effectiveness. 

Some reviews on the effect of most proven prebiotics on the performance of poultry 

as mentioned earlier has shown inconsistent results. In a recent study by Murshed 

et al (2015), commercially purchased prebiotic and probiotics were used individually 

to replace an AGP (neoxyval) in broiler diet. The results showed a similar 

performance among all groups. However, a combination of the probiotic and 

prebiotics showed an impaired broiler performance compared to feeding the 

additives individually. Conversely, other studies have shown that, the combination 

of probiotics and prebiotics are more effective when compared with individual 

additives (Awad et al., 2009; Dizaji et al., 2012; Li et al., 2008; Saiyed et al., 2015). 

Awad et al (2009) also reported the beneficial effects of a synbiotic application of 

prebiotics and probiotics in a study on the effects of dietary inclusion of probiotics 

and symbiotic on growth performance, organ weight and intestinal histomorphology 

of broiler chickens. Sarangi et al, (2016), obtained a different result in a study aimed 

at investigating the effects of dietary supplementation of prebiotics, probiotics and 

synbiotics on growth performance and carcass characteristics on broiler chicken, 

where dietary inclusion of prebiotics, probiotics and a synbiotic combination has no 

significant effect on growth parameters compared to the control group. The prebiotic 

used was yeast cell derived. 
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These inconsistencies have made difficult the prediction of standard 

recommendations for designing in vivo trails (Hajati and Rezaei, 2010; Jacob and 

Pescatore, 2012; Ricke, 2015). Various reasons have been cited for these 

inconsistencies. They include level of inclusion of prebiotic, purity of prebiotics, 

source of prebiotic and length of adaptation time and exposure of the poultry 

microbes to prebiotics (Bailey et al., 1991; Catald-Gregori et al., 2008; Choi et al., 

1994). Other factors mentioned include prebiotic-feed interactions, type of microbes 

present prior to feeding prebiotic and type of responses being considered in terms 

of growth versus disease prevention (Ricke, 2015). Another major factor being 

considered is the prebiotic-probiotic combination. All of these have brought about a 

call for researchers in prebiotic studies to go back to the basics, in order to create a 

streamlined detailed database of information. Attention is being called to the sources 

and specific structure of prebiotics in order to understand precisely, their 

functionality. 

 

2.4. Current situation 

This research focuses on the prebiotic market. Of all the functional food researched, 

probiotics and prebiotics have taken centre stage, dominating the functional food 

market in Europe, Japan and USA (Kumar et al., 2015).  

The prebiotic market has been dominated by research for human applications. 

However, due to the current demand for production of healthier animals with less 

drug use, more research has gone into the feeding of prebiotic substances to poultry 

(Hajati and Rezaei, 2010; Hume, 2011; Józefiak et al., 2004; Patterson and 

Burkholder, 2003; Ricke et al., 2013). Most of this research has been focused on 
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proven prebiotics. Inulin and FOS are classic examples of such prebiotics and have 

been administered in a variety of experimental studies (Mussatto and Mancilha, 

2007; Patterson and Burkholder, 2003; Roberfroid, 2007; Rossi et al., 2005) with 

varying results. There is still a considerable gap between the use of in-feed 

antimicrobials and their possible replacement with prebiotics in the near future 

(Cheng et al., 2014).  

Despite these uncertainties, prebiotic additives do hold promise and have 

advantages for use in alternative and non-conventional poultry operations. Several 

substances have been and are currently being assessed. Shakouri (2006), analysed 

the effect of different non-starch polysaccharides on the performance and intestinal 

microflora of young broiler chicken and concluded that addition of non-starch 

polysaccharides increased feed intake. The study specifically analysed the effect of 

cellulose and pectin, with results stating that pectin significantly increased the 

number of anaerobes in the poultry duodenum. Also reported was that cellulose 

influences positively feed conversion ratio and final body weight gain.  Another study 

by Charalampopoulous et al (2003) examined the effect of cereal extracts on the 

viability of lactic acid bacteria under conditions simulating the gastrointestinal tract 

and concluded that the absence of cereal extracts showed a significant decrease in 

probiotic bacteria, especially Lactobacillus plantarium. Lactic acid bacteria used in 

the study include Lactobacillus plantarium, Lactobacillus acidophilus and 

Lactobacillus reuteri. Also stated was that the presence of malt, wheat and barley 

extracts exhibited a protective effect on the viability of the lactic acid bacteria 

studied. 

The addition of prebiotics in poultry diets is also currently been applied in 

combination with other feed additives like enzymes, to achieve improved results. A 
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study by Jozefiak et al (2010) to determine the effect of beta-glucanase and 

xylanase supplementation on barley and rye-based diets on cecal microbiota of 

broiler chickens showed that, irrespective of the method applied; cereal type and 

enzyme supplementation influenced the microbiota in broiler chicken caeca in 

beneficial ways such as reducing potentially pathogenic Enterobacteriaceae 

populations. Jimenez-Moreno et al (2009), studied the effect of a combination of 

dietary fibre and fat on the performance and digestive properties of broilers from day 

old to twenty one days and reported that the inclusion of moderate amounts of fibre 

in diets of young chicks, improved performance and nutrient digestibility, especially 

when used in combination with saturated fats. 

Several factors are, however, inhibiting the progress of research in prebiotic studies, 

the first being the ability to identify and establish a hierarchy for which possible 

factors should be considered as of primary importance versus the others, in order 

to establish a cause and effect model. However, some basic issues have been 

identified and need to be addressed to develop a strategy for effectively deploying 

prebiotics in animal production. These include detailed knowledge on the source of 

the prebiotic, extraction/production process, as well as level of inclusion. All of which 

lack standard recommendations. The research into prebiotics is still at its infancy, 

with much research yet to be streamlined such that there is no proper regulations 

on production and extraction of prebiotics from natural or organic sources (Ricke, 

2015) nor are there regulation on further modifications of candidate prebiotic 

compounds using standard processing techniques. For example, the application of 

thermal processing to create more specific prebiotic structures with specific 

antimicrobial effects have been recommended and is yet to be tested and approved 

(Hernandez-Hernandez et al., 2012; Ricke, 2015).  
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The source and physical form of cereal component in a feed item is critical to its 

effectiveness as a prebiotic in terms of its effect on the morphological and 

physiological characteristics of the intestinal tract as well as on its effect on the gut 

microbiota (Brunsgaard, 1998; Engberg et al., 2004). For instance, high molecular 

weight and high solubility are physicochemical characteristics critical to the 

functionality of beta-glucan as a viscous dietary fibre. Depending on the source, 

there are clear differences between beta-glucans in their solubility, molecular mass, 

tertiary structure, degree of branching, polymer charge and solution conformation, 

all of which in turn alter their immune modulating effect (Bohn and BeMiller, 1995). 

Beta-glucans having a beta - (1, 3) chain with beta – (1, 6) branching are more 

effective than beta - (1, 3) linear chain alone (Bohn and BeMiller, 1995).  It has also 

been reported that cereal beta-glucans from barley are more beneficial than oat 

beta-glucan in inhibiting the early stages of atherosclerosis, with the barley 

polysaccharides showing greater physiological potency than the respective oat 

beta-glucans of similar molecular weight (Lazaridou et al., 2011). The mode of 

action of this disease preventing property of barley beta-glucan is still under 

investigation. A report by Jacob and Pescator (2014) stated that barley beta-glucan 

had a negative effect on poultry immunological performance, compared to Yeast 

beta-glucan, which showed enhanced immune function in many animals, including 

poultry. The adverse effects of barley beta-glucan was linked to its propensity to 

increase intestinal viscosity. Which has led to the suggestion that barley beta-glucan 

could have other effect on the immune system, if the digestive tract is by-passed, 

by its possible use as an adjuvant for vaccines (Jacob and Pescatore, 2014).  

Since the launch of the prebiotic concept about 20 years ago, prebiotic producers 

have published various health claims on their beneficial effects on gut microbiota, 
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gut development, etc. The GALT, commensal bacteria, mucus and host epithelial 

cells interact with each other, forming a delicate and dynamic equilibrium within the 

alimentary tract that ensures efficient functioning of the digestive system. The value 

of a prebiotic is said to lie in its capacity either to stabilise or to perturb this 

equilibrium. However, given the set criteria for these claims, the EFSA has 

concluded that evidence presented thus far does not satisfy the stated claims, based 

on the fact that an increase in gut microbes as a beneficial physiological effect is not 

clear cut. This according to EFSA is due to the fact that there is no clear evidence 

of cause and effect relationship between prebiotics and the health claims. As a 

result, under current legislation prebiotics cannot be categorically linked to the said 

health claims in both humans and animals (Delcour et al., 2016; EFSA Panel on 

Dietetic Products, 2010). One prominent reported effect of prebiotics is its ability to 

increase production of SCFA in poultry gut. SCFA as mentioned earlier has been 

linked to several health benefits.  However, it has been argued that the mere 

demonstration of functional changes in the gut, such as fibre induced SCFA 

production, is not enough for regulatory bodies to grant health claims. A gap has 

thus been identified in the application of prebiotics, in that; similar effects are not 

obtained with the administration of prebiotics compared to the equivalent amounts 

of SCFA produced. Hence, the lack of a direct link between fermentable fibres and 

colonic SCFA production. There exist only a level of association.  

To fill this gap, researchers are calling for technologies such as isotope monitoring 

that will allow for proper SCFA tracking, where SCFA produced, can be linked with 

their fibre sources. However, such studies need to be preceded by characterization 

of fibre sources in terms of monosaccharide composition, structure and 

physicochemical properties (Delcour et al., 2016). Research in prebiotic study is 
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therefore gearing towards studies in proper distinction between different prebiotic 

fibres, such that researchers will no longer just focus on increased number of 

probiotics as a marker for beneficial effects. There is therefore a need to develop 

the database of prebiotic substances in terms source, structure and functionality, 

which can be achieved by detailed grain fractionation and biochemical analysis, as, 

is the case with cereals.Cereal hulls have been used with various degrees of 

pearling in prebiotic studies, with the lack of a proper standardization. Research in 

this area needs to refocus on attention to details in terms of pearling and cereal 

fraction effects, hence this study. Proper information on this can then be transferred 

into already existing models for predicting feed requirements. 

Researchers as mentioned earlier recommend the inclusion of moderate amounts 

of dietary fibre in poultry diet. However, proper information on established dosage 

of inclusion is limited. Also limited is information on the combination of fraction or 

dietary fibres from barley and other cereals to obtain outstanding health benefits. 

Currently, invention of novel prebiotics have been linked to synergistic mixtures of 

prebiotics because as established earlier, small changes in poultry diet often 

produces large effect in poultry products obtained.  An example is the synergism of 

GOS and polyfructose or nutritional compositions containing them. This was 

reported in an invention which found that when GOS and inulin, a polyfructose when 

administered together, they provide a number of beneficial effects including an 

optimal fermentation pattern, with increase in desirable total SCFA production and 

a decreased gas formation (Speelmans et al., 2013). Previously, it has been 

reported widely that intake of prebiotics like GOS and inulin individually, increases 

Bifidobacterial counts (Boehm et al., 2002) and produces other side effects like 

formation of gases which results in fluctuation and abdominal pains. The synergy of 
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GOS and inulin was novel in that they do not significantly increase the number of 

Bifidobacteria, while increasing the amount of desirable SCFA. This benefit was 

achieved when the prebiotics were administered together, indicating that they acted 

synergistically. This invention with Patent number 20130210763 is an example 

where minute changes in the combination of prebiotics led to large differences in 

produced results. This discovery has made possible the prescription of prebiotic 

application with no side effects of abdominal pain, flatulence or constipation 

(Speelmans et al., 2013). More of these types of results can only be achieved by 

detailed studies of prebiotic sources in terms of constituents and possible 

combinations. Hence, this study, which seeks minute fraction effects across a barley 

grain on the growth of the probiotic Lactobacillus acidophilus and fractions of interest 

recommended for further study. 

Also worthy to note is that research in the inclusion of prebiotics and probiotics in 

masking or replacing animal medication is growing in the animal production industry. 

In 2013, seven years after the ban of sub-therapeutic antibiotic in animal production, 

a U.S patent number 20130171204 by DuBourdieu (2013) describes a soft food 

composition for masking solid medication in animal feed with probiotics and 

prebiotics. The invention relates to a food product and feed supplements for animal 

that improve animal health by providing one, all or various combinations or sub 

combinations of a drug agent plus probiotic, prebiotics, vitamins, minerals and 

enzymes. The prebiotic could selected from the group consisting of inulin, lactulose, 

lactitol, a FOS, GOS, etc., included in an amount of about 0.5% to about 6% w/w. 

The patent application emphasized the fact that similar preparations from earlier 

patents lacked the inclusion of prebiotic and probiotics, (Farber and Farber, 2009; 

Huber et al., 2005; Kalbe et al., 2011). In the same year, another invention by Culver 
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et al (2013) was registered, which relates to dietary supplements for enhancing 

animal health. The invented supplement was made up of three components: fatty 

acid component supplied by sunflower, the GI component supplied by prebiotics and 

probiotic and the breed specific component made of immunoglobulin with a Patent 

number 20130216521. 

Despite the ‘fibre gaps’ in prebiotic study, a lot of research has been invested in 

determining the effectiveness of prebiotic substances. Roberfroid (2007), stated that 

the effectiveness of a prebiotic substance can be  measured by its prebiotic index 

(PI), which is defined as the increase in probiotics expressed as the absolute 

number of ‘new’ CFU/g of faeces (E) divided by the dose (g) of prebiotic ingested 

(A). PI is commonly used as a standard for comparison of different prebiotic effects 

among prebiotic carbohydrates. This can be used in the selection of prebiotic 

substances, prior to further testing. 

Another equation was also use to describe PI by Roberfroid (2007) as 

PI = (Bif/total) – Bac/total) + (Lact/total) – (Clos/total) 

 The bacterial groups incorporated into the PI equation include Bifidobacteria, 

Lactobacilli, Clostridia and Bacteriodes.  

Where, 

 Bif = Bifidobacterial numbers at sample time/number at inoculation 

Bac = Bacteroides numbers at sample time/number at inoculation 

Lact = Lactobacilli numbers at sample time/number at inoculation 

Clos = Clostridia numbers at sample time/number at inoculation 
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The equation assumes increase of probiotics like Bifidobacteria and Lactobacillus 

to be a positive while increases of Clostridia and Bacteriodes to be negative. This is 

done to ensure that the increase of probiotics is expressed relative to total bacterial 

growth. Rycroft et al (2001) compared the effectiveness of commercially available 

prebiotics using the PI method, and concluded that galactose containing 

oligosaccharides were more effective than the fructose containing oligosaccharides 

and inulin on Bifidobacteria and Lactobacilli. He concluded that GOS and lactulose 

demonstrated the greatest prebiotic effect. Similar results were obtained by 

Palframan et al (2003). 

Currently, however, the measurement of PI like most other prebiotic studies, is still 

subject to errors due to variations in microbial counts and inter-individual variations. 

There is hope that more research will bring about accurate quantitative methods of 

determining prebiotic index.  

