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Abstract	

Renal transplantation is the definitive treatment for the end-stage renal failure. 

Despite concerted efforts to increase the number of available organs there 

remains a wide gap. Kidneys with small renal cell carcinoma have been used 

for transplantation after ex vivo resection of tumours with excellent results. 

Concerns regarding the behaviour of tumour under standard 

immunosuppression prevent this source from being popularised. We studied 

tumour behaviour with standard immunosuppression and immunosuppressives 

with anti-proliferative properties and the effect of MHC matching on tumour 

behaviour. Luciferase labelled Wistar rat kidney tumour cells were injected 

subcutaneously into Wistar or Lewis rats to mimic well and poorly matched 

groups. These were divided into groups receiving Cyclosporine, Sirolimus high 

and Sirolimus low dose and Leflunomide. Effects of matching on tumour 

rejection were studied by immunosuppression withdrawal in half of the animals 

within each group. Tumour progression was monitored with IVIS spectrum 

imaging system.  

When the immunosuppression was continued for the length of the study period 

with Cyclosporine immunosuppression, the tumour continued to grow in both 

strains. With high dose Sirolimus, the tumour was eradicated within 2 weeks in 

both Wistar and Lewis rats (p <0.05). Both strains receiving low dose Sirolimus 

also eradicated the tumour within four weeks of treatment (p <0.05). In 

Leflunomide group, 4/7 animals rejected the tumour within the 4 weeks of 

study period (p <0.05).  



	

To study the effects of rejection and matching on the tumour behaviour, the 

immunosuppression was stopped after 2 weeks of treatment and the animals 

followed for another two weeks to study these effects. After treatment 

withdrawal, the tumour rejection was noted which was significantly stronger in 

poorly matched animals than in well-matched animals (p <0.05) in cyclosporine 

treated animals. 

These results appeared to be in line with our hypothesis, that newer 

immunosuppressive medications with anti-neoplastic effects may be better 

options after transplanting kidneys after small tumour ex-vivo resection.  

Acute rejection showed significant ability to lead to tumour eradication, more 

effectively in less well-matched animals than well-matched combinations.  Thus 

perhaps clinically, recipients of such restored kidneys should be less well 

matched and immunosuppressed with agents with anti-proliferative properties. 

These results will need to be replicated with further studies including closely 

monitored clinical studies before it can be popularised at a significant new 

source of precious organs. 
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FIGURE	15	 LENTIVIRAL	VECTOR.	LUCIFERASE	GENE	WAS	UNDER	CMV	PROMOTER.	 3-86	
FIGURE	16	 	LENTIVIRAL	CONSTRUCT.	LUCIFERIN	WAS	EXPRESSED	UNDER	SUCMV	PROMOTER.	THIS	

LENTIVIRAL	CONSTRUCT	ALSO	EXPRESSED	GFP.	 3-88	
FIGURE	17	 	VISIBLE	MONOCOLONIES.	CELLS	TRANSFECTED	WITH	A	MOI	OF	5.0	 3-90	
FIGURE	18	 SLOW	GROWING	MONOCOLONIES.	VERY	SLOW	GROWTH	RATE	AND	NOT	VERY	CLEAR	

MONOCOLONIES	FORMED	BY	THE	CELLS	INFECTED	WITH	MOI	OF	1.0	 3-90	
FIGURE	19	 FLORESCENT	MICROSCOPY.	CLUMPS	OF	BP36B	CELLS	TRANSDUCED	WITH	GFP.	 3-91	
FIGURE	20	 IVIS	SPECTRUM	IMAGE.	BIOLUMINESCENCE	FROM	LUCIFERASE	TRANSDUCED	CELLS.	THE	

CONTROL	CELLS	(LEFT)	DID	NOT	SHOW	ANY	SIGNALS,	THE	BRIGHTEST	GLOWING	CELLS	(MIDDLE)	
WERE	TRANSDUCED	WITH	MOI	OF	2.5	AND	CELLS	WITH	MOI	OF	5.0	(RIGHT)	WERE	ALSO	POSITIVE	
FOR	THE	EXPRESSION	OF	LUCIFERASE	BUT	WERE	LESS	BRIGHT.	 3-94	

FIGURE	21	 IVIS	IMAGE	FOR	FLORESCENCE.	MOI	5.0,	CONTROLS,	MOI	2.5	AND	MOI	5.0	FROM	LEFT	TO	
RIGHT	 3-94	

FIGURE	22	 VENTRAL	VIEW	OF	BIOLUMINESCENT	SIGNALS	FROM	DEAD	RAT.	BOTH	THE	TRANSFECTED	
CELLS	AND	LUCIFERIN	(PROMEGA	BRIGHT	GLO	SYSTEM)	WERE	INJECTED	TO	SEE	IF	
SUBCUTANEOUS	INJECTION	WILL	LEAD	TO	SIGNALS	PICK	UP	BY	THE	IVIS	SPECTRUM	IMAGING	
SYSTEM.	4-99	

FIGURE	23	DORSAL	VIEW	OF	BIOLUMINESCENT	SIGNALS	FROM	DEAD	RAT.	BOTH	THE	TRANSFECTED	
CELLS	AND	LUCIFERIN	(PROMEGA	BRIGHT	GLO	SYSTEM)	WERE	INJECTED	INTO	THE	MEDIASTINUM	
TO	SEE	IF	IVIS	SPECTRUM	IMAGING	SYSTEM	WILL	PICK	UP	DEEP	SEATED	SIGNALS	IN	CASES	OF	
METASTASIS.	 4-100	

FIGURE	24	 WISTAR	RATS	WEIGHTS	 4-103	
FIGURE	25	 LEWIS	RATS	WEIGHTS	(AS	PER	CHARLES	RIVER)	 4-103	



	

FIGURE	26	 KINETIC	CURVE	OF	LUCIFERIN.	CALCULATED	FOR	LEWIS	RAT	IN	THE	PILOT	STUDY.	THE	
RADIANCE	WAS	CALCULATED	BY	SUBTRACTING	THE	BACKGROUND	SIGNALS	FROM	THE	SIGNALS	
OF	REGION	OF	INTEREST	(ROI).	 4-107	

FIGURE	27	 ANAESTHETIC	CHAMBER	AND	ISOFLORENE	DELIVERY	SYSTEM	OF	IVIS	SPECTRUM.	 4-108	
FIGURE	28	 ANAESTHETIC	MANIFOLD.	NOSE	CONES	FOR	MAINTENANCE	OF	ANAESTHESIA	IN	THE	

IMAGING	CHAMBER	 4-108	
FIGURE	29	 TUMOUR	BEHAVIOUR	IN	THE	WELL-MATCHED	GROUP	WITH	NO	IMMUNOSUPPRESSION.	

THE	ENTIRE	TUMOUR	LOAD	WAS	CLEARED	WITHIN	TWO	WEEKS.	THE	THREE	LINES	REPRESENT	
THREE	WISTAR	RATS	IN	THIS	GROUP.	 4-110	

FIGURE	30	 TUMOUR	BEHAVIOUR	IN	THE	POORLY	MATCHED	GROUP	WITH	NO	
IMMUNOSUPPRESSION.	THE	ENTIRE	TUMOUR	LOAD	WAS	CLEARED	WITHIN	FIRST	WEEK.	THE	TWO	
LINES	REPRESENT	THE	LEWIS	RATS	IN	THIS	GROUP.	 4-111	

FIGURE	31	 TUMOUR	BEHAVIOUR	IN	THE	POORLY	MATCHED	GROUP	WITH	CSA	
IMMUNOSUPPRESSION.	THE	TUMOUR	CONTINUED	TO	GROW	WITH	TIME	DURING	THE	STUDY	
PERIOD.	THE	TWO	LINES	REPRESENT	THE	LEWIS	RATS	IN	THIS	GROUP.	 4-112	

FIGURE	32	 LEWIS	RAT	WITH	CYCLOSPORINE	IMMUNOSUPPRESSION.	THE	TUMOUR	INJECTED	INTO	
THE	RIGHT	FLANK	HAS	CONTINUED	TO	GROW.	 4-112	

FIGURE	33	 TUMOUR	BEHAVIOUR	IN	THE	POORLY	MATCHED	GROUP	WITH	CSA	
IMMUNOSUPPRESSION	STOPPING	AFTER	TWO	WEEKS.	THE	TUMOUR	CONTINUED	TO	GROW	WITH	
TIME	DURING	THE	INITIAL	HALF	WHILE	AFTER	STOPPING	THE	TREATMENT	THE	ENTIRE	TUMOUR	
LOAD	WAS	CLEARED.	THE	TWO	LINES	REPRESENT	THE	LEWIS	RATS	IN	THIS	GROUP.	 4-113	

FIGURE	34	 EFFECTS	OF	TREATMENT	WITHDRAWAL.	EXAMPLE	OF	A	RAT	AT	WEEK	2	(LEFT)(WITH	
IMMUNOSUPPRESSION)	AND	WEEK	4	(RIGHT)	(AFTER	STOPPING	THE	IMMUNOSUPPRESSION	FOR	
2	WEEKS).	THE	COLOURED	AREA	OVER	THE	FIR	IN	THE	RIGHT	IMAGE	IS	THE	“NOISE”	OF	THE	IVIS	
IMAGING	DUE	TO	LONG	EXPOSURE	TIMES	TO	DETECT	EVEN	VERY	LOW	RADIANCE	FROM	THE	
REGION	OF	INTEREST.	 4-114	

FIGURE	35	 ROLE	OF	ACUTE	REJECTION.	REJECTION	OF	ALL	OF	THE	INJECTED	TUMOUR	CELLS	IN	THE	
ABSENCE	OF	ANY	IMMUNOSUPPRESSION	IN	WELL-MATCHED	WISTAR	ANIMALS	WITHIN	TWO	
WEEKS.	 4-117	

FIGURE	36	 ROLE	OF	ACUTE	REJECTION.	REJECTION	OF	ALL	OF	THE	INJECTED	TUMOUR	CELLS	IN	THE	
ABSENCE	OF	ANY	IMMUNOSUPPRESSION	IN	POORLY-MATCHED	LEWIS	ANIMALS	WITHIN	JUST	ONE	
WEEK.	 4-120	

FIGURE	37	 DIRECT	COMPARISON	BETWEEN	WISTAR	AND	LEWIS	RATS.	COMPLETE	REJECTION	OF	
TRANSPLANTED	TUMOUR	CELLS;	STRONGER	IN	POORLY	MATCHED	LEWIS	ANIMALS	 4-121	

FIGURE	38	 WISTAR	RAT	WITH	RIGHT	FLANK	INJECTION.	THREE	WEEKS	AFTER	THE	INJECTION	OF	
TUMOUR	CELLS.	VERY	HIGH	SIGNAL	INTENSITY	FROM	THE	TUMOUR	IN	THE	RIGHT	FLANK	
SUBCUTANEOUS	TISSUE.	THIS	TUMOUR	WAS	PALPABLE	AT	THIS	STAGE	AND	GREW	EVEN	FURTHER	
TILL	THE	END	OF	STUDY	PERIOD.	 4-124	

FIGURE	39	 DISSECTION	OF	THE	RIGHT	FLANK.	THE	SKIN	IS	DISSECTED	OFF	THE	VENTRAL	ABDOMINAL	
WALL.	THE	TUMOUR	CLEARLY	VISIBLE	WITH	EVIDENCE	OF	INCREASED	VASCULARITY	AROUND	THE	
TUMOUR	 4-125	

FIGURE	40	 CSA	TREATMENT	CONTINUE	GROUP.	RAPID	GROWTH	OF	TRANSPLANTED	TUMOUR	CELLS	
TOWARDS	THE	END	OF	STUDY	PERIOD	REPRESENTED	BY	BRIGHT	BIOLUMINESCENT	SIGNALS.	 4-126	

FIGURE	41	 LEWIS	RAT	WITH	RIGHT	FLANK	INJECTION.	FOUR	WEEKS	AFTER	THE	INJECTION	OF	
TUMOUR	CELLS.	VERY	HIGH	SIGNAL	INTENSITY	FROM	THE	TUMOUR	IN	THE	RIGHT	FLANK	
SUBCUTANEOUS	TISSUE.	THIS	TUMOUR	WAS	PALPABLE	AT	THIS	STAGE.	 4-126	

FIGURE	42	 CSA	TREATMENT	CONTINUE	GROUP.	RAPID	GROWTH	OF	TRANSPLANTED	TUMOUR	CELLS	
TOWARDS	THE	END	OF	STUDY	PERIOD	REPRESENTED	BY	BRIGHT	BIOLUMINESCENT	SIGNALS.	 4-127	



	

FIGURE	43	 FLOW	DIAGRAM	OF	PROTOCOL	TO	STUDY	ROLE	OF	REJECTION	AND	MATCHING.	AFTER	
TWO	WEEKS	OF	CONTINUED	IMMUNOSUPPRESSION	THE	TREATMENT	IS	WITHDRAWN	TO	STUDY	
THE	EFFECTS	OF	ACUTE	REJECTION.	 4-128	

FIGURE	44	 CSA	TREATMENT	WITHDRAWAL	GROUP.	WISTAR	RATS	AT	4	WEEKS	POST	TUMOUR	CELLS	
INJECTION.	THIS	IMAGE	WAS	TAKEN	AFTER	300	SECONDS	OF	EXPOSURE	(MAXIMUM)	TO	DETECT	
ANY	LEFT	OVER	SIGNALS	FROM	THE	TRANSFECTED	TUMOUR	CELLS.	THE	RAT	ON	THE	LEFT	SIDE	
HAS	REJECTED	THE	ENTIRE	TUMOUR	LOAD	WHILE	THERE	WAS	STILL	POSITIVE	SIGNALS	FROM	THE	
WISTAR	ON	THE	RIGHT	OF	THE	IMAGE.	 4-129	

FIGURE	45	 CSA	TREATMENT	WITHDRAWAL	IN	WISTAR	RATS.	CONTINUED	GROWTH	OF	THE	
TRANSPLANTED	TUMOUR	CELLS	UNDER	THE	INFLUENCE	OF	CSA	IMMUNOSUPPRESSION	TILL	TWO	
WEEKS.	THIS	WAS	FOLLOWED	BY	REDUCTION	IN	BIOLUMINESCENT	SIGNALS	DUE	TO	
WITHDRAWAL	OF	IMMUNOSUPPRESSION.	 4-130	

FIGURE	46	 CSA	POORLY	MATCHED	RATS.	LEWIS	RATS	AT	TWO	WEEKS	OF	CYCLOSPORINE	
IMMUNOSUPPRESSION.	BRIGHT	SIGNALS	WERE	ACHIEVED	FROM	ALL	THE	ANIMALS	TESTED.	 4-131	