In this research, eight varieties of barley were analysed, with grain fractionation 

technique to obtain precise grain mapping. Each fraction was analysed separately 

with careful attention to extraction techniques to obtain chemical components with 

high physicochemical properties in order to fulfil the specific aims of this research. 
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3.0. Chapter Three: Materials and  Methods 

3.1. Methods Summaried 

Experiments were conducted to determine the chemical composition of eight two-

rowed, hulled varieties of barley – Pearl, Propino, Cassata, Concerto, Maris Otter, 

Munton, Chevalier and Tipple, and how fractions of these varieties affect the growth 

of Lactobacillus acidophilus in a simulated poultry gut in relation to prebiotic 

properties. 

Chemical components of interest of this study include beta-glucan, resistant starch, 

protein, free amino nitrogen (FAN) and sugars, while the microorganism of interest 

is Lactobacillus acidophilus. Salmonella enteritidis was also used in this research in 

a mixed culture experiment to determine growth patterns of probiotic and pathogenic 

microorganisms in a simulated poultry gut. 

100 g of each barley variety was subjected to an abrasive scouring process 

(pearling) that sequentially removes the outer layer of the barley kernel producing 

pearling fractions every 10 seconds, using a Sakate TM05 pearling machine 

(Screen slot: 1mm; gap between the roll and screen: 16 mm; baffle thickness: 3 mm) 

Sakate International (Australia). A total of nine fractions were obtained and labelled 

FR1 to FR9.  The first eight fractions were separated 10 seconds apart while the 

ninth fraction was the left over kernel after pearling for 80 seconds. The fractions 

were further milled separately using a coffee blender and the powder sieved through 

a 0.05 µm aperture sieve to obtain very fine powder. 1000 grains of Propino, 

Concerto and Maris Otter were also weighed in triplicate. 

Microscopic images of pearled grains were obtained using a Hitachi model 7021 S 

– 3000 N scanning electron microscope, Oxford analytical instruments (England). 
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Beta-glucan content (w/w) was measured using K-BGLU 07/11 assay kits, (a 

modification of AOAC method 995.16, AACC method 32-23.01 and ICC standard 

method No. 166), Megazyme International (Ireland). Resistant starch content (w/w) 

was determined using K-RSTAR assay kit (AOAC method 2002.02, AACC method 

32-40.01) Megazyme International (Ireland).  Free amino nitrogen (FAN) was 

determined using micro titre well ninhydrin assay method (Abernathy & Starcher, 

2009). The amount of simple sugars present in each fraction was measured using 

high performance liquid chromatography (HPLC). Protein was determined using a 

Pierce BCA protein assay kit (Thermo Fisher Scientific, England). A microbial 

culture method, under variable biochemical conditions simulating the 

gastrointestinal tract of a poultry bird, adopted from John Kirkpatrick Skeeles poultry 

health laboratory, University of Arkansas (Latorre et al, 2015; Bedford and Classen, 

1993) was used to determine intestinal growth of Lactobacillus acidophilus and 

Salmonella Enteritidis in relation to prebiotic properties on fractions of barley. 

Salmonella Enteritidis was obtained from Public health England culture collection in 

flame sealed glass ampoule containing 0.15 g freeze-dried bacteria culture. 

Lactobacillus acidophilus was obtained from National Collection of Industrial and 

Marine Bacteria (NCIMB, Aberdeen, UK).  

Data obtained were subjected to analysis of variance (ANOVA) and correlation 

analysis using IBM SPSS statistics 21 software. 

3.1.1. Materials 

3.1.1.1. Barley 

Propino, Pearl, Concerto, Cassata, Munton, Maris Otter, Chevalier and Tipple are 

all two-row barley varieties supplied by the Brewlab, Sunderland. 
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3.1.1.2. Microorganism 

Lactobacillus acidophilus was obtained from the National Collection of Industrial and 

Marine Bacteria (NCIMB, Aberdeen, UK). They were isolated from a location along 

the human alimentary canal. Salmonella Enteritidis was obtained from Public health 

England culture collection in flame sealed glass ampoule containing 0.15 g freeze-

dried bacteria culture.  

3.1.1.3. Chemicals  

Beta-glucan K-BGLU 07/11 assay kits and resistant starch K-RSTAR assay kit were 

purchased from Megazyme International (Ireland). Protein BCA assay kit was 

purchased from Thermo Fisher Scientific, United Kingdom. All other reagents were 

purchased from Sigma-Aldrich, United Kigndom. 

 

3.2. Beta-glucan: McCleary Method. 

Mixed-linkage beta-glucan in barley samples were determined using a streamlined 

method, a modified version of AOAC method 995.16, AACC method 32-23.01 and 

ICC method No.166 recommended/standard methods. The experiment involved two 

major steps, an extraction step followed by a measurement step.  

3.2.1. General Principle  

Samples were suspended and hydrated in a buffer solution of pH 6.5 and then 

incubated with purified lichenase enzyme and filtered. An aliquot of the filtrate was 

then hydrolysed to completion with purified beta-glucosidase. The D-glucose 

produced is assayed using a glucose oxidase reagent. 
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3.2.2. Procedure  

100 g of each sample was weighed into a 15 mL centrifuge tube and moistened with 

0.2 mL aqueous ethanol (50% v/v) to aid dispersion. 4.0 mL sodium phosphate 

buffer (20 mM, pH 6.5) was added and contents stirred on a vortex mixer. The tubes 

were immediately incubated for 3 minutes in a boiling water bath with intermittent 

vigorous stirring on a vortex mixer. The contents of the tube were then allowed to 

equilibrate for 5 minutes at 50ºC. After which 0.2 mL lichenase was added to each 

tube and vortexed. The tubes were then incubated for a further 1 hour with 

intermittent vigorous stirring (3-4 times). 5.0 mL sodium acetate buffer (200 mM, pH 

4.0) was then added, and the contents stirred again, followed by a 5 minutes 

equilibration step. The tubes were then centrifuged at 1000 g for 10 minutes. 0.1 mL 

of the supernatant from each tube was then transferred carefully to the bottom of 

glass test tubes in triplicates. 0.1 mL of beta-glucosidase was added to two of the 

tubes (the reaction) and to the third (the blank), 0.1 mL of sodium acetate buffer (50 

mM, pH 4.0) was added. All tubes were incubated at 50ºC for 10 minutes. After 

which 3.0 mL GOPOD reagent (glucose determining reagent) was added to all the 

tubes and incubated for a further 20 minutes. 100 µL of the resultant solution was 

measured at 510 nm in a photo spectrometer alongside 100 µL of the blank reagent 

and glucose standard in triplicate within 1 hour (Glucose standard was supplied by 

the kit). ODs were converted to beta-glucan amounts using Mega-Calc™, supplied 

by Megazyme. 
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3.3. Resistant Starch: AOAC method 2002.02, AACC Method 32-40.01  

3.3.1. Procedure 

100 g each of FR4 to FR9 were weighed into a 15 mL centrifuge tube. (These 

fractions were chosen based on results from SEM images as fractions that may 

contain starch. To each tube was added 4.0 mL solution 2 [1 gram pancreatic α-

amylase in 100 mL sodium maleate buffer plus 1 mL amyloglucosidase (AMG) 

solution] and mixed well on a vortex mixer. The tubes were then tightly capped and 

incubated in a continuous motion water bath (horizontal motion, 100 forward and 

100 reverse stroke/minutes) at 37ºC for exactly 16 hours to solubilise and hydrolyse 

D-glucose. The tubes were removed from the water bath and excess water on the 

surface wiped with paper towel. The solution was then treated with 4.0 mL ethanol 

(99% v/v), to terminate the above reaction, stirred vigorously on a vortex mixer and 

then centrifuged at 1500 g for 10 minutes, with tubes uncapped. The supernatant 

was decanted into a volumetric flask and pellet washed with 2 mL ethanol (50% v/v) 

and mixed well. The re-suspended pellets were further treated with 6 mL ethanol 

(50% v/v), mixed again and centrifuged at 1500 g for 10 minutes. The supernatant 

produced was added again to the relevant volumetric flask. The ethanol wash (50% 

v/v) was repeated a second time and the supernatant collected each time. The pellet 

contains resistant starch while the supernatant contains the soluble starch. 

Pellets from the above were re-suspended in 2 mL 2M KOH solution using a 

magnetic stirrer for 20 minutes in an ice/water bath (vortex mixing is not advised as 

it may cause the starch to emulsify). 8 mL sodium acetate buffer (1.2 M, pH 3.8) 

was added to the mixture on the magnetic stirrer, after which 0.1 mL AMG solution 

was immediately added to each tube and mixed well to quantitatively hydrolysed 



74 
 

glucose. The tubes were then incubated in a water bath at 50ºC for 30 minutes with 

intermittent stirring on a vortex mixer. The tubes containing FR4-FR7 were then 

centrifuged at 1500 g for 10 minute (SEM images suggest samples may contain less 

than 10% starch). For FR8 and FR9, the resulting solutions after incubation, were 

transferred into a clean volumetric flasks, the volumes adjusted to 100 mL (as these 

fractions may contain more than 10% starch according to SEM images) using 

distilled water and mixed well (As advised by the standard method). Aliquots of all 

samples were then centrifuged at 1500 g for 10 minutes. 0.1 mL of supernatants 

from all tubes were then transferred into glass test tubes and 3.0 mL GOPOD 

reagent (glucose determining reagent) added and incubated for a further 20 minutes 

at 50ºC. Absorbance was then measured at 510 nm. And the starch concentrations 

calculated using Mega Calc™. 

 

 

3.4. Free Amino Nitrogen (FAN): Micro Titre Well Ninhydrin Assay Outlined 

by the 1977 European Brewery Convention (EBC).  

 

3.4.1. Procedure  

100 g sample was weighed into a 15 mL centrifuge tube and moistened with 0.2 mL 

aqueous ethanol (50%v/v). 4.0 mL sodium phosphate buffer (20 mM, pH 6.5) was 

then added and the contents stirred on vortex mixer. The tubes were immediately 

incubated for 3 minutes in a boiling water bath with intermittent vigorous stirring on 

vortex. The tubes were allowed to cool and then centrifuged at 1500 g for 10 

minutes, and the supernatant collected for measurements. 2 µL supernatant was 
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then transferred into a 96 well micro titre plate to which was added 2 µL glycine 

nitrogen standard solution (107.2 mg of glycine dissolved in 80 mL distilled water 

and the final volume adjusted to 100 mL).100 µL working reagent (25 µL SnCl2 + 1 

mL of ninhydrin stock solution) was added and the plate heated for 10 minutes at 

104oC in an oven. The absorbance was then measured at 575nm (Abernathy et al., 

2009). FAN was measured using the following formula. 

FAN = (Sample OD – Distilled water OD) / (FAN standard OD – Distilled water OD) 

 

 

3.5. Protein: Thermo Scientific™ Pierce™ BCA Protein Assay: A Detergent-

Compatible Formulation Based on Bicinchoninic acid (BCA) for the 

Colorimetric Detection and Quantitation of Total Protein.  

 
3.5.1. Principle  
 

 This method combines the well-known reduction of Cu+2 to Cu+1 by protein in an 

alkaline medium with the highly sensitive and selective colorimetric detection of the 

cuprous cation (Cu+1) using a unique reagent containing bicinchoninic acid. 

3.5.2. Procedure  

Standard curve was prepared for a protein range of 25 to 2000 µg/mL, using bovine 

serum albumin (BSA) as stock solution.100 g sample was weighed into a 15 mL 

centrifuge tube and 0.2 mL aqueous ethanol (50%v/v) added to aid dispersion. 4.0 

mL sodium phosphate buffer (20 mM pH 6.5) was added and contents stirred on 

vortex mixer. The tubes were immediately incubated for 60 seconds in a boiling 

water bath. The contents were the stirred vigorously on a vortex and further 

incubated for 2 minutes at 100oC and stirred again, allowed to cool and then 
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centrifuged at 1500 g for 10 minutes and the supernatant used for protein 

measurements. 

25 µL each of standard and sample solutions were transferred into a 96 well micro 

titre plate, and then 200 µl of the working reagent added and mixed thoroughly on a 

plate shaker for 30 seconds. The plate was covered and incubated at 37oC for 30 

minutes and then cooled to room temperature and absorbance  measured at 562nm. 

The measurement of each standard and sample were subtracted from the blank 

measurements. A standard curve was plotted for each BSA standard versus its 

concentration in µg/mL and protein concentrations of samples determined from the 

standard curve equation. 

 

3.6. Sugars: Analysis using Hitachi Lachrom Elite® Liquid 

chromatography system. 

 

3.6.1. Experimental conditions 

Hitachi LaChrom NH2, 5 µm, 4.6 x 250 mm HPLC column was used in this 

experiment. The pump (L-2130) has a mobile phase made up of 75 % acetone 

nitride and a flow rate of 1 mL/minute and an auto sampler (L-2200) with an injection 

volume of 20 µL. The oven was set at 40oC. Sugar concentrations ware measured 

using a refractive index detector (L-2490). A calibration curve was created using a 

5 sugar mixture at 5 %, 2 %, 1 % and 0.5 % of glucose, fructose, sucrose, maltose 

and maltotriose. 

  

 



77 
 

3.7. Simulated Poultry Gut Method 

Two methods were used in this experiment as described below. The first method 

produced inconsistent results, so a second method, which was a modification and 

optimization of the first method, was adopted. Three varieties of barley Propino, 

Concerto and Maris Otter, were selected randomly for this experiment to reduce the 

sample size, increase manageability and accuracy. 

3.7.1. Principle  

Samples were mixed with 0.03M hydrochloric acid and incubated at 40oC for 30 

minutes. After which pepsin in 1.5M hydrochloric acid was added, the sample was 

mixed again and incubated for a further 45 minutes to simulate the proventriculus. 

After which, pancreatin and sodium bicarbonate were added to the same sample 

tube, mixed and allowed to incubate for a further one hour and the final product 

centrifuged to obtain dissolved nutrients to simulate the small intestine. The 

supernatant from the small intestine was dialysed to separate digested nutrients 

from undigested ones. Undigested nutrients were then used in bacterial growth 

studies to simulate what occurs in the caeca. The undigested nutrient are 

hypothesized to be prebiotic in nature.  

3.7.2. Bacteria Preparation 

Lactobacillus acidophilus and Salmonella enteritidis were cultured at 37oC overnight 

in 10 mL MRS and nutrient broth respectively. These overnight cultures were then 

centrifuged at 4000 rpm for 15 minutes, the supernatant discarded and the pellet re-

suspended in 10 mL saline and this washing step repeated a second time. The final 

concentration was adjusted 4 X 105 cells/mL, to make a start culture. 
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3.8. Method One - Mixed Culture Drop Plate Count Method  

A mixed culture method, to determine the effect, as a prebiotic, of extracts from nine 

barley fractions, FR1 to FR9, on microbial populations under variable biochemical 

conditions simulating the gastrointestinal tract of a poultry bird, using Lactobacillus 

acidophilus and Salmonella enteritidis. The method was adapted from John 

Kirkpatrick Skeeles poultry health laboratory, University of Arkansas, United States 

that was a modification of in vitro digestion by Bedford & Classen, (1993).  

3.8.1.  Procedure  

1 gram barley fraction was measured into a 15mL centrifuge tube. 4 mL 0.03M HCL 

was then added to each tube and mixed thoroughly and incubated at 40oC for 30 

minutes. To the same tube was added 1 mL pepsin (6U/µL in 1.5M HCL) and the 

contents mixed thoroughly. The tubes were incubated at 40oC for 45 minutes. 1.3 

mL 8 X pancreatin (0.06mg/µL in 1.0M NaHCO3) was then added to the same tube 

and allowed to settle. 