FIGURE	47	 CSA	POORLY	MATCHED	RATS	WITH	TREATMENT	WITHDRAWAL.	LEWIS	ANIMALS	AT	FOUR	
WEEKS	AFTER	THE	INITIAL	INJECTION.	THIS	SCAN	WAS	DONE	TWO	WEEKS	AFTER	STOPPING	THE	
IMMUNOSUPPRESSION	AND	NO	SIGNALS	WERE	DETECTED	 4-132	

FIGURE	48	 CSA	POORLY	MATCHED	RATS	WITH	TREATMENT	WITHDRAWAL.	CONTINUED	GROWTH	OF	
THE	TRANSPLANTED	TUMOUR	CELLS	UNDER	THE	INFLUENCE	OF	CSA	IMMUNOSUPPRESSION	TILL	
TWO	WEEKS.	THIS	WAS	FOLLOWED	BY	COMPLETE	DISAPPEARANCE	OF	BIOLUMINESCENT	SIGNALS	
AFTER	THE	WITHDRAWAL	OF	IMMUNOSUPPRESSION.	 4-132	

FIGURE	49	 DIRECT	COMPARISON	OF	WISTAR	AND	LEWIS	RATS	WITH	CONTINUED	CSA	
IMMUNOSUPPRESSION.	THE	GROWTH	OF	TUMOUR	WAS	SIGNIFICANTLY	STRONGER	AMONG	
WELL-MATCHED	WISTAR	ANIMALS.	THE	SCANNING	SCHEDULE	IN	WEEKS	IS	SHOWN	AT	THE	X-AXIS.	 4-133	

FIGURE	50	 DIRECT	COMPARISON	OF	WISTAR	AND	LEWIS	RATS	IN	WITHDRAWAL	OF	CSA	
IMMUNOSUPPRESSION.		LEWIS	RATS	WERE	SIGNIFICANTLY	MORE	EFFECTIVE	IN	REJECTING	
TUMOURS	WHEN	COMPARED	WITH	THE	WELL-MATCHED	WISTAR	RATS.	 4-134	

FIGURE	51	 WELL-MATCHED	(WISTAR)	ANIMALS	WITH	CONTINUED	SIROLIMUS	
IMMUNOSUPPRESSION.	ALL	TUMOUR	LOAD	WAS	CLEARED	BY	THE	WEEK	TWO	OF	THE	STUDY	
PERIOD.	4-139	

FIGURE	52	 SIROLIMUS	HIGH	DOSE	WITH	CONTINUOUS	IMMUNOSUPPRESSION	IN	POORLY	MATCHED	
ANIMALS.	AGAIN	ALL	ANIMALS	REJECTED	THE	TUMOUR	CELLS	WITH	FIRST	TWO	WEEKS	OF	STUDY	
PERIOD.	THE	SCANNING	WAS	DONE	ONCE	EVERY	WEEK	(WEEK	0,	1,2,3,4)	 4-140	

FIGURE	53	 WELL-MATCHED	WISTAR	TREATMENT	WITHDRAWAL.	ANIMALS	AGAIN	REJECTED	THE	
TUMOUR	LOAD	WITH	THE	FIRST	TWO	WEEKS	OF	HIGH	DOSE	SIROLIMUS.	THERE	WAS	NO	
REAPPEARANCE	OF	TUMOUR	CELLS	AFTER	TREATMENT	WITHDRAWAL	AT	ANY	POINT	OF	STUDY	
PERIOD.	4-141	

FIGURE	54	 POORLY	MATCHED	TREATMENT	WITHDRAWAL.	IN	THESE	THREE	LEWIS	ANIMALS,	THERE	
WAS	SOME	RESIDUAL	SIGNALS	BY	THE	WEEK	TWO	SCANNING.	AT	WEEK	THREE	THERE	WERE	NO	
SIGNALS	LEFT	AGAIN	PROVING	THE	EFFECTIVENESS	OF	TREATMENT	WITHDRAWAL.	 4-142	

FIGURE	55	 LOW	DOSE	SIROLIMUS	TREATMENT.	WEEK	1	AND	WEEK	4	IVIS	IMAGES	OF	THE	WISTAR	
RAT	WITH	LOW	DOSE	SIROLIMUS	TREATMENT.	THERE	IS	COMPLETE	ELIMINATION	OF	TUMOUR	
LOAD	DURING	THE	STUDY	PERIOD.	 4-143	

FIGURE	56	 LOW	DOSE	SIROLIMUS	TREATMENT.	WELL	MATCHED	WISTAR	ANIMALS	WITH	
CONTINUED	IMMUNOSUPPRESSION	WITH	LOW	DOSE	SIROLIMUS,	AGAIN	WAS	SUCCESSFUL	IN	
CLEARING	ALL	THE	TUMOUR	LOAD	BY	WEEK	THREE	OF	SCANNING.	 4-144	

FIGURE	57	 POORLY	MATCHED	–	LOW	DOSE	SIROLIMUS.	WEEK	1	AND	WEEK	4	IVIS	IMAGES	OF	THE	
LEWIS	RAT	WITH	LOW	DOSE	SIROLIMUS	TREATMENT.	THERE	IS	COMPLETE	ELIMINATION	OF	
TUMOUR	LOAD	DURING	THE	STUDY	PERIOD.	 4-144	



	

FIGURE	58	 LOW	DOSE	SIROLIMUS-LEWIS	RATS.	POORLY-MATCHED	LEWIS	ANIMALS	WITH	
CONTINUED	IMMUNOSUPPRESSION	WITH	LOW	DOSE	SIROLIMUS,	AGAIN	WAS	SUCCESSFUL	IN	
CLEARING	ALL	THE	TUMOUR	LOAD	BY	WEEK	FOUR	OF	SCANNING.	 4-145	

FIGURE	59	 WELL-MATCHED	RATS	WITH	LOW	DOSE	SIROLIMUS.	THE	TUMOUR	LOAD	WAS	REDUCING	
WHICH	CONTINUED	UPON	TREATMENT	WITHDRAWAL	AND	BY	THE	END	OF	STUDY	PERIOD	THERE	
WERE	NO	BIOLUMINESCENT	SIGNALS	LEFT.	 4-146	

FIGURE	60	 LEWIS	RATS-TREATMENT	WITHDRAWAL.	WEEK	0	AND	WEEK	4	IVIS	IMAGES	OF	THE	LEWIS	
RAT	WITH	LOW	DOSE	SIROLIMUS	TREATMENT	WITHDRAWAL.	THERE	IS	COMPLETE	ELIMINATION	
OF	TUMOUR	LOAD	DURING	THE	STUDY	PERIOD.	 4-147	

FIGURE	61	 LEWIS	ANIMALS	WITH	LOW	DOSE	SIROLIMUS	TREATMENT	WITHDRAWAL.	THE	TUMOUR	
LOAD	WAS	REDUCING	WHICH	CONTINUED	UPON	TREATMENT	WITHDRAWAL	AND	BY	THE	END	OF	
WEEK	THREE	THERE	WERE	NO	BIOLUMINESCENT	SIGNALS	LEFT.	 4-147	

FIGURE	62	 WELL-MATCHED	WISTAR	ANIMALS	IN	THE	LEFLUNOMIDE	TREATMENT	CONTINUE	ARM.	
THERE	WAS	A	STEADY	DECLINE	IN	THE	BIOLUMINESCENT	SIGNALS	FROM	THESE	ANIMALS	FROM	
TUMOUR	INJECTION	SITE.	DESPITE	WEAKENING	SIGNALS	NOT	ALL	THE	ANIMALS	REJECTED	
COMPLETE	TUMOUR	LOAD	BY	THE	END	OF	THE	STUDY	PERIOD.	 4-149	

FIGURE	63	 LEFLUNOMIDE	TREATED	WISTAR	ANIMALS-TREATMENT	WITHDRAWAL.	COMPLETE	
ELIMINATION	OF	THE	TUMOUR	LOAD	FROM	THE	WISTAR	RATS.	THERE	IS	CONSIDERABLE	
BACKGROUND	“NOISE”	WHICH	IS	DUE	TO	LONG	EXPOSURE	TIMES	TO	DETECT	ANY	SMALL	
RESIDUAL	TUMOUR	BIOLUMINESCENCE.	 4-150	

FIGURE	64	 TREATMENT	WITHDRAWAL	AFTER	TWO	WEEKS	IN	LEFLUNOMIDE	TREATED	ANIMALS.	BY	
THE	END	OF	STUDY	PERIOD	4/7	ANIMALS	HAVE	REJECTED	THE	TUMOUR	LOAD	AND	REST	WERE	
SHOWING	REDUCING	TUMOUR	LOAD.	 4-151	

FIGURE	65	 DIRECT	COMPARISON	BETWEEN	WISTAR	AND	LEWIS	RATS	AFTER	TUMOUR	CELLS	
INJECTION.	COMPLETE	REJECTION	OF	TRANSPLANTED	TUMOUR	CELLS;	STRONGER	IN	POORLY	
MATCHED	LEWIS	ANIMALS	 4-152	

FIGURE	66	 COMPARISON	BETWEEN	TREATMENT	CONTINUE/WITHDRAWAL	GROUPS	IN	CSA	
TREATMENT-WISTAR	ANIMALS.	AS	OPPOSED	TO	CONTINUED	TREATMENT,	THERE	WAS	
SIGNIFICANT	REDUCTION	IN	TUMOUR	LOAD	AFTER	TREATMENT	WITHDRAWAL.	FOR	COMPARISON	
PURPOSES	THE	BIOLUMINESCENT	RANGES	ARE	KEPT	SIMILAR	ON	Y	AXIS	HENCE	THE	FINAL	
READING	IN	CSA	GROUP	IS	OUT	OF	THE	SCALE.	 4-153	

FIGURE	67	 COMPARISON	BETWEEN	TREATMENT	CONTINUE/WITHDRAWAL	GROUPS	IN	CSA	
TREATMENT-LEWIS	ANIMALS.	AS	OPPOSED	TO	CONTINUED	TREATMENT,	THERE	WAS	SIGNIFICANT	
REDUCTION	IN	TUMOUR	LOAD	AFTER	TREATMENT	WITHDRAWAL.	FOR	COMPARISON	PURPOSES	
THE	BIOLUMINESCENT	RANGES	ARE	KEPT	SIMILAR	ON	Y	AXIS	HENCE	THE	FINAL	READING	IN	CSA	
GROUP	IS	OUT	OF	THE	SCALE.	BY	THE	END	OF	STUDY	IN	TREATMENT	WITHDRAWAL	GROUP,	ALL	
THE	ANIMALS	HAVE	CLEARED	THE	TUMOUR	LOAD	FULLY.	 4-154	

FIGURE	68	 DIRECT	COMPARISON:	TREATMENT	WITHDRAWAL	WISTAR	V	LEWIS.	ALTHOUGH	WELL	
MATCHED	ANIMALS	SHOWED	SIGNIFICANT	TUMOUR	REJECTION	AFTER	TREATMENT	
WITHDRAWAL,	THE	POORLY	MATCHED	LEWIS	ANIMALS	WERE	MOST	EFFECTIVE	IN	ELIMINATING	
COMPLETE	TUMOUR	LOAD.	THESE	RESULTS	WERE	CLEAR	IN	CSA	GROUP,	AS	THERE	WAS	
SIGNIFICANT	TUMOUR	LOAD	AT	THE	TIME	OF	WITHDRAWAL	OF	TREATMENT.	 4-155	

FIGURE	69	 SIROLIMUS	TREATMENT	LOW	DOSE.	THERE	WAS	NO	DIFFERENCE	BETWEEN	WELL-
MATCHED	AND	POORLY	MATCHED	STRAINS.	THIS	WAS	MOST	LIKELY	DUE	TO	EFFECTIVENESS	OF	
SIROLIMUS	AS	AN	ANTI	NEOPLASTIC	AGENT,	LEAVING	BOTH	ANIMAL	STRAINS	WITH	VERY	LITTLE	
TUMOUR	LOAD	AT	THE	TIME	OF	TREATMENT	WITHDRAWAL.	 4-157	

FIGURE	70	 DIRECT	COMPARISON	BETWEEN	WISTAR	RATS	ON	CSA	(LEFT)	OR	SIROLIMUS	HIGH	DOSE	
(RIGHT)	IMMUNOSUPPRESSION.	AS	OPPOSED	TO	STEADY	INCREASE	IN	TUMOUR	LOAD	WITH	CSA,	
THERE	WAS	COMPLETE	ELIMINATION	OF	BIOLUMINESCENT	SIGNALS	WITH	SIROLIMUS.	 4-158	



	

FIGURE	71	 DIRECT	COMPARISON	BETWEEN	LEWIS	RATS	ON	CSA	OR	SIROLIMUS	(HIGH	DOSE)	
IMMUNOSUPPRESSION.	AS	OPPOSED	TO	STEADY	INCREASE	IN	TUMOUR	LOAD	WITH	CSA,	THERE	
WAS	COMPLETE	ELIMINATION	OF	BIOLUMINESCENT	SIGNALS	WITH	SIROLIMUS.	 4-158	

FIGURE	72	 DIRECT	COMPARISON	BETWEEN	WISTAR	RATS	ON	CSA	OR	SIROLIMUS	(LOW	DOSE)	
IMMUNOSUPPRESSION.	AS	OPPOSED	TO	STEADY	INCREASE	IN	TUMOUR	LOAD	WITH	CSA,	THERE	
WAS	COMPLETE	ELIMINATION	OF	BIOLUMINESCENT	SIGNALS	WITH	SIROLIMUS.	 4-159	

FIGURE	73	 DIRECT	COMPARISON	BETWEEN	LEWIS	RATS	ON	CSA	AND	SIROLIMUS	(LOW	DOSE)	
IMMUNOSUPPRESSION.	AS	OPPOSED	TO	STEADY	INCREASE	IN	TUMOUR	LOAD	WITH	CSA,	THERE	
WAS	COMPLETE	ELIMINATION	OF	BIOLUMINESCENT	SIGNALS	WITH	SIROLIMUS.	 4-160	

FIGURE	74	 DIRECT	COMPARISON	BETWEEN	WISTAR	RATS	ON	CSA	OR	LEFLUNOMIDE	
IMMUNOSUPPRESSION.	AS	OPPOSED	TO	STEADY	INCREASE	IN	TUMOUR	LOAD	WITH	CSA,	THERE	
WAS	GRADUAL	REDUCTION	OF	BIOLUMINESCENT	SIGNALS	WITH	LEFLUNOMIDE.	 4-161	