                                         

                    Figure 3.1. Simulated poultry gut 
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The tubes from above were then centrifuged at 4000 rpm for 15 minutes, and the 

supernatant dialysed to separate micro-molecules from macromolecules to simulate 

nutrient absorption using a Pierce™ 96-well micro-dialysis plate for four hours.  100 

µL of supernatant was transferred into the micro dialysis tube and the tube placed 

in 2 mL water for separation process. Macromolecules are hypothesized to be 

prebiotic in nature. At the end of the separation, 90 µL of dialysed solution containing 

micro molecules and macro molecules where transferred into a micro-titre plate. 5 

µL Lactobacillus acidophilus and 5 µL Salmonella enteritidis of the start culture was 

added to each well and incubated at 40oC for 2 hours. 10µL sample was taken from 

each well, serial diluted to 10-4 and inoculated on XLT-4 and MRS agar plates 

selective for Salmonella and Lactobacillus respectively, using a drop plate method 

and incubated at 37oC for 24 hours.  

The micro-titre plate from above was further incubated anaerobically at 40oC for 4 

hours to simulate the caeca, after which 10µL sample was taken from each tube, 

serial diluted to 10-4, plated onto XLT- 4 and MRS agar at 37oC and colonies counted 

after 24 hours. 

 

3.9.  Method 2 - Micro-Titre Plate Method 

A single culture method was used to determine the effect, as a prebiotic, of extracts 

from nine barley fractions, FR1 to FR9, on microbial populations under variable 

biochemical conditions simulating the gastrointestinal tract of a poultry bird, using 

Lactobacillus acidophilus. A modification of the simulated poultry gut method was 

adapted from John Kirkpatrick Skeeles Poultry Health Laboratory, University of 
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Arkansas, United States which was a modification of the in-vitro digestion model of 

Bedford & Classen, (1993). 

3.9.1.  Procedure  

1 gram barley fraction was measured into a 15mL centrifuge tube. 4 mL 0.03M HCL 

was then added to each tube and mixed thoroughly and incubated at 40oC for 30 

minutes. To the same tube was added 1 mL pepsin (6U/µL in 1.5M HCL) and the 

contents mixed thoroughly. The tubes were incubated at 40oC for 45 minutes. 1.3 

mL 8 X pancreatin (0.06mg/µL in 1.0M NaHCO3) was then added to the same tube 

and allowed to settle. The tubes were then centrifuged at 6000rmp for 15 minutes, 

and the supernatant dialysed to separate micro-molecules from macromolecules to 

simulate nutrient absorption using a Pierce™ 96-well micro-dialysis plate for four 

hours.  100 µL of supernatant was transfer into the micro dialysis tube and the tubes 

placed in 2 mL water for separation of digested molecules (micro molecule) from 

undigested molecule (macro molecule, which could possibly be prebiotic). 

At the end of the separation, 90 µL of dialysed solution containing macro molecules 

where transferred into a 96 well micro-titre plate. 10 µL Lactobacillus acidophilus 

start culture was added to each well and the growth monitored in a 

spectrophotometer at 600nm for 10 hours. 90 µL undialyzed samples were also 

transferred to a micro titre plate and growth monitored for 10 hours and used to 

compare growth patterns of Lactobacillus acidophilus in the dialysed sample. 
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4.0. Chapter Four: Chemical Analysis  

Details of all statistical analysis available in appendix, including F-ratios and degree 

of freedom for p-values, as well as standard deviations and R-squared values. 

 

4.1. Pearling Results 

Table 4.1 below, shows the cumulative weights of fractions obtained from the 

pearling experiment. At the end of the pearling cycle (i.e. after 80 seconds), 

approximately, 15% of the surface layers of most grains have been abraded. After 

80 seconds of pearling, varieties showed differences in the amounts abraded, as 

well as for fractions obtained per step of the pearling cycle. These differences could 

possibly be attributed to degree of toughness of the grain per variety. For instance, 

Concerto produced a relatively high pearled fraction of 17.36%, while Maris Otter, 

produced a lower amount of 11.40% after 80 seconds of pearling.  

Table 4.1: Cumulative pearling fraction mean weights for eight barley varieties from 

80 seconds pearling cycle. Fractions were obtained 10 seconds apart for FR1 to 

FR8. FR9 is the leftover pearled grain after pearling for 80 seconds. 100 g samples 

were used for each cycle in triplicate. (See appendix 1 for standard deviations) 

Cumulative fraction weights (%)   

  Pearl Propino Cassata Concerto 
Maris 
Otter Munton Chevalier Tipple 

  

FR1 5.27 5.71 5.24 6.29 4.19 3.53 2.08 5.94   

FR2 8.00 7.16 7.89 8.59 7.07 7.00 5.01 7.98   

FR3 9.25 8.30 9.15 9.90 8.20 8.90 8.42 9.10   

FR4 10.42 9.46 10.17 11.20 8.97 10.07 10.30 10.12   

FR5 11.58 10.73 11.25 12.65 9.67 11.01 11.27 11.16   

FR6 12.57 11.79 12.15 14.04 10.25 11.89 11.95 12.07   

FR7 13.60 13.01 13.15 15.68 10.77 12.75 12.57 13.04   

FR8 14.79 14.26 14.18 17.36 11.40 13.59 13.25 14.00   

FR9 85.20 85.75 85.64 82.83 88.61 86.75 86.75 86.00   
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Table 4.1 shows that after 10 seconds of pearling, pearling fractions obtained from 

five out of eight varieties was approximately 5 – 6%, except for Chevalier, Maris 

Otter and Munton which showed lower amounts of 2.08%, 4.19% and 3.53% 

respectively. Fractions obtained from this step were the highest in the entire pearling 

cycle. This fraction, labelled FR1 is the outermost layer of the grain, known as the 

husk. This region is made up of mainly fibrous substances (figure 4.1), that are not 

tightly attached to the rest of the grain. In fact, for hulless barley varieties, this portion 

of the grain falls off freely during harvesting and threshing. The husk is made of two 

distinct overlapping layers called lemma and palea.  FR2, which is the next layer to 

FR1, is also part of the husk, containing similar chemical components. However, 

pearling fractions obtained from this layer, were smaller in amount compared to FR1 

except for Chevalier, where the reverse was the case. Pearling fractions from FR2 

on average were 2.55 g compared to 4.78 g obtained from FR1. The amount of 

pearling fraction obtained after FR2 reduced greatly (table 4.1), indicating the 

complete removal of the highly fibrous hull, not tightly attached to the rest of the 

grain. After 30 seconds of pearling, the amount of pearling fraction obtained was 

approximately 1.0 g per pearling step compared to approximately 5.0g and 3.0g for 

FR1 and FR2 respectively. According to literature, FR3 corresponds with the 

pericarp region of the grain, which is cemented to the rest of the grain by a thick 

three-layered cutin. Cutin is the polymer that separates the different layers of the 

grain. After 30 and 50 seconds, the cumulative pearling fractions obtained were 

approximately 8-9% and 10-12% respectively for all eight varieties. The slight 

variations observed can be attributed to the grain sizes. 1000 grain weight 

measurements show 46.56kg, 51.36kg and 40.63kg for Concerto, Propino and 

Maris Otter respectively  
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SEM images (Figure 4.1 and Figure 4.2) were obtained for whole grain, pearled 

grains and pearling fraction after each pearling step. The images were labelled 

whole grain, FR1 after 10 seconds of pearling, upto FR8 after 80 seconds of 

pearling. A summary of all the images suggest that the bran layer of the grain (hull, 

pericarp, testa and aleurone) was removed after 80 seconds of pearling, 

corresponding to approximately 15% grain weight. Starch granules were clearly 

exposed after 80 seconds of pearling (figure 4.2). There were however, some 

breakages during the pearling process, however, this did not affect the consistency 

of fractions obtained in replicates. 
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Figure 4.1. SEM images of pearled Chevalier after 10,20,30 and 40  

seconds of pearling. Magnification: 18X, bar 2mm  (left); 

2000X, bar 20µm (right). 
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Figure 4.2. SEM images of pearled Chevalier after 50, 60, 70 

and 80 seconds of pearling. Magnification: 18X, 

bar 2mm  (left); 2000X, bar 20µm (right). 
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The images show the gradual removal of the outer layer of the grain with time. After 

10 seconds the grain appeared huskless (Figure 4.1) which corresponds with about 

5% grain weight loss. During the  pearling process, some grain surfaces did not 

appear smooth, as some breakages were observed which might have been due to 

the abrasive scouring process or as a result of lack of moisture. The grains were not 

moisture treated or tempered before pearling. Some studies recommend 12-15% 

moisture treatment before pearling (Wang et al., 1997). However, a repeat of 

pearling moisture treated grains yielded similar images. The tempering step for 

barley consists of adjusting the moisture content of the kernel by soaking grains in 

water in percentages relative to the grain weight, followed by a rest period of 24 

hours prior to pearling (Kent and Evers, 1994). A report by Wang et al (1997) stated 

that tempering cereals to 12.5% and 15% moisture had no consistent effect on rates 

of grain mass removal by abrasion. 

 

4.2. Beta-glucan 

Fractions obtained from pearling eight barley varieties were tested for beta-glucan 

content. The results showed that beta-glucan was present in all fractions of all eight 

varieties. The amounts ranged between 2 and 25 % (w /w) per fraction are presented 

in below in table 4.2. Total beta-glucan per variety ranged between 11 and 20 mg 

(w/w) per variety. Tipple and Propino had the highest total beta-glucan content of 

19.58 mg (w/w) and 18.77 mg (w/w) respectively. Next were Concerto, Pearl and 

Cassata with 17.32 mg (w/w), 16.06 mg (w/w), and 16.93 mg (w/w) respectively, 

while Munton, Chevalier and Maris Otter had low amounts of 14.27 mg (w/w), 11.42 

mg (w/w) and 11.68 mg (w/w) respectively.  
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Table 4.2: Total beta-glucan content (percentage) per pearling fractions of eight 

barley varieties in triplicate. (See appendix 2.0 for standard deviations in mg/100mg) 

  Pearl Propino Cassata Concerto  Maris Otter Munton Chevalier Tipple 

FR1 3.28 2.62 3.43 3.38 3.55 6.41 2.95 2.73 

FR2 4.78 5.46 5.33 6.06 3.76 4.05 3.47 5.16 

FR3 8.54 9.12 8.69 9.61 7.57 7.00 4.95 9.06 

FR4 10.37 10.46 10.74 10.73 9.52 9.14 6.42 10.41 

FR5 10.80 12.27 11.88 11.54 10.24 11.55 9.05 12.37 

FR6 13.10 14.30 14.44 13.06 15.49 14.07 15.00 13.94 

FR7 14.74 15.36 15.10 15.19 15.49 15.21 15.74 15.60 

FR8 16.53 15.52 15.45 14.62 15.13 16.43 17.37 16.24 

FR9 17.85 14.89 14.93 15.80 19.25 16.14 25.05 14.49 

 

 

Beta-glucan in barley is usually unevenly distributed (Yeung and Vasanthan, 2001).  

A summary of the results, showed a gradual increase of beta-glucan from FR1 to 

FR9 across all varieties (figure 4.3), with the highest amounts of 14 – 25% in FR7-

FR9. Variety differences were however observed in the distribution of beta-glucan 

across the grain. FR1 in all varieties recorded the lowest beta-glucan content 

ranging between 2 – 3% except for Munton which had a slightly high beta-glucan 

content of 6.41% in FR1 (table 4.2). On average, beta-glucan content rose from 2% 

in FR1 to a range of 7-12% in FR3-FR5 across all varieties, with the exception of 

Chevalier, which showed exceptionally low amounts of beta-glucan in FR1-FR4, 

ranging between 4 and 9%.  In most varieties, the amounts of beta-glucan present 

in FR1 to FR6 were significantly different one from the other at P ≤ 0.05, with a few 

exceptions.  In three out of eight varieties, beta-glucan content in FR7 was not 

significantly different from FR8 as was the case with Cassata, Maris Otter and 

Propino. In addition, amounts present in FR8 were not significantly different from 

FR9 at P ≤ 0.05 in four out of eight varieties (see appendix 2.0). 
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Figure 4.3: Beta-glucan content (w/w) in FR1 – FR9 of eight barley varieties. 

 

Varieties showed differences and similarities in terms of beta-glucan content. Tipple 

and Propino were very similar in terms of total beta-glucan content as well as in 

amounts present per fraction of the grain.  Both varieties had very high total beta-

glucan content with the highest amount present in FR8, which was significantly 

higher than FR9 at P ≤ 0.05. However, amounts present in FR8 was not significantly 

higher than FR7 at P ≤ 0.05 in Propino. FR1 in Tipple and Propino, were the lowest 

of all varieties with 2.62% and 2.73% respectively, while FR2-FR6 contained the 

fraction average similar to other varieties ranging between 5 and 15%. There was 

however, no significant difference in the amounts present in FR3 and FR4 in Tipple 

at P ≤ 0.05. 

 Maris Otter and Chevalier, on the other hand, showed very low total beta-glucan 

content of 11.68 mg (w/w) and 11.42 mg (w/w). For both varieties, beta-glucan 

content in FR1-FR5 was relatively lower than the fraction average of other varieties. 

Their beta-glucan content however rose considerably after FR5, with amounts in 
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FR6-FR9 relatively higher than other varieties. In fact, Maris otter and Chevalier 

recorded the highest beta-glucan content in FR8 and FR9 compared to all other 

varieties, with chevalier recording the highest amounts of 17% and 25% in FR8 and 

FR9 respectively. 

Concerto was a variety that stood out from the other varieties, in that; it recorded 

the lowest beta-glucan content in FR8. An amount that was lower than amounts 

obtained in FR7 and FR9 of all varieties tested. Beta-glucan content of other 

fractions of Concerto, were however, similar to the fraction averages of other 

varieties. It had a total beta-glucan content of 17.32 mg (w/w), which was lower than 

Tipple and Propino but higher than the other varieties.  

Pearl, Cassata and Munton were moderately high in beta-glucan content compared 

to other varieties. Pearl and Cassata were quite similar in total beta-glucan content, 

with both varieties, having approximately 16.00 mg (w/w) beta-glucan content, while 

Munton had a total beta-glucan content of 14.27 mg (w/w). However, there were 

variations in the distribution of beta-glucan across these three varieties. Amounts in 

FR9 was significantly higher than all other fractions in Pearl at P ≤ 0.05, while FR8 

was the highest in Cassata and Munton. FR8 was however not significantly higher 

than FR6, FR7 and FR9 in Cassata at P ≤ 0.05. Munton at 6.4%, recorded the 

highest beta-glucan content in FR1 amongst all varieties tested, while Pearl and 

Cassata recorded about 3%, similar to other varieties. FR2 in Munton at 4.5% was 

however slightly lower than Pearl and Cassata which were 4.78% and 5.33% 

respectively. Despite the differences mentioned above, all varieties still followed the 

general pattern of a gradual increase in beta-glucan content from FR1 to FR9. 

Differences in amount of beta-glucan are discussed in relation to pearling fraction 

size and location on grain, are discussed below. 
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4.3. Resistant Starch 

The table 4.3 below shows the total resistant starch present in FR4 – FR9 of all 

varieties. SEM images of FR1-FR6 clearly did not show any starch granules, 

therefore, the test for resistant starch was  performed  for FR4 – FR9.   