FIGURE	75	 PALPABLE	TUMOUR	IN	THE	RIGHT	FLANK	AT	THE	SITE	OF	INJECTION	4	WEEKS	PRIOR.	ON	
RIGHT,	COMPARISON	WITH	A	STANDARD	21	GAUGE	NEEDLE.	THIS	WAS	A	LEWIS	RAT	WITH	
CONTINUED	CYCLOSPORINE	IMMUNOSUPPRESSION	FOR	4	WEEKS.	 4-162	

FIGURE	76	 DISSECTION	OF	THE	RIGHT	FLANK	SKIN	OFF	THE	VENTRAL	ABDOMINAL	WALL.	THE	
TUMOUR	CLEARLY	VISIBLE	WITH	EVIDENCE	OF	INCREASED	VASCULARITY	AROUND	THE	TUMOUR.	 4-162	

FIGURE	77	 DISSECTION	AND	ISOLATION	OF	SUBCUTANEOUS	TUMOUR	IN	A	WISTAR	RAT	WITH	
CYCLOSPORINE	IMMUNOSUPPRESSION.	 4-163	

FIGURE	78	 CUMULATIVE	RISK	OF	CANCER.	CUMULATIVE	RISK	OF	CANCER	(EXCLUDING	NON-
MELANOCYTIC	SKIN	AND	LIP	CANCER)	IN	KIDNEY	TRANSPLANT	RECIPIENTS	BY	AGE	AT	
TRANSPLANTATION	 4-168	

FIGURE	79	 DEATH	RATE	ON	THE	KIDNEY	WAITING	LIST	BY	AGE	GROUP,	1994-2003	(229)	 4-174	
FIGURE	80	 FORWARD	AND	SIDE	SCATTER	OF	INCIDENT	BEAM	OF	LIGHT	AS	A	BASIC	PRINCIPLE	OF	

FLOW	CYTOMETRY.	 5-179	
FIGURE	81	 FORWARD	AND	SIDE	SCATTER.	AN	EXAMPLE	OF	FORWARD	AND	SIDE	SCATTER	OF	CELLS	

SEPARATED	FROM	A	WISTAR	RAT’S	SPLENIC		TISSUE	AFTER	EUTHANASIA.	THE	BIGGER	AND	MORE	
IRREGULAR	THE	CELL	SHAPE	THE	MORE	FSC	AND	SCC	THEY	CAUSE.	 5-180	

FIGURE	82	 BD	FACSCANTO	II	FLOW	CYTOMETER.	MAIN	FLOW	CYTOMETER	IS	ON	THE	LEFT	OF	THE	
PICTURE	AND	THE	DATA	IS	ANALYSED	BY	THE	ATTACHED	COMPUTER	TOWARDS	THE	RIGHT	OF	THE	
PICTURE.	 5-181	

FIGURE	83	 ROLE	OF	CD4+	AND	CD8+	T	CELLS	IN	SKIN	ALLOGRAFT	REJECTION.	DEPLETION	OF	CD8+	
CELLS	DID	NOT	HAVE	MUCH	EFFECT	ON	ALLOGRAFT	REJECTION	(SIMILAR	TO	CONTROLS).	WITH	
CD4+	CELLS	DEPLETION	THERE	WAS	ONLY	A	MODEST	INCREASE	IN	THE	ALLOGRAFT	SURVIVAL	
WHICH	WHEN	BOTH	THESE	CELL	POPULATIONS	WERE	DEPLETED	THEN	THERE	WAS	SIGNIFICANT	
INCREASE	IN	THE	SURVIVAL	OF	THESE	ALLOGRAFTS.	THIS	STUDY	HIGHLIGHTED	THE	IMPORTANCE	
OF	BOTH	THESE	CELLS	IN	REJECTION.	 5-182	
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1.1	 RENAL	FAILURE	
	
	

1.1.1	 	 Background	
	

Renal failure is one of the most common chronic medical problems with 

significant short and long-term morbidity and mortality.  The definition of chronic 

kidney disease is based on the presence of kidney damage (albuminuria) or 

decreased kidney function (glomerular filtration rate [GFR] <60 mL/min per 1.73 

m.) for 3 months or more, irrespective of clinical diagnosis (1)(2). 

The biggest issue with chronic kidney disease is of the insidious onset in most 

of the cases and presentation with the end organ dysfunction that is irreversible, 

making the early diagnosis of paramount importance to halt further end organ 

damage.  

End stage renal failure (ESRF)/Renal failure is defined as a GFR of less than 15 

mL/min per 1.73 m2, or the need for treatment with dialysis or transplantation(3).  

Aetiology of renal failure varies considerably and includes hypertension, 

diabetes mellitus, glomerular disease, polycystic kidney disease, urological and 

congenital problems among a long list of causes. Most of the causes of renal 

failure can affect the transplanted kidney as well, hence the need to control the 

underlying disease is of paramount importance in the long run(4)(5).  

Apart from the excretion of waste products, kidneys perform other very 

important functions including blood pressure control via renin angiotensin 

system, secretion of erythropoietin (85% of total body erythropoietin is secreted 

by interstitial cells of kidneys), acid base balance and conversion of 25 

hydroxycholecalciferol (storage form of Vitamin D) to 1, 25 
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dihydroxycholecalciferol (active form of vitamin D). 

 

1.1.2	 	 	Clinical	features	
	

The initial stages of chronic kidney disease are usually asymptomatic. Even 

during the late stages the features can be quite non-specific and in some cases 

leads to a late diagnosis. Peripheral oedema, uraemic symptoms, hypertension, 

anaemia leading to fatigue, reduced exercise capacity and in severe cases to 

heart failure. Other features include metabolic disturbances, uraemic 

encephalopathy, neuropathy, gastrointestinal, dermatological and immune 

dysfunctions.  

 

1.1.3		Treatment	options	
	

CKD leads to permanent loss of renal function and treatment of the condition is 

thus renal replacement therapy either in the form of dialysis or renal 

transplantation. 

 

1.1.3.1		 	Dialysis	
	

Dialysis was the only form of treatment for ESRF before transplantation. It can 

be either by haemodialysis or by continuous ambulatory peritoneal dialysis 

(CAPD). The basic principle of both forms is diffusion of excess waste products 

across a semi permeable membrane. In haemodialysis, it is the commercially 

available filters across which this diffusion occurs whilst in CAPD, it’s the 
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peritoneal cavity of the renal failure patient that acts as a diffusion membrane.  

There is a need for a vascular connection via either a large bore intravenous 

central line or through an arteriovenous fistula to enable high flow of blood 

required for haemodialysis. This can lead to its own complications including line 

infections, thrombosis, failure of fistulas, aneurysm and upper limb steal 

syndrome.  

Despite the effectiveness of dialysis, patients on dialysis remain unable to 

perform any of the endocrine functions of the kidney needing further 

interventions.  

The third form of renal replacement therapy; hemofiltration is where blood from 

patients is “ultra filtrated” over the semipermeable membrane and is then 

replaced with fluid of appropriate biochemical composition. This form of dialysis 

is usually reserved for acute renal failure. 

 

1.1.3.2		 	Transplantation	
	

Transplantation is the treatment of choice these days for ESRF. This is due not 

only to the improvement in the quality of life but also in the long-term survival of 

the patients(6). With the improvements in donor management, organ 

preservation and transport and continuously improving immunosuppression the 

graft and patient survivals are improving year on year.  
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1.2	 	 RENAL	TRANSPLANTATION	
	
	

1.2.1	 	 History	of	Transplantation	
	

The history of transplantation is long with multiple failures but persistence of 

committed individuals and teams lead to where we are now, where 

transplantation is considered the ideal choice in end stage organ failure. As 

opposed to other surgical fields, success of any organ transplantation required 

not only the perfection of surgical technique, and post-operative patient 

management but also was most heavily dependent on the immunosuppression 

of host, mastering the techniques of organ procurement and preservation as 

well as both the pre-operative and post-operative donor management.  

The biggest technical contribution came from the work of Alexis Carrel in early 

nineteenth century(7). In 1954 Joseph Murray with his team was responsible of 

first successful human transplant between identical twins (8). This was in the 

back draft of multiple unsuccessful attempts of human transplants and was a 

major step forward. The genetic barrier to transplantation was broken in 1959 

when one out of twelve patient survived long term after transplantation from 

non-identical twins after total body irradiation(9).  

The first insight into the rejection as an immunological event was provided by 

the ground-breaking work of P B Medawar in 1944(10). First case of relatively 

successful immunosuppression was in 1960 where methotrexate and 

cyclophosphamide was used in a recipient of her mother’s kidney which worked 

for 147 days(11). Use of cyclosporine as immunosuppressive for kidney 
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transplantation was a major step forward. Since then various refinements to 

existing class of immunosuppressive agents and the introduction of induction 

agents have brought kidney transplantation into the current modern era. 

1.2.2	 	 Transplantation	and	dialysis	
	

It is now known that kidney transplantation confers significant survival benefit 

over the patients over long-term dialysis, but earlier studies were unable to 

show this benefit. Multiple reason have been cited for that observation including 

bias of analysis where in transplant recipients the survival was calculated from 

the time of transplantation as opposed to time of start of the renal replacement 

therapy for the dialysis patients(6)(12)(13).   

Since these early reports all studies comparing the survival have shown 

significant improvement after transplantation across all categories(14)(15)(16). 

In general patients that are put on the waiting lists for transplantation are 

younger and healthier. Thus direct comparison between the mortality of patients 

on dialysis and these patients who later on have transplantation is biased 

towards the transplant group. But even when this bias was removed by studies 

with improved methodology, there was still significant survival benefit for the 

transplant recipients. According to a large study by Wolfe et al. who studied 

228,552 patients on treatment for renal failure with either dialysis or 

transplantation the annual death rate for all patients on dialysis was 2.6 times 

as high as that for patients on the waiting list, and the annual death rate for 

patients on the waiting list was 1.7 times as high as that for transplant 

recipients(17) 
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Figure 1 Comparison of mortality in all patients on dialysis. Wolfe et al.(17) 

 

 

1.3	 TYPES	OF	TRANSPLANTATION	AND	ORGAN	AVAILABILITY	
	

1.3.1	 	 Types	of	Renal	Transplants	
	

Renal transplantation can be broadly divided into living and deceased donor 
transplantation. 

	

1.3.2										Live	donor	transplantation	
	

Live donation (LD) rates have increased steadily in the last decade and now 

accounts for around half of all the transplant procedures performed in the UK 

according to the latest data by NHSBT. The organs could either be from live 

related or live unrelated donors. There are several benefits of live donations 

over the deceased donations which include low rates of delayed graft function, 
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significantly better long term outcomes, LD being an elective procedure it gives 

time for optimisation of the recipient and detailed assessment and consenting of 

the donor. Better outcomes are the direct result of either absent or negligible 

cold ischaemic times and absence of agonal period and primary warm 

ischaemia seen in donation after cardiac death (DCD) donations. Current five-

year graft and patient survivals are 91% and 96% respectively in the UK(18). 

The disadvantage of LD kidney transplants affects solely to the donors in the 

form of operative mortality (1:3000), post-operative complications, time off work 

and possible psychological side effects.  

	

Figure 2  Transplant activities in the UK (2003-2013). Number of deceased and living 
donors in the UK, 2003-2013. (18) 
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1.3.3		Deceased	Donation	
	

1.3.3.1	 Donation	after	Brain	Death	(DBD)	
	

The majority of organs procured from deceased donors are still from brain dead 

donors. The contribution of DBD in the total deceased donor pool has reduced 

over the past 10 years, with around 90% of these organs being DBD in 2003-

2004 to less than 60% in 2012-2013. This source was facilitated by the ethical 

framework established by the Harvard criteria of brain death in 1968(19), as 

before that time all organs had to be  procured after cardiac arrest.  

DBD donation occurs in a relatively controlled environment where the donor is 

declared brain dead after thorough brain stem testing by at least two expert 

clinicians after excluding reversible causes of coma. Although these organs are 

not subject to an agonal period and not primary warm ischaemia they are 

usually exposed to a cascade of damaging cytokines.  

1.3.3.2	 Donation	after	Circulatory	Death	(DCD)	
	

Previously known as Non Heart Beating Donation (NHBD) or Donation after 

Cardiac Death, this form of donation has consistently increased over the past 

few years in the UK and now accounts for more than 40% of all deceased 

donations. The organs are retrieved after the donor has been declared dead 

based on cardio-circulatory criteria. It’s not mere cardiac arrest that is defined 

as the point of death but there has to be a period of “no touch” before the 

patient can be declared dead according to dead donor rule(20). During this 

period, the brain would “die” thereby establishing brain death in addition to 

cardiac death ensuring the absence of pain and irreversibility. After establishing 
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death procurement can then proceed. This means that from the time of 

treatment withdrawal to the actual cardiac arrest the organs will be 

hypoperfused, then there is the period of cardiac standstill, when there is no 

perfusion of the organs at all which finishes when the cold perfusion starts. 

Warm organs with no perfusion leads collectively to organ damage. Based on 

how short these times can be within the permitted limits, DCD organs can be 

divided into Controlled and Uncontrolled. 

 

Controlled DCD  

 

This is further divided into Maastricht Category III and IV. (The term Maastricht 

criteria comes from the Consensus meeting held in Maastricht on Non Heart 

Beating Donation in 1994). Category III donors are the patients in ITU who are 

likely to die when the supportive treatment is withdrawn. The majority of DCD 

donors in UK are from this category. They are controlled because the treatment 

withdrawal only happens when the retrieval team is ready for organ 

procurement, thereby minimising the warm ischaemia times. 

Category IV DCD donation is when patient in ITU suffers brain death but the 

organs are only retrieved after circulatory death. 

 

Uncontrolled DCD 

 

Category I DCD includes dead on arrival to Accident and Emergency 

department. It has to be a witnessed cardiac arrest for these patients to be 

considered for donation.  
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These patients have usually been confirmed as dead outside of the hospital and 

are the type of donors used by The Madrid and Barcelona units (where a doctor 

is present in the ambulance).  

Category II DCD is where resuscitation has been attempted on the patient but it 

has been unsuccessful and the attempt ceases on arrival in hospital where 

death is declared. Only a very small number of organs are generated in the UK 

from these uncontrolled DCD donors as opposed to Spain, which is the world 

leader in donation and has a very well established Extra Corporeal Membrane 

Oxygenation (ECMO) programme to support these organs till they are formally 

retrieved. 