 

Table 4.3: Total resistant starch content (percentage) in six pearling fractions (FR4 

– FR9) of eight barley varieties. (See appendix 3.1 for standard deviations). 

 

The table 4.3 above show  the total  amount of resistant starch present in all eight 

varieties with the largest amount present in the endosperm region of the grain - FR8 

and FR9. Of all varieties tested, the total amount of resistant starch present was 

approximately 1.1 mg (w/w) per fraction in FR4 to FR7 which is about 4 %. SEM 

images of these regions, showed no starch granules (figure 4.1 and 4.2). It has been 

widely reported that the amount of starch increases with degree of pearling, 

suggesting that the outer tissue layers of barley grains are made of non-starch 

material (Yeung and Vasanthan, 2001). Results from the table above show a similar 

pattern. The resistant starch content in FR8 and FR9 ranged between 9 and 11 mg 

(w/w), which was approximately 30 – 45 % with no major variety differences. The 

amount measured in FR9 of Marris Otter was however 17.1 mg (w/w) i.e. 53.1%. 

Barley used in the experiment was milled, and subjected to several processing steps 

  Pearl Propino Cassata Concerto Maris Otter Munton Chevalier Tipple 

FR4 4.47 4.19 4.24 4.76 3.34 4.49 4.38 4.59 

FR5 4.37 4.40 4.24 4.59 3.42 4.41 4.56 4.69 

FR6 4.47 4.28 4.43 4.59 4.12 4.53 4.49 4.59 

FR7 4.35 4.40 4.55 4.81 3.92 4.34 4.40 4.54 

FR8 39.86 41.36 40.21 39.81 32.08 39.38 38.07 40.80 

FR9 42.46 41.37 42.31 41.46 53.12 42.85 44.08 40.80 
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of hot water extraction, cooling and enzyme treatment to obtain total resistant starch 

content. Results for FR4 – FR7 clearly showed that very little or possibly no resistant 

starch was present in these fractions, while FR8 and FR9 contained large amounts 

of resistant starches. The total amount of resistant starch was approximately 25.00 

mg (w/w) in all varieties tested. 

 

Figure 4.4: Mean percentage resistant starch content (w/w) in FR4 – FR9 of eight 

barley varieties in triplicate. FR4-FR7 contained < 10% resistant 

starch while FR8 and FR9 contained >10% resistant starch. 

 

4.4. Protein 

The total protein per variety ranged between 8.2 - 10.2 mg/mL. Cassata had the 

highest total protein content of 10.3 mg/mL and the lowest were Pearl and Propino, 

both with approximately 8.6 mg/mL. Percentage protein per fraction is presented in 

table (4.4) below. FR1 had a low protein content of approximately 10 -11%. This 

amount was however higher than amounts present in FR9 with a range of 2 and 4%. 

There were however, some variety difference around these ranges. For instance, 

Maris Otter and Chevalier have protein content slightly lower than 10% in FR1. 
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Table 4.4: Percentage protein per pearling fraction of eight barley varieties. 

  Pearl Propino Cassasta Concerto Maris otter Munton Chevalier Tipple 

FR1 10.83 10.17 10.90 11.64 9.26 10.23 8.26 10.93 

FR2 13.65 15.02 13.94 15.74 10.29 13.05 10.23 14.62 

FR3 15.69 15.51 16.27 16.30 13.63 14.44 12.61 14.52 

FR4 14.36 14.96 13.56 12.51 15.65 13.82 14.96 14.78 

FR5 12.64 12.17 12.61 12.21 14.89 14.42 13.65 13.40 

FR6 9.86 10.09 9.85 10.87 11.65 10.41 12.16 10.23 

FR7 10.41 9.57 10.35 8.97 10.43 9.67 11.73 9.78 

FR8 9.31 9.40 8.90 8.39 10.39 9.54 12.18 9.12 

FR9 3.26 3.11 3.63 3.37 3.81 4.41 4.22 2.63 

 

A summary of the result in figure (4.5) below shows a gradual rise in protein content 

from FR1 to FR3, where it peaks and then begins to decrease to its lowest amounts 

in FR9. There was a sharp decrease in protein content after FR5 and another sharp 

decrease after FR8. The figure below also shows that the highest amounts of protein 

were concentrated between FR2 and FR5, with FR3 standing out as having the 

highest protein content.  

 

 

Figure 4.5: Protein content (µg/mL) in nine fractions (FR1-FR9) of eight barley  
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In terms of the highest amount of protein per fraction, there were slight variety 

differences. FR3 had the highest protein content in Propino, Concerto, Pearl, 

Cassata and Munton, i.e. five out of eight varieties, while, FR4 was highest in Maris 

Otter, Tipple and Chevalier. For all varieties, protein content in FR6, FR7 and FR8 

were quite similar, i.e., smaller than FR2 - FR5 but greater than FR9. The protein 

content in FR9, as expected was high because it is the endosperm region of the 

grain, made up of mainly starch granules and proteins. However, they are termed 

storage starches and proteins and are usually unavailable. Statistical analysis of 

results obtained showed that protein amount was highest in FR3 and FR4, amounts 

that were not significantly different one from the other at P ≤ 0.05. Next were FR2 

and FR5.  FR9 was significantly lower than all other fractions at P ≤ 0.05, followed 

by FR1, FR6, FR7 and FR8 were all not significantly different at P ≤ 0.05 one from 

the other. 

 

4.5. Free Amino Nitrogen (FAN) 

A summary of FAN results showed that Pearl and Concerto recorded the lowest 

amounts at 0.015 mg/mL and 0.017 mg/mL. The highest varieties were Propino, 

Cassata, Tipple and Maris Otter with 0.023 mg/mL, 0.022 mg/mL, 0.022 mg/mL and 

0.021 mg/mL FAN content respectively. Chevalier and Munton had similar amounts 

of 0.020 mg/mL and 0.020 mg/mL. Amounts per fraction ranged between 0.001 

mg/mL and 0.003 mg/mL. 

Figure (4.6) below showed a slightly higher FAN content in FR1-FR5 compared to 

FR6-FR9. FR9 contained the lowest amount in all varieties tested. Significant 

differences at P ≤ 0.05 across fractions were observed in Propino, Concerto and 

Maris Otter, see appendix 3.0. 
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Figure 4.6: Free amino nitrogen content (µg/mL) in FR1 – FR9 of eight barley 

varieties.  

 

4.6. Sugars 

Table 4.5 shows total amount of fructose, glucose, sucrose, maltose and 

maltotriose, in all eight varieties of barley tested. Values showed differences in 

amount of sugars present in all varieties. 

 

Table 4.5: Total sugar (mg/mL) content in eight barley varieties. 

Simple sugars (mg/mL) 

  Fructose Glucose Sucrose Maltose Maltotriose 

Pearl 1.2196 3.4332 11.6235 6.0339 8.6391 

Propino 1.0810 2.2495 10.3445 3.6453 9.0753 

Cassata 1.4450 3.1082 12.6594 4.8463 7.3368 

Concerto 1.4156 2.0585 10.4178 4.9509 13.3632 

Maris Otter 1.5449 3.7540 5.6384 6.1140 15.8171 

Munton 1.4352 2.7552 10.1420 3.7553 7.3995 

Chevalier 0.3791 2.7367 12.2632 5.1173 9.3940 

Tipple 2.8246 2.2296 10.3181 4.0361 17.6841 
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Figure 4.7: Sugars content (mg/mL) of FR1 – FR9 of eight barley varieties. 

 

The above graph shows the distribution of sugars in FR1-FR9. Glucose and maltose 

were found in every fraction with glucose amounts decreasing from FR1 to FR9 

while maltose increased. Similar results were obtained by Gohl et al (1978). Sucrose 

was found in high amount in FR3-FR7, but unexpected absence in FR8 of all eight 

varieties tested. Minute amounts were however detected in FR1 and FR9. These 

sugars were however removed by dialysis before extracts were used in experiments 

aimed at determining prebiotic properties as only complex sugars possess prebiotic 

properties. The sugars were however relevant to growth patterns observed when 

un-dialyzed extracts were used. 

 

4.7. Discussion 

In this study, barley grains were fractionated and mapped for the presence of beta-

glucan, resistant starch, protein, free amino nitrogen and sugars. Fractionation was 

achieved by pearling. Pearling is the gradual and sequential removal of grain tissue 
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starting at the husk, followed by the pericarp, testa, aleurone layer, and finally 

terminating in the endosperm (Marconi et al., 2000; Wang et al., 1997). A study by 

Wang (1997) showed that the first 30% pearling fraction of a barley grain is made 

of the hull, pericarp, testa, aleurone and sub-aleurone layers, all of which vary in 

chemical composition. Fractions or pearling fines are collected between time lapses, 

weighed and represented as a percentage of the original grain weight. In this study, 

fractions of barley grain were fractionated 10 seconds apart in order to obtain a clear 

picture of the different layers of the grain, which would provide a relatively accurate 

account of chemical components distribution across the grain.  A review of reports 

of pearling barley have shown similar results to those obtained in this study.  Lampi 

et al (2004) reported in a pearling experiment that after 30 and 90 seconds of 

pearling, fractions obtained from a barley were 7% and 14.6% respectively. In this 

current research, after 80 seconds of pearling, approximately 15% fractions were 

obtained from hulled varieties. In another experiment by Wang et al (1997), using a 

Satake abrasive mill equipped with a medium abrasive roller stone, produced 2.7 - 

4.9% fractions after 10 seconds of pearling, similar to amounts obtained in this 

research where approximately 5% fractions were produced after 10 seconds of 

pearling in eight barley varieties.  

The amount of pearling fraction obtained per pearling step, across the kernel, 

determines the amount of protein, beta-glucan and resistant starch contained per 

fraction, hence, the variety differences observed, which has been linked to grain 

size in relation to hull/endosperm ratio per variety. Pre-pearling steps such as 

moisture treatment or tempering are commonly used to prepare grains prior to 

pearling to treat hardness of hull and prevent breakages. However, concerns about 

the effect pre pearling steps could have on the chemical composition of fractions 
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prevented grain tempering in this research. A report by Wang et al (1997) showed 

that tempering grain with moisture had an effect on protein and starch removal from 

the grain. He stated that increased tempering from 12.5 to 15.0% grain moisture 

reduced starch content in the bran during abrasion. The same report also stated 

that protein content of the outer hull fractions removed in the first abrasion steps 

were low (6.7 – 12%) due to grain tempering. Grain tempering also leads to a loss 

of water soluble beta-glucan. The effectiveness of grain tempering have also been 

questioned in some quarters. Using 3D magnetic resonance imaging, Song et al 

(1998) showed water penetration during grain tempering. His results showed an 

uneven water distribution during tempering especially around the germ and crease 

regions. He concluded that tempering increased the plasticity of the outer layers of 

the grain thus making them more difficult to separate. Results from images obtained 

from his study showed high water concentration in the germ and bran layer 

immediately after moisture treatment and an uneven moisture distribution in the 

endosperm, at the end of the treatment. In another report Andersson (2008) 

recommended a 20 minutes grain tempering, which allows water to penetrate only 

the outer layers of the grain, allowing for easy separation, as opposed to 

conventional tempering times of 12 – 36 hours, which causes the fusion of the seed 

coat and the aleurone layer, thus making separation difficult. 

The ability of researchers to fractionate barley grains has been employed in the 

production of functional foods with desired chemical component.  Liu et al, (2009), 

employed a dry fractionation (pearling and milling) method to produce barley meals 

varying in protein, beta-glucan and starch content. The degree of pearling over time 

determines the chemical composition of fractions obtained. Van Donkelaar et al 

(2015) in his work titled ‘pearling barley to alter the composition of the raw material 
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before brewing’, reported that the 5% outer layer of barley grain contains 15% 

insoluble arabinoxylans, 23% insoluble fibre, 19% ash, 11% polyphenol and about 

0.20% starch. The knowledge of the chemical composition of the different layers of 

cereal grains, especially barley, is creating more nutritional applications of the crop, 

which was considered relatively under-utilised with regards to its potential as an 

ingredient in both human and animal feeds. Another report by Zheng et al (2002) 

stated that beta-glucan content increased with degree of pearling to about 25% of 

the grain weight, where it peaks. High amounts of beta-glucan have also been 

reported in the aleurone layer of barley grain (Summers et al, 1985, Marconi et al, 

2000). This corresponds with results obtained in this study where beta-glucan was 

highest in FR7 and FR8 which are the aleurone layer of the grain, as suggested by 

SEM images. 

Beta-glucan and resistant starch are health-promoting compounds. Their presence 

in any food substance is therefore very important. Barley grains contain high 

amounts of beta-glucan, higher than most other cereals, hence the interest in barley 

for possible prebiotic property. Results from this current study have shown the 

presence of beta-glucan, resistant starch, protein and free amino nitrogen in all 

barley varieties tested, all, existing in varying amounts across varieties and 

fractions. There was, however, a consistent pattern in the distribution of these 

chemical components across all grains of all varieties. For instance, there was a 

consistent increase in beta-glucan and resistant starch, from the husk to the 

endosperm region (FR1-FR9) in all varieties. The reverse was the case for protein, 

which showed a consistent gradual decrease from FR5 to FR9, after an initial 

increase from FR1, which peaked at FR3 and FR4. Free amino nitrogen which is a 
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measure of the concentration of small peptides and amino acids were almost evenly 

distributed across all fractions.  

SEM images have shown that FR1-FR8 are the bran layer of the grain while FR9 is 

the starchy endosperm. The bran is divided into the outer bran (FR1-FR5) and the 

inner bran (FR6-FR8). A breakdown of results obtained from this study, revealed 

low beta-glucan, low resistant starch and high protein content in the outer bran, 

while the inner bran had a high beta-glucan, high resistant starch and low protein 

content. FR9, which is the starchy endosperm, was high in beta-glucan and resistant 

starch but very low in protein. These results correspond with the literature review on 

chemical components of barley grains. Similar results were obtained in a recent 

study, where six varieties of barley were tested for beta-glucan content and 

extractability in kernel, inner/outer bran and sifted flour (Djurle et al., 2016). The 

study showed that SLU 7 (a variety with a shrunken endosperm) had the highest 

beta-glucan content of 9.2%, while other varieties ranged between 3.3 and 6.6%. 

Varying amounts of beta-glucan were equally obtained across different varieties in 

the current study, ranging between 11- 20 %.  These differences amongst varieties 

according to Djurle (2016) could be attributed to the ratio of the hull to the 

endosperm portion. A variety with a shrunken endosperm, obviously has a larger 

hull portion which usually relates to high dietary fibre content, hence a higher beta-

glucan content. It was also stated in the same report that producing sifted flour for 

all varieties, reduced their dietary fibre content which further supports the fact that 

beta-glucan is higher in the fibrous portion of the grain. In the current research, the 

barley varieties used also showed difference in a thousand grain weight, with 

46.56kg, 51.36kg and 40.63kg for Concerto, Propino and Maris Otter respectively, 
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suggesting possible difference in bran versus endosperm ratios, hence differences 

in chemical compositions. 

Djurle (2016) carried out further analysis on the bran fractions of these six varieties 

to determine beta-glucan distribution in the outer and inner bran. Analysis of Gustav 

(a hulled variety) showed a higher beta-glucan content (5.6%) in the inner bran, 

compared to 2.1% in the outer bran and 3.6% in sifted flour. These results are similar 

to results from this study (table 4.2) which shows low beta-glucan content in FR1 – 

FR5 (outer bran) and high beta-glucan content in FR6 - FR8 and FR9, which 

corresponds with inner bran and flour portions of the grain. However, the flour 

portion (FR9) in this current study was not sieved and hence, might still contain 

fractions of the inner bran. Table 4.2 showed high amount of beta-glucan in FR9, 

which was slightly higher than FR8 in some varieties and slightly lower in others. 
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5.0. Chapter Five:  Microbial Analysis Results 

 

5.1. Extracts Containing Undigested Nutrients (Method One)  

Fractions obtained from pearling were subjected to a digestion process in a 

simulated poultry gut, with digested nutrients serving as energy source for 

Lactobacillus acidophilus and Salmonella enteritidis over a 6-hour growth period 

(see methods). Samples were collected from the simulated poultry gut at two hours 

and six hours after bacterial inoculation and plated on growth agar and colonies 

counted 24 hours later. Amount of growth was analysed by calculating the difference 

in growth between the two hours and six hours after bacterial inoculation. Result for 

all three varieties showing growth pattern of fractions is summarised in figure 5.1 for 

Lactobacillus acidophilus and figure 5.2 for Salmonella enteritidis, for possible 

prebiotic effect (extracts containing undigested nutrients) and figure 5.3 and figure 

5.4 for Lactobacillus acidophilus and Salmonella enteritidis growth in for solution 

containing digested nutrients only respectively. 

 

Figure 5.1: Growth patterns of Lactobacillus acidophilus on Propino, Marris Otter 

and Concerto extracts containing undigested nutrient. (n = 6) 
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Figure 5.2: Growth patterns of Salmonella enteritidis on Propino, Maris Otter and 

Concerto extracts containing undigested nutrients. (n = 6). 

 

The test bacteria grew on each fraction extract, with FR9 showing the lowest amount 

of growth for both L. acidophilus and Salmonella Enteritidis across all varieties. FR1, 

FR2 and FR3 also showed relatively low growth except for the second replicate of 

Propino, which might be an outlier. Growth rates of other fractions (FR4, FR5, FR6, 

FR7 and FR8) varied greatly, with no particular fraction or variety showing any 

exceptionally consistent growth patterns between replicates and across varieties. 

Growth for these fractions were, however, observably higher than FR1, FR2, FR3 

and FR9 across replicates and varieties. Results from the statistical analysis was 

consistent with the observed results. There were inconsistencies between replicates 

and across varieties at P ≤ 0.05. In Propino for instance, there was no significant 

difference across FR1-FR9 in one replicate while the second replicate of the same 

experiment showed significant differences across FR1-FR9 at P ≤ 0.05. However, 

bacterial growth in FR9 was low across all experiments with the amount significantly 
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different from other fractions in some varieties and replicates but not significantly 

different in others at P ≤ 0.05, with no consistent pattern observed.  

Figure 5.3 and 5.4 below, show the growth patterns of Lactobacillus acidophilus and 

Salmonella enteritidis on digested nutrients obtained from dialysed extracts of FR1-

FR9 in a simulated poultry gut. These nutrient extract supported growth of the test 

bacteria but there was no consistent growth pattern, except for FR1 and FR9, which 

recorded very low bacterial growth in both experiments. No other consistent fraction 

effect was observed, similar to results obtained in Figure 5.1 and figure 5.2. Results 

from Propino was discussed as an example in 5.1.1 below. 

 

 

 

Figure 5.3: Growth pattern of Lactobacillus acidophilus on Propino, Marris Otter 

and Concerto extracts containing digested nutrients. No consistent growth 

patterns across fraction replicates was observed (n=6) 
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Figure 5.4:  Growth pattern of Lactobacillus acidophilus on Propino, Marris Otter 

and Concerto extracts containing digested nutrient. No similar consistent 

growth patterns across fraction replicates was observed (n=6). 

The results just like those obtained with extract containing undigested nutrients 

(figure 5.1 and 5.2) were inconsistent, thus making inferences on fractions or variety 

effects impossible.  

 

5.1.1. Propino 

Growth results using Propino fractions showed FR5 and FR7 recording a 

significantly high bacterial growth, approximately 1.0 x 106 CFU/mL higher than all 

other fractions, which were mostly below 2.0 x 105 CFU/mL for Lactobacillus 

acidophilus. FR5 and FR7 also supported high growth (about 1.0 x 106) of 

Salmonella enteritidis while other fractions recorded less than 5.0 x 105 CFU/mL 

(figure 5.6). A repeat of the experiment however revealed a different result, with 

FR1, FR2, FR7 and FR8, showing the highest amount of growth, with no significant 

differences between them for Lactobacillus acidophilus at about 4.0 x105 CFU/mL. 
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While other fractions were below 2.0 x 105 CFU/mL. FR1, FR2, FR3 and FR4 

supported the highest growth for Salmonella enteritidis in the same experiment, 

recording growth values of approximately 3.0 x 106 CFU/mL. Growth for FR7 and 

FR8 were also moderately high, recording values of about 2.0 x 106 in the repeat 

experiment (Figure 5.5). The growth rate of Salmonella enteritidis was generally 

higher than Lactobacillus acidophilus. This inconsistent trend was also the case for 

Maris Otter and Concerto – see appendix 1 and 2. These varying results make it 

difficult to draw inferences as to which fraction encouraged the best bacterial growth. 

However, results for FR9 were consistently low, recording growth amounts below 

5.0 x 103 CFU/mL in most experiments. This portion of barley grain is the endosperm 

portion of the grain, left over after pearling for 80 seconds, and consist mainly of 

starch granules. The digestion process used in this experiment does not provide 

enzymes needed to break down storage starch, thus, possibly, making less nutrient 

available from FR9. Poultry birds, as mentioned earlier, also lack NSP degrading 

enzymes, so farmers add enzymes to poultry feed mix to aid break down of starch, 

into forms available for absorption. Due to the inconsistencies observed in the above 

results, experimental design was modified and adopted to check the variations (see 

materials and methods) and the new results presented in ‘5.2’ below. 
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Figure 5.5: Growth (CFU/mL) of Lactobacillus acidophilus in Propino extract 

containing undigested nutrient over 8 hours. Same colour bars with similar letters are not 

significantly different at P ≤ 0.05. 

 

 

Figure 5.6: Growth (CFU/mL) of Salmonella enteritidis in Propino extract 

containing undigested nutrients over 8 hours. Same colour bars with similar 

letters are not significantly different at P ≤ 0.05. 

 

Maris Otter and Concerto extracts also showed inconsistent results. See appendix 

5.0 for Maris Otter and Concerto growth results. 
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5.2. Simulated Poultry Gut (Procedure 2).  

 

5.2.1.  Extracts Containing Undigested Nutrients (Possible Prebiotics) 

On a general note, from all results obtained, bacterial growth rate followed a similar 

pattern in all three replicates (figure 5.7). FR1, FR2 and FR9 recorded the lowest 

growth rates, with FR9 showing the significantly lowest growth rate at P ≤ 0.05. The 

highest growth was recorded by FR6, FR7 and FR8 in most replicates. Growth from 

these fractions were also significantly higher that all other fractions at P ≤ 0.05. FR3, 

FR4 and FR5 generally showed growth higher than FR1, FR2 and FR9 but lower 

than FR6, FR7 and FR8. Amount of Growth in FR3 and FR4 were not significantly 

different one from another in three out of three replicates at P ≤ 0.05. Amount of 

growth in FR5 was also not significantly different from FR3 and FR4 in one out of 

three replicates but significantly different in two out of three replicates at P ≤ 0.05, 

being higher in one replicate and lower in the second.  

 

Figure 5.7: Growth pattern of Lactobacillus acidophilus on Propino, Maris Otter 

and Concerto dialysed extracts. (I.e. extracts containing undigested nutrients) 

over 10 hours in triplicates measured in optical density (OD600nm), showing a 

consistent growth pattern across replicates. Each line represents all three varieties 

in triplicate (n=9). 
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Based on the results from the second experimental design, barley fractions can be 

divided into three groups based on how they supported the growth of Lactobacillus 

acidophilus.  Group 1 consist of FR1 and FR9, which showed low growth; group 2, 

which are FR2, FR3, FR4 and FR5, showed moderate growth while group 3 made 

up of FR6, FR7 and FR8 showed high growth. Each group showed Slight variations 

across varieties, however, FR5 also showed consistently high amount of growth in 

the moderate group. FR1 corresponds with the outer husk of the barley grain, FR2 

– FR6, the pericarp and testa region, FR7 – FR8, the aleurone layer while FR9 

corresponds with the starchy endosperm. Varieties are discussed below, based on 

similarities of growth patterns. 

 

5.2.1.1. Concerto and Propino 

Results from Concerto showed that bacterial growth was significantly higher in FR6, 

FR7 and FR8 in two out of three replicates (figure 5.8). FR9 showed the lowest 

growth rate in all replicates at P ≤ 0.05, followed by FR1. All other fractions (FR2, 

FR3, FR4 and FR5) showed relatively moderate growth with FR5 recording the 

highest amount of growth rate in this group except for the first replicate where FR3 

was highest. Propino recorded a similar result with FR8 and FR9 recording the 

highest growth in two out of three replicates (figure 5.9). For Propino also, FR9 and 

FR1 significantly recorded the lowest amount of growth, while FR3 instead of FR5 

showed a high growth rate in the moderate growth rate group. 

 



109 
 

 

Figure 5.8: Lactobacillus acidophilus growth in Concerto dialysed extracts. (I.e. 

extracts containing undigested nutrients) over 10 hours measured in optical density 

(OD600nm) in triplicate. Same colour bars with similar letters are not significantly 

different at P ≤ 0.05.   

 

 

Figure 5.9: Lactobacillus acidophilus growth in Propino dialysed extracts. (I.e. 

extracts containing undigested nutrients) over 10 hours measured in optical density 

(OD600nm) in triplicate. Same colour bars with similar letters are not significantly 

different at P ≤ 0.05. 
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5.2.1.2. Maris Otter 

Results from Maris otter showed bacterial growth to be highest in FR6, FR7 and 

FR8 in all three replicates (figure 5.10) which was about four times higher than the 

growth of FR9, which recorded the lowest growth at P ≤ 0.05. FR1 also supported 

low bacterial growth, recording about half as much growth as FR6, FR7 and FR8. 

FR2, FR3, FR4 and FR5 recorded relatively moderate growth rate across all three 

replicates, however FR5 also showed the highest growth rate in this group as was 

also the case with Propino and Concerto. 

 

Figure 5.10: Lactobacillus acidophilus growth in Maris Otter dialysed extracts. (I.e. 

extracts containing undigested nutrients) over 10 hours measured in optical density 

(OD600nm) in triplicate. Same colour bars with similar letters are not significantly 

different at P ≤ 0.05. 
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5.2.2. Extracts Containing Digested and Undigested Nutrients  

Figure 5.11 below, shows a summary of the growth pattern of Lactobacillus 

acidophilus on undialyzed extracts from Propino, Concerto and Maris otter. These 

extracts contain both digested and undigested nutrients. The growth pattern on 

these extracts followed a similar pattern across all varieties tested. FR1 and FR9 

supported low bacterial growth. FR1 and FR9 have consistently showed low 

bacterial growth, as was observed also with dialysed extracts containing undigested 

nutrients (figure 5.7), suggesting a low nutrient availability in these fractions. FR6 

also showed low bacterial growth across all varieties with undialyzed extracts but 

this fraction supported moderate bacterial growth in dialysed extracts containing 

undigested nutrients. The amount of growth in FR6 was however significantly lower 

than FR2, FR3, FR4, FR5, FR7 and FR8 in one out of three varieties at P ≤ 0.05. A 

summary of results obtained from all other fractions, showed a similar growth pattern 

across all fractions, with slight variations across varieties. FR2 – FR7 all contained 

relatively high amounts of sucrose and growth in these fractions, except FR6, were 

higher than FR1 and FR9, with FR2 showing the highest growth in two out of three 

varieties. However, on a general note, there were no outstanding fraction effects 

between FR2, FR3, FR4, FR5, FR7 and FR8. Further statistical analysis of Propino, 

Concerto and Maris Otter revealed that FAN, protein, glucose and fructose were 

responsible for the growth pattern observed in Propino and Concerto, while FAN, 

protein and sucrose were strongly correlated with the growth pattern observed in 

Maris otter as seen in table 5.1 below. 
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Table 5.1: Pearson correlation of bacterial growth pattern (OD600) versus chemical 

composition in Propino, Concerto and Maris Otter. 

 

 

 

Figure 5.11: Growth pattern of Lactobacillus acidophilus on Propino, Maris Otter 

and Concerto undialyzed extracts. (I.e. extracts containing digested and 

undigested nutrients) over 10 hours in triplicates measured in optical density 

(OD600nm), showing a consistent growth pattern across replicates (n=9). 
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supported bacterial growth in amounts similar to FR2 to FR8. Fraction effects where 

however noticed on Propino extracts containing dialysed samples containing 

undigested nutrients (figure 5.9). 

 

 

Figure 5.12: Lactobacillus acidophilus growth in Propino undialyzed extracts. (I.e. 

extracts containing digested and undigested nutrients) over 10 hours measured in 

optical density (OD600nm) in triplicate. Same colour bars with similar letters are not 

significantly different at P ≤ 0.05. 

 

5.2.2.2. Concerto 

Figure 5.13 below showed low growth of Lactobacillus acidophilus on FR1 and FR9, 

both of which were significantly lower than other fractions at P ≤ 0.05. FR2 recorded 

the highest amount of growth in replicates, an amount significantly higher than all 

other fractions. FR3 to FR8 showed similar growth. Except for FR2, there were also 

no major fraction effects on the growth of Lactobacillus acidophilus on concerto 

undialyzed extracts. Fraction effects were however noticed in dialysed extracts 

containing undigested nutrients (figure 5.8). 
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Figure 5.13: Lactobacillus acidophilus growth in Concerto undialyzed extracts. (I.e. 

extracts containing digested and undigested nutrients) over 10 hours measured in 

optical density (OD600nm). Same colour bars with similar letters are not significantly 

different at P ≤ 0.05. 

 

5.2.2.3. Maris Otter 

The growth of Lactobacillus acidophilus on Maris Otter undialysed extracts showed 

similar results as Propino and Concerto. FR1 and FR9 showed the significantly 

lowest growth at P ≤ 0.05. The amount of growth in FR6 was higher than FR1 and 

FR9, but significantly lower that amounts in other fractions at P ≤ 0.05. FR2, FR3, 

FR4, FR5, FR7 and FR8 all supported moderate to high bacterial growth, with no 

outstanding differences between them. 
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Figure 5.14: Lactobacillus acidophilus growth in Maris Otter undialyzed extracts (i.e. 

extracts containing digested and undigested nutrients) over 10 hours measured in 

optical density (OD600nm). Same colour bars with similar letters are not significantly 

different at P ≤ 0.05. 
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nutrients). Also considered, was the ability to differentiate Lactobacillus from 

Salmonella, which could be easily achieved using selective growth agar, compared 

to broth cultures, where mixed cultures cannot be easily separated and enumerated. 