 

1.3.4	 	 Shortage	of	Allografts	
 

With renal transplantation now being recognised as the treatment of choice for 

the renal failure patients, there is increasing demand for new organs. Despite 

the efforts to increase the number of organs, there still remains a wide gap 

between the availability of organs and potential recipients. Over the last decade 

there has been a steady increase in the number of donors and transplants 

mostly from an increasing number of DCD and live-donors. In the last few years 

there has been some decline in the number of patients on the waiting lists but 

still the gap remains wide. There are multiple reasons for this wide gap. Firstly 

due to transplantation being a very successful and relatively safe procedure has 

made way for more elderly patients who years ago would not be considered 

suitable or too high risk for transplantation. The ageing population also means 

that there are more patients with ESRF. Obesity and worsening incidence of 
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diabetes has also increased this number. Plus the very success of 

transplantation has meant that more patients will be suitable for re 

transplantation once the first transplant fails.  

All these factors mean that there has been ever increasing pressure on the 

transplant waiting lists. For many years the annual number of patients added 

onto the waiting lists was fairly static at around 2000 but more recently this 

number has risen to around 3300 per year.  

In the UK there are around 21,000 patients on dialysis while only 7000 are 

currently on the waiting list for a kidney. Although most of these 21,000 patients 

will have significant medical problems precluding consideration for 

transplantation but had there been more organs available, quite possibly more 

of these patients could be considered for a transplant.  
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Figure 3 Discrepancy between the organs available and number of patients on 
transplant waiting list. Number of deceased donors and transplants in the UK, 2003-2013, and 
patients on the active transplant lists. (18) 

 

1.3.5	 	 Improving	organ	availability	
 

With so much stress on the availability of organs, various strategies have been 

used to increase the number of organs. Two broad ways are to improve the 

quality and survival of transplanted organs to reduce the number of patients 

going back on waiting list for a re-transplant and to look for new sources of 

organs. 

1.3.5.1		 Better	Immunosuppression	
	

Immunosuppression is no way near perfect but it definitely has come a long 

way. These days less than 25% of patients suffer acute rejections and early 

graft losses has been rare(21)(22). This better early function also translated into 
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better long term graft survival as the patients with higher post-transplant 

creatinine levels had a slow, steady decline in renal function as compared to 

patients with better function in the initial stages(4). Death with a functioning graft 

is one of the leading cause of graft loss(23). This is due mostly to 

cardiovascular disease, infection, malignancy and diabetes(24).  

Thus along with looking for new and improved immunosuppressive medications, 

there is a great desire to reduce cardiovascular risk factors, one of the biggest 

cause of death post-transplant beyond 1st year.  

 

1.3.5.2	 New	Sources	
 

The search for new sources of organs has been on going for a number of years 

now. With renal transplantation now being established as the gold standard 

treatment for ESRF, there is ever more increasing need to look for new sources.  

Over the years the type of patients accepted for donation has become less 

strict, both due perhaps to improved outcomes secondary to better 

immunosuppression and also due to increasing pressure. This lead to the 

Expanded Criteria Donors (ECD). These are donors over the age of 60 years or 

more; or over 50 years with either hypertension, raised creatinine or death by 

cerebrovascular(25).  

Improved donor management (short cold ischaemia, better perfusate, machine 

perfusion and possibly ECMO etc.) in DCD donors has led to increasing number 

of improved organs available for transplant.  

Similarly dual kidney transplant has been shown to be a viable option for 

marginal organs which otherwise would be discarded due to poor predicted 
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function post transplantation. Again when selected carefully they have shown 

comparable outcomes to standard criteria donors and superior results to ECD 

donors(26). 

For live donation kidney paired donation has the potential to increase the 

organs available for transplantation where there are issues of ABO or HLA 

incompatibility, sensitization of recipients, age or graft size difference(27). There 

are algorithms to create matches in the donor pool by simultaneous 2 way 

exchanges in most cases, although there are examples of more complex 

exchanges in the literature. 

ABO and HLA incompatible transplantation has also helped to increase the 

number of transplants. Ideally, however patients should be transplanted with 

matched ABO and compatible HLA combinations but in the absence of any 

available organs and potential of long wait on the waiting list the long term 

benefits of incompatible transplants out weight the risks(28). 

Despite all these innovative new ways to increase the donor pool, there still is 

an acute need to look for more organs. One such source is by using the kidneys 

removed for small renal cell carcinomas and transplanting them after ex vivo 

resection(29).  

 

 

1.4	 PRIMARY	RENAL	TUMOURS	
	
		

1.4.1	 Incidence	
 

Renal cell carcinoma accounts for around 2% of all cancers worldwide. The 
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majority of kidney cancers are RCC arising from the parenchyma of the kidney. 

The incidence of RCC has increased in Western countries in the last few years 

owing to the widespread use of US and CT scanning(30)(31). 

 

 

 

 

 

	

Figure 4 Incidence of RCC. Over the past decades, the incidence has gradually 
increased. This is due largely to increasing use of ultrasounds and CT scanning in 
clinical practice(32). 

 

 

Most RCC’s are now picked up at an early stage on investigations done for 
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other reasons(33). Furthermore the incidence of RCC in allografts will continue 

to increase as older people donate organs and graft survival is improved by 

better immunosuppression leading to older recipients with long time on 

immunosuppressive medications.  

Longitudinal studies have shown that many small tumours have a slow growth 

pattern with low metastatic spread in tumours of <3 cm(34). This increase in the 

incidence is seen across all stages of the renal tumours but the biggest 

increase has been noticed in the small renal tumours. Autopsy studies have 

shown that RCC are present in 1%–20% of patients dying from unrelated cases, 

meaning that many of the tumours will not prove to be clinically significant in the 

course of patient’s life. Due to these observations it’s not always easy to make a 

management plan for some of the small renal tumours. According to 

Bosniak(35), a series of 43 small renal cell tumours when followed up for a up 

to 8 years showed variable growth. In up to half of these tumours the growth 

rate was less than 4mm/year and when subsequently 29 of these tumours were 

resected the majority came back as RCC with only a few being onchocytomas. 

Despite the majority of these tumours being slow growing there were cases of 

distant metastasis in a few cases even with these small tumours in a 

subsequent series. Although small, the risk of distant spread remains. Thus in 

majority of the cases even these tumours require surgical resection as a 

general rule unless there are specific contraindications. 

	

1.4.2	 		 Clinical	features	and	Staging	
 

Clinical features of renal cell carcinoma can be very non-specific. The most 
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common symptom is haematuria (40%) followed by flank pain and less 

commonly a palpable mass. Other features like malaise, fever night sweats, 

hypocalcaemia and weight loss are the symptoms of advanced disease and 

metastasis.  

Renal carcinomas can also present with paraneoplastic effects due to cytokine 

release from the tumours (interleukin 6, erythropoietin). These can lead to 

hypertension, neuropathy, hypercalcaemia, raised erythrocyte sedimentation 

rate (ESR) and erythrocytosis. 

In the majority of cases RCC presents as an incidental finding on routine 

radiological investigations. The other big category is where the tumour presents 

with distant metastasis or paraneoplastic disease. Only 5-10% of cases present 

with the classic triad of haematuria, flank pain and palpable mass. The staging 

and TNM classification is as soon in table 1. 