A drop plate method was also adapted, as it required less time and effort to dispense 

drops compared to a spread plate method. Unlike spread plates however, growth 

might have been limited by the free space available around each cell.  Colony 

counting was achieved easily and faster, however the results obtained were 

inconsistent. Figure 5.15 below shows the drop plate-count method used in this 

research. The growth of Salmonella enteritidis appeared as black colonies, which 

were easily enumerated at 10-4 dilution. In most of the experiment conducted, 

technical replicates gave similar results, while biological replicates were very 

different. 

 

 

Figure 5.15: Drop plate method used showing growth of Salmonella enteritidis on 

selective XLT- 4 agar. 
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Bacterial growth on agar plates depends on a number of factors. Growth may be 

guaranteed, but the consistency might not be. There is a constant interaction 

between cells and existing environmental conditions in an agar plate such as space, 

temperature, nutrient composition and agar depth, all of which are essential at 

determining the growth rates of bacterial cells. The inconsistency noted in the plate-

count method used might have been as a result of one or a combination of the 

following factors. XLT- 4 agar used in this research contained a supplement, which 

could not be autoclaved. As a result, the agar was produced manually by hand 

pouring; a technique, which could affects agar depth and consistency. The 

components of the growth media used, might have also differed slightly in 

composition due production/preparation techniques and storage conditions. Agar 

used in this experiment were from different production dates and batches as 

supplied by the University of Sunderland Microbiology Laboratory. Another factor 

considered was the location of agar plates in the incubator, which might have 

affected prevailing temperature. Agar plates were piled upon each other in different 

arrangements at different times, which led to condensations on some plates. The 

presence of growth inhibitors might have affected the result also. The XLT- 4 agar 

contained substances that inhibited the growth of Lactobacillus. These substances 

might have affected the pH of the agar at varying degrees, thus leading to 

inconsistent results. In addition, the accumulated dead Lactobacillus cells could also 

have had a negative effect the growth patterns at Salmonella, acting like growth 

inhibitors. These factors might have affected growth patterns in this study, 

especially, where expected growth differences were marginal. However, no 

conclusions were made, as the above mentioned factors were no analysed 

experimentally. 
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In the light of the above a single culture method using a 96 well micro titre plate 

method was adopted. The mixed culture method was discarded because attempts 

to modify it involved extensive testing, modification and optimization, which was 

beyond the scope of the current research. However, the method is recommended 

for further research as microorganism do not grow in isolation. A modification and 

optimization of the mix culture method will also provide more insights to microbial 

interaction in vitro.  The new method adopted involved using barley extract as 

bacterial growth medium broth. Broth cultures have less predisposing factor to 

bacterial growth irregularities compared to agar plates. As long as nutrients are 

available in a broth media that does not contain any growth inhibitors, bacteria will 

grow exponentially. The method, involving the use of a spectrophotometer which 

constantly monitored bacteria growth, taking reading in optical density every 30 

minutes. As expected, results obtained were consistent across biological and 

technical replicates. 

Results from the plate count method, though inconsistent, showed a better growth 

of Salmonella enteritidis than Lactobacillus acidophilus in all replicates. This was 

expected, as Lactobacillus acidophilus has been reported to have high nutritional 

needs (Morishita et al., 1981). In a recent study by Charalampopoulos et al (2002), 

Lactobacillus acidophilus exhibited the poorest growth amongst a collection of 

Lactobacillus species. In addition, culture preparation of Lactobacillus acidophilus 

in this study was more difficult to maintain than Salmonella enteritidis. 48-hour 

culture of Salmonella enteritidis survive better than Lactobacillus acidophilus. 

Despite these inconsistencies, FR9 constantly supported low bacterial growth for 

both Lactobacillus acidophilus and Salmonella enteritidis. 
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The new method, compared growth of Lactobacillus acidophilus on FR1 to FR9 

dialysed extracts containing undigested nutrient with FR1 to FR9 undialysed 

extracts that contained a combination on digested and undigested nutrients. The 

results showed fraction effect in extracts containing undigested nutrient while no 

outstanding fraction effects was notice in extracts containing both digested and 

undigested nutrients. FR6, FR7 and FR8 showed high bacterial growth in extracts 

containing undigested nutrients, a result that is of great interest in this research. 

These fractions were shown to contain high amounts of beta-glucan and low amount 

of protein compared to all other fractions. FR9 however, also contained high 

amounts of beta-glucan and low protein but the growth of Lactobacillus acidophilus 

in this fraction was consistently low. FR9 is the starchy endosperm region of the 

grain, which is made up of mainly carbohydrates. These carbohydrates are reserve 

carbohydrates known as storage starches. They are critical for providing energy for 

the embryo during grain biosynthesis. These starches are composed of two α-

glucan polymers, amylose and amylopectin, packed in as crystalline granules. Also 

present in the endosperm are a variety of storage proteins which are contained in 

endoplasmic membranes as insoluble accretions. Other types of proteins in the 

endosperm are protease inhibitors, α-amylase inhibitors, ribosome inactivating 

proteins with the primary function of protecting the grain from pathogens and 

predators. These all combine to make digestion of the endosperm difficult before 

germination is activated (Lopes and Larkins, 1993). This could be the possible 

reason why FR9 does not contain available digested nutrients, thus supporting very 

low bacterial growth. As a recommendation for further research, enzyme treatment 

of this fraction could be a prior step to microbial growth analysis in order to yield 

better bacterial growth. Results from extracts containing a mixture of digested and 
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undigested nutrients, did not show outstanding growth in FR6 – FR8. A summary of 

the results from this experiment showed that fractions which exhibited similar 

bacterial growth patterns contained similar chemical components, with a few 

exceptions. For instance FR2, FR3, FR4 and FR5 which supported moderate 

bacterial growth, all contained relatively moderate amount of beta-glucan and a high 

amount of protein. Also, FR1 which contained relatively low amount of beta-glucan, 

protein and resistant starch, supported very low bacterial growth across all varieties. 

The exception however was FR9 which had high amounts of beta-glucan and 

resistant starch, yet, supported very low bacterial growth, for the possible reasons 

mentioned above. Also, as mentioned earlier, FR6, FR7 and FR8, which supported 

high bacterial growth, all contained high amount of beta-glucan and relatively low 

amount of protein.  A mere observation of the results suggested that beta-glucan 

was responsible for the growth patterns observed, as fractions that contained high 

amounts of beta-glucan, encouraged high bacterial growth. However, a further 

analysis of the results using multiple regression proved otherwise. Results from 

Maris otter and Propino, showed that proteins and FAN were correlated with the 

observed growth patterns, while beta-glucan was the factor responsible for the 

growth pattern observed in Concerto (table 5.2). Maris Otter and Propino, however 

do not contain similar amount of total beta-glucan or protein. Maris otter contained 

11.68mg (w/w) beta-glucan while Propino contained 18.77 mg (w/w). Also, the 

amount of protein present in Maris Otter was 9.5 mg/mL while Propino contained 

8.6 mg/mL. Also worthy to note, is the fact that the distribution of these components 

differed slightly across the varieties, thus, a clear conclusion cannot be derived from 

the results. 
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Table 5.2: Pearson correlation of bacterial growth pattern (OD600) versus chemical 

composition in Propino, Concerto and Maris Otter. 

  Propino OD Concerto OD Maris Otter OD 

OD 1.000 1.000 1.000 
FAN 0.506 -0.281 0.508 
Protein 0.516 0.018 0.569 
Resistant Starch -0.234 0.006 -0.444 
Beta-glucan 0.199 0.564 0.112 

 

Based on the results obtained however, beta-glucan, protein and FAN, can be 

concluded to be chemical components of interest that could positively affect the 

growth of Lactobacillus in this research. However, a clear conclusion cannot be 

drawn on what combinations of these chemical components were responsible for 

the growth patterns observed. As a result, the type, amount and combination of 

beta-glucan, FAN and protein present in FR6, FR7 and FR8, are worthy of further 

investigation as these fractions encouraged the highest growth of Lactobacillus 

acidophilus. This is in accordance with concerns that has been raised by various 

researchers as to how differences in the types, amounts and combinations of 

chemical components yield inconsistent results in the test for prebiotic properties in 

various substances. Issues have been raised on extraction methods used, location 

of chemical component on the grain as well as combinations of prevailing chemical 

components of extract used in a given experiment. The research in the development 

of prebiotics is therefore driving towards standardization of possible prebiotic 

substances, in terms of the source, extraction methods, precise chemical structure 

and best application methods. All of which are explored in discussions below. 
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6.0. Chapter Six: Discussion 

The source and physicochemical condition of a prebiotic substance is key to its 

functionality. As discussed in the introduction of this thesis, cereal crops are 

currently providing healthy substances that could be incorporated into functional 

feeds in poultry as prebiotics. In this research, grain fractions from eight varieties of 

barley were investigated, with positive results obtained on their effect on the growth 

of a probiotic bacteria. Fractions FR6 – FR8 supported high growth of Lactobacillus 

acidophilus compared to all other fractions. These fractions, FR6 – FR8 alongside 

FR1 – FR5 are usually removed and discarded during processing of barley grains 

for human consumption to produce easy to cook pearled barley known as pot barley, 

as well as in the production of fine barley flour. These fractions could therefore be 

easily channelled to functional feed production. Grain fractionation techniques 

targeted at specific fractions of the grain can therefore be incorporated into barley 

food production processes. This idea however can only be recommended to 

industries after further testing and analysis of fractions of interest and clear cut 

benefits established. 

Barley grain extracts contain potentially prebiotic compounds with functionality that 

can be explored positively in terms of their ability to grow and deliver probiotic 

bacteria to the poultry gut. The dietary manipulation of fermentation in the hindgut 

by the use of these compounds, commonly known as dietary fibres, to improve the 

ability of commensal microbes to exclude enteric pathogens and thereby improve 

animal gut health is generally gaining momentum, with various in-vitro and in-vivo 

studies. Results from FR6 – FR8 emphasizes the positive effect of potentially 

prebiotic substances on the growth of the probiotic bacteria in this study. Grain 

fraction effects were observed on the growth of L.acidophilus when a dialysis step 
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was used to select only potentially prebiotic substances, for used as growth media 

in this study. Fractions containing potential prebiotics encouraged high 

L.acidophilus growth, as was the case for FR6 – FR8. No fraction effect was 

observed when un-dialysed grain extract was used as the growth media. Un-

dialysed grain extracts usually contains a mixture of simple sugars and potential 

prebiotic substances. As a result, the test bacteria would readily use up available 

simple sugars before attempting to digest more complex substances like prebiotics, 

thus masking the presence, if any, of potentially prebiotic substances. 

 For most prebiotic activity from plant sources, the active component is believed to 

be long chain beta-glucan (Lam and Chi-Keung Cheung, 2013). In this research, 

barley fractions containing high amounts of beta-glucan, FR6 – FR8 encouraged the 

highest growth of the test probiotic bacteria. These fractions also contained low 

amounts of protein, suggesting beta-glucan to be responsible for the observed 

growth pattern. Multiple regression analysis of all nine fractions however, showed a 

strong correlation between protein, FAN and the growth pattern observed. This was 

an unexpected result which prompted the need for further analysis. A close 

observation of the results made obvious the fact although FR9 contained high 

amounts of beta-glucan and resistant starch, it still supported low microbial growth, 

due to presence of unavailable nutrients (see 5.3). A further multiple regression 

analysis of FR1 – FR8, without FR9, showed a strong correlation between growth 

patterns observed and beta-glucan across all varieties (see appendix 7.3). These 

results implies that the presence of unavailable nutrients in FR9 might have affected 

the initial multiple regression analysis. Also worthy to note is the fact that further 

processing of FR9 might be necessary, in order to obtain the full benefits of its 

nutrient composition. A lot of research is currently available on enzyme treatments 
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in this regard for better nutrient availability. Enzyme treatment can therefore be 

incorporated into treatments as a follow up to this study. Most poultry farmers add 

various enzymes such as betaglucanase, protease, phytase, etc to poultry feed, to 

ensure nutrient availability. 

In this study, pearling as a dry fractionation method was used for grain separation. 

Fractions were separated 10 seconds apart to ensure proper mapping of the 

different layers of the grain, in terms of chemical component determination. Results 

from this study showed that fractions varied in weight and chemical compositions. 

Also noted were differences in total chemical content per variety but there was a 

consistent pattern in the distribution of chemical substances across the grain. There 

was a clear fraction effect in terms of chemical composition, without any major 

overlaps, which was also clearly reflected in the microbial analysis. Similar fractions 

produced consistent fraction effects on the test probiotic, across varieties, with FR6 

– FR8 producing the best fraction effects. In a similar study, Kedia et al (2008) 

separated layers of oat grains 5, 20 and 35 seconds apart using the same pearling 

machine as the current study, in order to obtain 1%, 1-3% and 3-4.5% fractions of 

the grain. Results from the study recommended 1-3% grain fraction as best for the 

growth of the test Lactobacillus spp. Results from the study showed a range effect 

which is less precise compared to the 10 seconds separation technique used in the 

current study. A review on dry fractionation of barley for biochemical analysis 

revealed various degrees of fractionations, depending on the method used and the 

aim of the analyses. A study by Zheng et al (2011) reported the pearling of nine hull-

less barley varieties for analysis of beta-glucan distribution across the grains. The 

grains were pearled to remove 70% of the entire weight at 10% intervals. Results 

showed that 80% of the grain beta-glucan was distributed evenly throughout the 



125 
 

endosperm with the outer 20% of the grain showing low beta-glucan content. 

Another study by Zheng et al (2011) on the distribution and molecular 

characterization of beta-glucan from hull-less barley, stated that grains from six hull-

less barley varieties were roller milled to produce bran, shorts and flour fractions to 

determine distribution of beta-glucan. Results obtained like most other studies 

showed variety differences with beta-glucan ranging from 4.96% to 7.62% for all six 

varieties. Highest beta-glucan content was recorded in the short fraction, followed 

by the bran and the least amount recorded in the flour. The results also revealed 

differences in the molecular weight of beta-glucan from the different fractions, which 

is a vital information relevant to the functionality of the fraction as a prebiotic. Beta-

glucan from the flour fraction had the highest molecular weight, followed by the 

shorts and bran fractions respectively. A further analysis of beta-glucan obtained, 

showed that there was no significant differences in intrinsic viscosities of purified 

beta-glucans obtained from the short, bran or flour fractions. The grains used in the 

study were moisture treated and the bran fraction made of the first 20% of the grain, 

the short was made of the next 10% while the flour was the remaining 70%. The 

study concluded by recommending the roller mill method for obtaining barley 

fractions for use in the food, feed and commercial industries. These results go to 

prove that similar biochemical substances from the same grain might differ in size 

and structure and as a result, might differ in their functionality. This brings to bear, 

a need for detailed study on prebiotic sources with the aim of standardizing 

information on source specifics, for instance how beta-glucan from the aleurone 

layer of barley differs from beta-glucan from the endosperm region of the grain. 

Results from the current study also showed differences in the total beta-glucan 

content per variety, while the relative fraction amounts were similar in all varieties, 
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which as mentioned above, were also reflected in the microbial analysis. 

Determination molecular weight of beta-glucan was however not part of the current 

study but is however recommended for further studies to determine if growth 

patterns observed were due to the concentration of beta-glucan and/or differences 

in molecular weight. 

Another study on the source of beta-glucan by Zhao and Cheung (2011), showed 

that beta-glucan obtained from barley, sea weed, bacteria, and mushroom sclerotia, 

all showed similar effect, irrespective of differences in glycosidic linkages and 

molecular weights. These beta-glucans were incubated with pure cultures of 

Bifidobacterium longum, Bifidobacterium infantis and Bifidobacterium adolescentis 

for a 24 hour batch fermentation in order to evaluate bifinogenic effect with inulin as 

the positive control (Zhao and Cheung, 2011). The results showed that the utilization 

of all beta-glucan isolated from different sources was comparable to that of inulin 

(Zhao and Cheung, 2011). However, further in-vitro and in-vivo trials are require to 

prove these facts, as other conflicting results have also reported, as mentioned 

earlier in this report. Concerns has also been raised on methods of beta-glucan 

extraction, as a possible cause of inconsistent results. 

Extraction of beta-glucan has been reported to be a very difficult task that requires 

special attention to obtain consistent extracts (Ahmad et al., 2012). Also of 

importance might be how extraction from different regions of the grain affect their 

final structures. Factors like the presence indigenous enzymes and other 

polysaccharides like arabinoxylans in the beta-glucan source could also influence 

the extraction and purification of beta-glucan (Jadhav et al., 1998). Various 

extraction processes are available for the extraction of beta-glucan , however, hot 

water and acid/enzymatic processing has been reported to be the best extraction  
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method to produce beta-glucan with high purity and better physicochemical property 

(Lazaridou et al., 2003), which was the extraction method used in this research. A 

consistent pattern in terms of concentration was observed across FR1 – FR9 for 

eight out of eight varieties used in this study. This above mention extraction method 

was used in the biochemical analysis, while the microbial analysis, involved a 

digestion process similar to what is obtained in a poultry gut, which lacks prebiotic 

hydrolysing enzymes. Potentially prebiotic substances in FR1- FR9, will therefore 

most likely exist in undigested forms which will provide relevant information on the 

mode of action of probiotics on prebiotic in terms of fermentation processes. An 

information that can be compared on further analysis with digestion processes 

involving enzyme use, where there is a possible initial digestion of prebiotic 

substances. This will expose further the mode of action of probiotics on prebiotics 

in terms of the effect of prebiotic structure on fermentation process. 

Most prebiotics studies are conducted with commercially available prebiotics, with 

limited information of cereal fraction effects. This research therefore provides basic 

and fundamental information on the location of potentially prebiotic substances on 

the barley varieties used in this study, and how they affect the growth of 

Lactobacillus acidophilus. Proper information on positive properties of barley 

fractions can lead to recommendation of these fractions for used in animal feed, 

without any need for further industrial processing, such as extraction of active 

ingredient, which could negatively influence the viability of the active prebiotic 

component. 

Information from this study, can be used for further analysis to determine specific 

factors and conditions responsible for the observed effect. For instance, beta-glucan 

showed a strong correlation with the observed growth pattern. However, as 
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mentioned earlier, other factors might also have influenced the results. Hence the 

need for a detailed analysis of the fractions of interest which are FR6 – FR9. FR2 – 

FR5, also supported moderate probiotic growth and can be analysed alongside FR6 

– FR9. Factors such as concentration, molecular weight, nutrient availability and 

combinations can be considered. 

Over the years, research on prebiotic has led to various inventions and development 

of commercial growth models for predicting feed requirements and supplements for 

the best results in poultry with these models tailored and fine-tuned to fit the age, 

size, type and medical conditions of animals. Mathematical equations are used and 

have been used for the past 100 years to describe animal systems and feed 

requirements (Black, 2014). The first equations used, were termed static and 

performed very basic predictions of animal feed requirements, based on 

recommended nutrient requirements by the NRC. However, with increased 

computerization, the number of equations used in animal production have increased 

tremendously with equations now described as dynamic such that they allow for the 

inclusion of robust scientific theories and biological discoveries, which allow for 

flexibility and more effective applications in animal production (Ferguson, 2015). In 

addition, computer models simulating animal systems are used currently to test feed 

equations (Dumas et al., 2008) after which the technology are transfer to in-vitro 

systems. Research in animal feed and animal feed supplements has led to the 

development of several hypotheses. Most of which can now be readily evaluated 

using mathematical models rather than traditional subjective approach and results 

readily obtained (Emmans, 1989, 1981; Gous et al., 2006). These models have 

evolved over the years, such that results obtained are used to refine hypothesis 
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which are then further tested before expensive experiments are conducted, based 

on the hypothesis (Black, 2014).  

 These equations have been used to demonstrate and quantify how well animal 

systems are understood and are available as a tools of integrating current 

knowledge to assist decision making in terms of prioritising research activities and 

direct applications. Most models are able to predict animal performance under a 

range of circumstances with reasonable accuracy. However, most poultry farmers 

have been reluctant to use these models for the day to day running of their farms 

such that limited success has been recorded in the use of simulation models in 

animal production (Ferguson, 2015; Newman et al., 2000; Rivera-Torres, 2015). 

Research in the field is still ongoing, with components of several models being 

upgraded and improved to include current challenges and trends such as disease 

representation (Eugeni Roura and David Torrallardona, 2009; Sandberg et al., 

2006) and prebiotic and probiotics inclusion. However, the level of standard 

applications are still very low. 

The poultry industry will benefit from the inclusion of prebiotic substances in poultry 

feed, which are natural remedy, compared to in feed antibiotics. Since the ban on 

prophylactic antibiotics in poultry farming, more natural means of preventing disease 

has been recorded. The British Poultry Council, (2016) reported an overall 44% 

reduction in industrial antibiotic use between 2012 and 2015. Also, Finland has 

recorded 0 % prophylactic antibiotic use on all broiler farms since 2010 (British 

Poultry Council, 2016). The above successes were achieved mainly by very strict 

biosecurity systems. The addition of prebiotic substances to poultry feed toward 

positive poultry gut health, together with strict biosecurity will therefore be of great 

value to the poultry industry. 
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7.0. Conclusion and Recommendations  

7.1. Conclusion  

This research sought to determine how relevant the dietary components of barley 

grains are to its ability to affect poultry health positively as a prebiotic, with possible 

application as a feed supplement in poultry feed by the following steps 

Originality 

 Eight barley varieties were selected at random and used in this study. Thus, 

covering a wide range of possible variety differences as opposed to using a 

single variety or a mere representation of barley without taking variety 

differences into account. 

 The grains were fractionated using a pearling technique which separated 

fractions 10 seconds apart, providing a detailed grain mapping  as opposed 

to less precise grain fractionation or poorly defined grain fractions. 

 Fractions were analyzed in a simulated poultry gut containing a unique 

dialysis step that selected only potentially prebiotic substances, which was 

very relevant to the aim of the study. 

 Results from dialyzed samples were also compared to un-dialyzed samples, 

for effective determination of possible prebiotic effect. 

 Analysis of barley varieties used in this research confirmed the following points: 

 The eight barley varieties analyzed contained potentially prebiotic substance 

such beta-glucan in all fractions of the grain in varying amounts. 
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 Fraction effects were observed when potentially prebiotic extracts were used 

exclusively as growth media for the test probiotic, compared to undialysed 

barley extracts, were no fraction effects were observed. 

 A combination of high beta-glucan, low protein and FAN encouraged the 

highest growth of Lactobacillus acidophilus in FR6, FR7 and FR8 containing 

potentially prebiotic extracts only. 

Differences in chemical composition of barley varieties has been said to be an 

advantage because varieties can be chosen for various processes based on their 

chemical compositions (Yu et al., 2012). These differences relate to the amount and 

distribution of beta-glucan, protein, resistant starch, free amino nitrogen and other 

chemical component across the kernel. Their location on the grain determines their 

extractability and hence, usage (Djurle et al., 2016). In this research, barley grains 

were successfully fractionated, producing consistent fractions, with interesting 

distribution of protein, beta-glucan, FAN and resistant starch, which all affected the 

growth of Lactobacillus acidophilus in different ways. 

Extraction methods used in this research proved effective and relatively accurate, 

as biological replicates produced consistent results. Extracts from FR6, FR7 and 

FR8, were of particular interest as they supported the highest growth of the test 

probiotic, and may therefore contain potentially prebiotic substances in the right 

combinations. Results from all fractions analysed in this research are equally 

important, as they will contribute specific information on the distribution of the 

mentioned chemical components in the eight barley varieties analysed, which will 

form a basis for further investigation into the specific prebiotic property of barley 

crops in poultry feed supplementation. The following points are therefore 

recommended.  
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7.2. Recommendations  

 Further chemical analysis of FR6, FR7, FR8 and FR9 dialyzed extracts for 

structural specifics on beta-glucan, resistant starch FAN and protein, as well 

as the presence of other polysaccharides like FOS and MOS, arabinoxylan 

and other sugars, to determine chemical component responsible for the 

outstanding growth patterns. 

 Further enzymatic pretreatment of FR9, prior to chemical and microbial 

analysis to ensure nutrient availability. 

 Inclusion of FR6 – FR8 in poultry feed for in-vivo studies 

 Further analysis of FR1 – FR9 to determine factors responsible growth 

patterns observed 

 Determination of prebiotic index of FR1 – FR9 using a mixed culture method 

in a simulated poultry gut. 
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Appendix 

1.0. Pearling  

Appendix 1.1: Cumulative pearling fraction mean weights for eight barley varieties 

from 80 seconds pearling cycle. Fractions were obtained 10 seconds apart for FR1 

to FR8. FR9 is the leftover pearled grain after pearling for 80 seconds. 100 g samples 

were used for each cycle in triplicate. 

Cumulative fraction weights (%) 

  Pearl Propino Cassasta Concerto Maris otter Munton Chevalier Tipple 

FR1 5.27±0.02 5.71±0.03 5.24±0.09 6.29±0.20 4.19±0.04 3.53±0.08 2.08±0.18 5.94±0.21 

FR2 2.73±0.04 1.45±0.04 2.65±0.06 2.30±0.15 2.88±0.03 3.47±0.07 2.93±0.23 2.04±0.27 

FR3 1.25±0.04 1.14±0.05 1.26±0.06 1.31±0.01 1.13±0.03 1.90±0.02 3.41±0.05 1.12±0.04 

FR4 1.17±0.05 1.16±0.05 1.02±0.07 1.30±0.04 0.77±0.05 1.17±0.10 1.88±0.06 1.02±0.04 

FR5 1.16±0.03 1.27±0.03 1.08±0.09 1.45±0.04 0.70±0.06 0.94±0.06 0.97±0.02 1.04±0.04 

FR6 0.99±0.02 1.06±0.02 0.90±0.04 1.39±0.02 0.58±0.03 0.88±0.12 0.68±0.01 0.91±0.05 

FR7 1.03±0.05 1.22±0.03 1.00±0.04 1.64±0.05 0.52±0.01 0.86±0.02 0.62±0.01 0.97±0.02 

FR8 1.19±0.06 1.25±0.06 1.03±0.02 1.68±0.04 0.63±0.01 0.84±0.04 0.68±0.02 0.96±0.03 

FR9 85.20±0.12 85.75±0.05 85.64±0.04 82.83±0.11 88.61±0.04 86.75±0.17 86.75±0.05 86.00±0.08 
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2.0. Betaglucan 

Appendix 2.1: Total beta-glucan content (mg/100mg) per pearling fractions of eight 

barley varieties in triplicate. 

Betaglucan mg/100mg 

  Pearl Propino Cassasta Concerto M.otter Munton Chevalier Tipple 

FR1 0.57±0.05 0.49±0.01 0.58±0.04 0.59±0.04 0.41±0.04 0.91±0.04 0.34±0.00 0.54±0.09 

FR2 0.77±0.08 1.03±0.11 0.90±0.01 1.05±0.01 0.44±0.02 0.58±0.07 0.40±0.00 1.01±0.05 

FR3 1.37±0.02 1.71±0.05 1.47±0.05 1.67±0.05 0.88±0.07 1.00±0.10 0.57±0.06 1.77±0.02 

FR4 1.67±0.06 1.96±0.06 1.82±0.06 1.86±0.02 1.11±0.10 1.3±0.05 0.73±0.01 2.04±0.01 

FR5 1.74±0.01 2.30±0.03 2.01±0.04 2.00±0.04 1.20±0.05 1.65±0.10 1.03±0.00 2.42±0.02 

FR6 2.10±0.06 2.69±0.01 2.44±0.17 2.26±0.06 1.81±0.03 2.01±0.06 1.71±0.07 2.73±0.08 

FR7 2.37±0.01 2.88±0.04 2.56±0.09 2.63±0.04 1.81±0.07 2.17±0.15 1.80±0.08 3.05±0.16 

FR8 2.66±0.05 2.91±0.08 2.61±0.06 2.53±0.12 1.77±0.11 2.35±0.11 1.98±0.11 3.18±0.09 

FR9 2.87±0.08 2.78±0.05 2.53±0.01 2.74±0.04 2.25±0.08 2.30±0.01 2.86±0.14 2.84±0.17 

TOTAL 16.12 18.75 16.92 17.33 11.68 14.27 11.42 19.58 

 

 

 

 

 

Appendix 2.2. One way anova of beta-glucan analysis. 

 

 

 

 

Appendix 2.2.1. Descriptive (beta-glucan) 

  

 N Mean 

Std. 

Deviation Std. Error 

95% Confidence Interval for 

Mean 

Minimum Maximum Lower Bound Upper Bound 

FR1 16 .5484 .17086 .04271 .4574 .6395 .34 .95 

FR2 16 .7712 .26613 .06653 .6294 .9130 .40 1.14 

FR3 16 1.3052 .43056 .10764 1.0757 1.5346 .51 1.79 

FR4 16 1.5617 .45193 .11298 1.3209 1.8026 .72 2.04 

FR5 16 1.7939 .47914 .11978 1.5386 2.0492 1.01 2.44 

FR6 16 2.2199 .37666 .09416 2.0192 2.4206 1.65 2.81 

FR7 16 2.4093 .45821 .11455 2.1651 2.6535 1.72 3.21 

FR8 16 2.4994 .45730 .11433 2.2557 2.7430 1.66 3.27 

FR9 16 2.6475 .26325 .06581 2.5072 2.7878 2.16 3.01 

Total 144 1.7507 .81419 .06785 1.6166 1.8848 .34 3.27 
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Appendix 2.2.2. Test of Homogeneity of Variances (beta-glucan) 

  

Levene Statistic df1 df2 Sig. 

3.455 8 135 .001 

 

 

Appendix 2.2.3. ANOVA (betaglucan) 

 

 

Sum of 

Squares df Mean Square F Sig. 

Between Groups 74.554 8 9.319 62.153 .000 

Within Groups 20.242 135 .150   

Total 94.796 143    

 

 

 

 

 

 

 

Appendix 2.3. Beta-glucan content in Propino extracts. Bar with similar letters are 

not significantly different at p ≤ 0.05. 
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Appendix 2.4. Beta-glucan content in Concerto extracts. Bar with similar letters are 

not significantly different at p ≤ 0.05. 

 

 

 

 

Appendix 2.5. Beta-glucan content in Maris Otter extracts. Bar with similar letters 

are not significantly different at p ≤ 0.05. 
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3.0. Resistant starch 

Appendix 3.1.Total resistant starch content (mg/100mg) in six pearling fractions  

(FR4 – FR9) of   eight barley varieties. 

Resistant Starch mg/100mg 

  Pearl Propino Cassasta Concerto M.otter Munton Chevalier Tipple 

FR4d 1.10±0.05defg 1.08±0.06defg 1.05±0.05defg 1.17defg 1.08defg 1.13±0.02defg 1.14±0.05defg 1.12±0.02defg 

FR5e 1.08±0.07defg 1.13defg 1.05±0.01defg 1.13±0.02defg 1.10defg 1.11±0.01defg 1.19±0.08defg 1.15±0.02defg 

FR6f 1.10±0.05defg 1.10defg 1.10±0.02defg 1.13defg 1.33±0.24defg 1.14±0.03defg 1.17±0.04defg 1.12defg 

FR7g 1.07±0.02defg 1.13±0.01defg 1.13±0.02defg 1.19±0.04defg 1.26±0.03defg 1.09±0.03defg 1.15defg 1.11±0.02defg 

FR8h 9.82±0.04h 10.63±0.62h 10.00±0.21hi 9.82±h 10.35±0.09hi 9.88±0.09h 9.91±0.06h 9.97±0.11hi 

FR9i 10.46±0.09i 10.64±0.03i 10.52±0.38hi 10.23±0.21i 17.13±6.30hi 10.75±0.03i 11.48±0.58i 9.97±0.23hi 

 

 

 

Appendix 3.2. One way anova of resistant starch analysis. 

 

Appendix 3.2.1. Descriptives (resistant starch) 

   

 N Mean 

Std. 

Deviation 

Std. 

Error 

95% Confidence Interval for 

Mean 

Minimu

m 

Maximu

m 

Lower 

Bound 

Upper 

Bound 

FR4 8 1.1014 .06651 .02352 1.0458 1.1570 1.01 1.18 

FR5 8 1.0985 .05339 .01888 1.0539 1.1431 1.01 1.15 

FR6 8 1.1090 .03031 .01071 1.0836 1.1343 1.06 1.15 

FR7 8 1.1299 .04937 .01746 1.0887 1.1712 1.06 1.22 

FR8 8 10.0688 .50546 .17871 9.6463 10.4914 9.67 11.25 

FR9 8 10.4613 .28698 .10146 10.2214 10.7012 10.02 10.90 

Total 48 4.1615 4.36902 .63061 2.8929 5.4301 1.01 11.25 

 

 

 

Appendix 3.2.2. Test of Homogeneity of Variances (resistant starch) 

 

Levene Statistic df1 df2 Sig. 

4.797 5 42 .001 
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Appendix 3.2.3. ANOVA (resistant starch) 

 

 

Sum of 

Squares df Mean Square F Sig. 

Between 

Groups 
894.710 5 178.942 3080.927 .000 

Within Groups 2.439 42 .058   

Total 897.150 47    
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4.0. Proteins  

 

Appendix 4.1. One way anova of protein analysis. 

 

 

Appendix 4.1.1. Descriptives (protein) 

 

 N Mean 

Std. 

Deviation 

Std. 

Error 

95% Confidence Interval for 

Mean 

Minimum 

Maximu

m Lower Bound Upper Bound 

FR1 8 932.2813 102.59298 36.27210 846.5114 1018.0511 756.92 1119.00 

FR2 8 1205.0417 170.02655 60.11346 1062.8959 1347.1874 937.75 1431.08 

FR3 8 1350.3542 144.48728 51.08397 1229.5598 1471.1486 1156.08 1671.08 

FR4 8 1303.2188 136.77269 48.35645 1188.8739 1417.5636 1027.75 1494.83 

FR5 8 1206.0833 143.50523 50.73676 1086.1100 1326.0567 1002.75 1421.92 

FR6 8 966.8646 102.51341 36.24396 881.1612 1052.5679 856.08 1114.42 

FR7 8 921.0833 116.40212 41.15437 823.7687 1018.3979 736.50 1074.83 

FR8 8 878.6354 130.36435 46.09076 769.6481 987.6227 689.00 1116.50 

FR9 8 323.9479 63.90890 22.59521 270.5187 377.3771 236.50 403.17 

Total 72 1009.7234 319.98135 37.71016 934.5314 1084.9153 236.50 1671.08 

 

 

 

 

Appendix 4.1.2. Test of Homogeneity of Variances (protein) 

 

Levene Statistic df1 df2 Sig. 

.657 8 63 .727 

 

 

Appendix 4.1.3. ANOVA (protein) 

 

 

Sum of 

Squares df Mean Square F Sig. 

Between Groups 6256308.699 8 782038.587 48.624 .000 

Within Groups 1013243.728 63 16083.234   

Total 7269552.426 71    
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Appendix 4.2. Protein content in Propino extracts 

 

 

 

 

Appendix 4.3. Protein content in Concerto extracts 

 

0

200

400

600

800

1000

1200

1400

1600

FR1 FR2 FR3 FR4 FR5 FR6 FR7 FR8 FR9

P
ro

te
in

 µ
g/

m
L

Fractions

0

200

400

600

800

1000

1200

1400

1600

FR1 FR2 FR3 FR4 FR5 FR6 FR7 FR8 FR9

P
ro

te
in

 µ
g/

m
L

Fractions



160 
 

 

Appendix 4.4. Protein content in Maris Otter extracts 
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5.0. Free amino nitrogen (FAN) 

 

Appendix 5.1. One way anova of FAN analysis. 

 

 

Appendix 5.1.1. Descriptives (FAN) 

   

 N Mean 

Std. 

Deviation 

Std. 

Error 

95% Confidence Interval for 

Mean 

Minimum 

Maximu

m Lower Bound Upper Bound 

FR1 8 2.3398 .31889 .11274 2.0732 2.6064 2.04 2.98 

FR2 8 2.2861 .47515 .16799 1.8888 2.6833 1.60 3.14 

FR3 8 2.3268 .46836 .16559 1.9353 2.7184 1.59 3.07 

FR4 8 2.4030 .45574 .16113 2.0219 2.7840 1.63 2.93 

FR5 8 2.3564 .48314 .17082 1.9525 2.7603 1.73 3.28 

FR6 8 2.0895 .38407 .13579 1.7684 2.4106 1.54 2.80 

FR7 8 2.1187 .31637 .11185 1.8542 2.3832 1.63 2.54 

FR8 8 2.0823 .27741 .09808 1.8503 2.3142 1.47 2.34 

FR9 8 1.8380 .38530 .13623 1.5159 2.1601 1.34 2.41 

Total 72 2.2045 .41799 .04926 2.1063 2.3027 1.34 3.28 

 

 

 

Appendix 5.1.2. Test of Homogeneity of Variances (FAN) 

 

Levene Statistic df1 df2 Sig. 

.430 8 63 .899 

 

 

Appendix 5.1.3. ANOVA (FAN) 

   

 

Sum of 

Squares df Mean Square F Sig. 

Between Groups 2.178 8 .272 1.677 .122 

Within Groups 10.227 63 .162   

Total 12.405 71    
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Appendix 5.2. FAN content in Propino extracts. Fractions with similar alphabets 

are not significantly different at p ≤ 0.05. 

 

 

 

Appendix 5.3. FAN content in Concerto extracts. Fractions with similar alphabets 

are not significantly different at p ≤ 0.05. 
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Appendix 5.4. FAN content in Maris Otter extracts. Fractions with similar 

alphabets are not significantly different at p ≤ 0.05 
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6.0. Sugars  

 

Appendix 6.1: Retention time of fructose, glucose, sucrose, maltose and 

maltotriose 

Sugar R2 Value Retention Time (minutes) 

Fructose 0.99240 5.503 

Glucose 0.99320 5.991 

Sucrose 0.99188 7.337 

Maltose 0.99453 8.246 

Maltotriose 0.99394 11.686 

 

 

 

 

 

Appendix 6.2. 1% standard solution of fructose, glucose, sucrose, maltose 

and maltotriose. 
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Appendix 6.3: Simple sugar in FR1 – FR9 of eight barley varieties. 

  Fructose Glucose Sucrose Maltose Maltotriose 

FR1 0.2287 0.4118 0.0144 0.1313 0.1313 
FR2 0.1772 0.3415 0.4211 0.1970 0.1970 
FR3 0.3482 0.6115 1.4717 0.4072 0.4072 

FR4 0.2531 0.5075 2.1354 0.4427 0.4427 
FR5 0.2199 0.4663 2.0921 0.6450 0.6450 
FR6 0.1062 0.2500 2.2054 0.9947 0.9947 
FR7 0.0134 0.1240 1.8329 0.8774 0.8774 
FR8 0.0000 0.0887 0.0000 0.2848 0.2848 
FR9 0.0937 0.0764 0.3055 0.9994 0.9994 
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7.0. Bacterial growth 

7.1. Method 1 

 

 

Appendix 7.1.1. Growth (CFU/mL) of Lactobacillus acidophilus in Concerto 

extract containing undigested nutrient over 8 hours. (Method 1) 

 

 

Appendix 7.1.2. Growth (CFU/mL) of Lactobacillus acidophilus in Maris Otter 

extract containing undigested nutrient over 8 hours. (Method 1). 
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Appendix 7.1.3. Growth (CFU/mL) of Salmonella enteritidis in Concerto extract 

containing undigested nutrient over 8 hours. (Method 1). 

 

 

 

Appendix 7.1.4. Growth (CFU/mL) of Salmonella enteritidis in Maris Otter 

extract containing undigested nutrient over 8 hours. (Method 1) 
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7.2. Method two 

 

 

Appendix 7.2.1. Test of Homogeneity of Variances (Propino OD) 

 

Levene Statistic df1 df2 Sig. 

2.795 8 18 .033 

 

 

 

 

Appendix 7.2.2. ANOVA (Propino) 

 

 

Sum of 

Squares df Mean Square F Sig. 

Between Groups 
.202 8 .025 2.595 .044 

Within Groups .176 18 .010   

Total .378 26    

 

 

 

 

Appendix 7.2.3. Test of Homogeneity of Variances (Concerto) 

Levene Statistic df1 df2 Sig. 

1.595 8 18 .195 

 

 

 

Appendix 7.2.4. ANOVA (Concerto) 

 

Sum of 

Squares df Mean Square F Sig. 

Between Groups .188 8 .023 1.882 .126 

Within Groups .224 18 .012   

Total .412 26    
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Appendix 7.2.4. Test of Homogeneity of Variances (Marisotter) 

Levene Statistic df1 df2 Sig. 

1.917 8 18 .120 

 

 

 

Appendix 7.2.5. ANOVA (Maris Otter) 

 

Sum of 

Squares df 

Mean 

Square F Sig. 

Between 

Groups 
.196 8 .025 9.258 .000 

Within Groups .048 18 .003   

Total .244 26    

 

 

 

 

Appendix 7.3. MULTIPLE REGRESSION 

 

Appendix 7.3.1: Pearson correlation of bacterial growth pattern (OD600) versus 

chemical composition in Propino, Concerto and Maris Otter (FR1 – FR8) 

 

Appendix 7.3.2. Propino 

 

Appendix 7.3.2.1. Model Summaryb 

Model R R Square 

Adjusted R 

Square 

Std. Error of 

the Estimate 

Durbin-

Watson 

1 .745a .555 .110 .08664 1.767 

a. Predictors: (Constant), BETAGLUCAN, FAN, STARCH, PROTEIN 

b. Dependent Variable: PROPINOOD (FR1 – FR9) 

  Propino OD Concerto OD Maris Otter OD 

OD 1.000 1.000 1.000 
FAN -.142 -.722 -.173 
Protein -.174 -.572 -.044 
Resistant Starch .553 .513 .554 
Beta-glucan .704 .961 .966 
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Appendix 7.3.2.2. Model Summaryb 

Model R R Square 

Adjusted R 

Square 

Std. Error of 

the Estimate 

Durbin-

Watson 

1 .807a .651 .187 .05711 2.690 

a. Predictors: (Constant), BETAGLUCAN, FAN, PROTEIN, STARCH 

b. Dependent Variable: PROPINOOD (FR1 FR8) 

 

 

Appendix 7.3.3. Concerto 

 

Appendix 7.3.3.1. Model Summaryb 

Model R R Square 

Adjusted R 

Square 

Std. Error of 

the Estimate 

Durbin-

Watson 

1 .966a .933 .844 .03269 3.470 

a. Predictors: (Constant), BETAGLUCAN, STARCH, PROTEIN, FAN 

b. Dependent Variable: CONCERTOOD (FR1 – FR8) 

 

 

Appendix 7.3.3.2. ANOVAa 

Model 

Sum of 

Squares df Mean Square F Sig. 

1 Regression .045 4 .011 10.472 .041b 

Residual .003 3 .001   

Total .048 7    

a. Dependent Variable: CONCERTOOD (FR1 – FR8) 

b. Predictors: (Constant), BETAGLUCAN, STARCH, PROTEIN, FAN 

 

 

Appendix 7.3.3.3. Model Summaryb 

Model R R Square 

Adjusted R 

Square 

Std. Error of 

the Estimate Durbin-Watson 

1 .928a .862 .724 .04646 3.238 

a. Predictors: (Constant), BETAGLUCAN, STARCH, PROTEIN, FAN 

b. Dependent Variable: CONCERTOOD (FR1-FR9) 
 

Appendix 7.3.3.4. ANOVAa 
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Model 

Sum of 

Squares df Mean Square F Sig. 

1 Regression .054 4 .013 6.244 .052b 

Residual .009 4 .002   

Total .063 8    

a. Dependent Variable: CONCERTOOD (FR1 – FR9) 

b. Predictors: (Constant), BETAGLUCAN, STARCH, PROTEIN, FAN 

 

 

Appendix 7.3.4. Maris Otter 

 

Appendix 7.3.4.1. Model Summaryb 

Model R R Square 

Adjusted R 

Square 

Std. Error of 

the Estimate Durbin-Watson 

1 .994a .988 .972 .01065 3.308 

a. Predictors: (Constant), BETAGLUCAN, FAN, STARCH, PROTEIN 

b. Dependent Variable: MARISOTTEROD (FR1 – FR8) 

 
 

Appendix 7.3.4.1. ANOVAa 

Model 

Sum of 

Squares df Mean Square F Sig. 

1 Regression .028 4 .007 60.685 .003b 

Residual .000 3 .000   

Total .028 7    

a. Dependent Variable: MARISOTTEROD (FR1 – FR8) 

b. Predictors: (Constant), BETAGLUCAN, FAN, STARCH, PROTEIN 

 
 
 

Appendix 7.3.4.2. Model Summaryb 

Model R R Square 

Adjusted R 

Square 

Std. Error of 

the Estimate Durbin-Watson 

1 .779a .607 .215 .08014 2.331 

a. Predictors: (Constant), BETAGLUCAN, PROTEIN, STARCH, FAN 

b. Dependent Variable: MARISOTTEROD (FR1 – FR9) 
 

Appendix 7.3.4.3. ANOVAa 
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Model 

Sum of 

Squares df 

Mean 

Square F Sig. 

1 Regression .040 4 .010 1.547 .341b 

Residual .026 4 .006   

Total .065 8    

a. Dependent Variable: MARISOTTEROD (FR1 –FR9) 

b. Predictors: (Constant), BETAGLUCAN, PROTEIN, STARCH, FAN 

 
 