 

Table 1. TNM classification and staging for renal cell carcinoma 

 
T1a 
 

 
Tumour < 4 cm in greatest dimension, limited to kidney 

 
T1b 
 

 
Tumour > 4 cm but < 7 cm in greatest dimension, limited to kidney 
 

 
T2 
 

 
Tumour ≥ 7 cm in greatest dimension, limited to kidney 
 

 
T3 
 

 
Tumour extends into major veins or invades adrenal gland or perinephric tissues, but 
not beyond Gerota’s fascia 
 

 
T3a 
 

 
Tumour invades adrenal gland or perinephric tissues but not beyond Gerota’s fascia 
 

 
T3b 
 

 
Tumour grossly extends into renal vein(s) or vena cava below diaphragm 
 

 
T3c 
 

 
Tumour grossly extends into vena cava above diaphragm 
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T4 
 

 
Tumour invades beyond Gerota’s fascia 
 

 
NX 

 
Regional lymph nodes cannot be assessed 
 

 
N0 
 

 
No regional lymph node metastasis 
 

 
N1 
 

 
Metastasis in a single regional lymph node 
 

 
N2 

 
Metastasis in more than one regional lymph node 
 

 
MX 
 

 
Distant metastasis cannot be assessed 
 

 
M0 
 

 
No distant metastasis 
 

 
M1 

 
Distant metastasis 
 

 

 

Stage  T stage N stage M stage 

I T1 N0 M0 

II T2 N0 M0 

III T1 N1 M0 

 T2 N1 M0 

 T3 N0 M0 

 T3 N1 M0 

IV T4 N0 M0 

 T4 N1 M0 

 Any T N2 M0 

 Ant T Any N M1 

TNM classification and staging of renal cell carcinomas Ng et al. (36) 
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1.4.3		Treatment	
	

Surgical treatment of renal cell carcinomas can either be with radical resection 

or Partial nephrectomy. 

For selected small RCC cryoablation or radiofrequency ablation can be utilised 

as primary mode of treatment. 

 

 

1.4.3.1		 Radical	nephrectomy	
	

Total nephrectomy can now either be performed via open or laparoscopic 

approach. It now is regarded as an alternate standard of care for the treatment 

of small renal cell carcinomas due to comparable long-term outcomes with 

partial nephrectomy.  

In classical radical nephrectomy, all the perinephric fat from the level of 

diaphragm is resected to include any local tumour extension, along with 

adrenalectomy and lymph node dissection(37). To prevent the patients from 

becoming adrenal insufficient, adrenal sparing radical nephrectomies are also 

performed. Pre-operative CT scanning is very important in planning the type of 

operation. It provides valuable information about the presence of local 

metastasis to the adrenal gland along with more significant distant disease. 
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The stage of the disease also heavily dictates the appropriateness of the type of 

operation. Tumours bigger than 7cm are best treated with radical nephrectomy, 

as the long-term outcomes are better. Generally patients with larger tumours 

(around 10cm) should have open radical surgery rather than 

laparoscopic(38)(39). 

Anatomical position of the tumour also has important bearing, as generally hilar 

tumours are much more difficult to treat with partial nephrectomy. Lymph node 

involvement or cavoartrial extension also should generally be treated with 

radical surgery(40)(41). 

 

1.4.3.2		 Partial	(Nephron-Sparing)	Nephrectomy		
	

Partial nephrectomy is a relatively new technique for the treatment of renal 

tumours and again can be performed via an open or laparoscopic approach. 

The following factors influence the choice of partial nephrectomy over the 

radical surgery 

- Solitary kidney 

- Small multiple tumours 

- Bilateral disease 

- Conditions predisposing patients to increased incidence of renal 

cancers (e.g. von Hippel-Lindau disease) 

- Patients with either established CKD or predisposed to get CKD 

Generally, most tumours less than 7 cm will be suitable for partial nephrectomy. 

With the long-term recurrence rates and patient survivals being comparable and 
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with the benefit of improved long-term eGFR than the radical nephrectomy 

patients, PN is now the first line treatment.  

During partial nephrectomy, the rest of the kidney should be examined for any 

synchronous tumour as its presence might mean the need to change to a 

radical operation. Again with most of the partial nephrectomies, the adrenal 

gland is left in situ due to low incidence of adrenal metastasis excluding the 

upper pole tumours with direct invasion(42).  

There is potential of leaving some tumour behind if the surgical margins are 

positive. For this reasons some centres routinely perform frozen section to 

confirm resection of positive margins but the evidence is not very clear on the 

use of frozen section as a few studies have indicated no significant difference in 

the recurrence free survival between the two cohorts(43)(44). 

1.4.4		Current	Guidelines	for	treatment		
	

Due to better and wider spread use of cross sectional imaging, there has been 

a steady increase in the number of incidentalomas (incidentally detected 

tumours). This has also meant that most of the renal tumours picked up these 

days are smaller in size, limited to the kidney and have relatively better out 

comes after appropriate treatment.  

There is a huge variation of type of renal tumours and there has been a gradual 

shift towards treating more and more patients with less aggressive surgical 

option of partial nephrectomy. Partly this is because around 20% of renal 

tumours removed turn out to be oncocytomas with very little malignant potential 

at all and RN may not be the best surgical treatment.  

The other big reason behind the shift towards NSS has been the recent 
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longitudinal and few randomized trials which have shown that the long term 

creatinines are better in partial nephrectomy cohort(45)(46)(47).  

This effect of improved renal function is due directly to preservation of the 

number of functioning nephrons. Patient factors and technical aspects such as 

ischaemia times are also important in the final eGFR but where more renal 

parenchyma was resected the eGFR was negatively affected even in PN 

patients(48)(49). 

Due to all these reasons, where technically and clinically feasible partial 

nephrectomy is preferred over the radical surgery.  

There is higher risk of urine leak, fistulas and bleeding (50)(51)(52) in patients 

undergoing partial nephrectomy which may make this procedure not the best 

possible option for a number of patients where the primary goal may be more 

importantly a quick and relatively less complicated procedure than mild to 

moderate preservation of renal function. 

1.4.4.1		 Current	situation	of	treatment	
	

There is also evidence that despite these clear recommendations there are 

large number of patients who undergo RN rather than PN(53). This is due to 

multiple reasons, including local expertise, patients’ choice, tumour anatomy 

and patients’ comorbidities.  

To further explore the current situation at a more local level we audited the 

practice at our hospital (Freeman hospital, Newcastle upon Tyne), which is a 

urology referral centre and has surgeons who regularly perform both radical and 

partial nephrectomies both via open and laparoscopic approaches. 

Table 2. Percentages of patients undergoing radical and partial nephrectomy 
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Year		 Total		 Radical	
Nephrectomy		

Partial	
Nephrectomy		

2004		 21		 18	(86%)		 3	(14%)		
2005		 18		 12	(67%)		 6	(33%)		
2006		 49		 37	(76%)		 12	(24%)		
2007		 42		 23	(55%)		 19	(45%)		
2008		 31		 19	(62%)		 12	(38%)		
 

The above table indicates the number of small renal tumours removed at our 

hospital alone. The pattern of surgery has been changing with more partial 

nephrectomies by keyhole surgery, which obviously wouldn’t be suitable for 

secondary procedure. However even with this there were 19 nephrectomies in 

2008. All of these kidneys could have been transplanted by the Cincinnati 

criteria (to be explained later). These numbers are from a centre with 

laparoscopic urological surgery available; many units around the UK don’t have 

this facility and therefore potentially do more radical nephrectomies for small 

renal cancers. If we could determine how we could treat inadvertent transfer of 

tumour cells in the presence of immunosuppression we could develop a safer 

strategy of using such kidneys and so develop an alternative source of donor 

organs. 
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1.5	 POTENTIAL	OF	USING	ORGANS	FOR	TRANSPLANTATION	
AFTER	TUMOUR	RESECTION	

	
	

1.5.1		Literature	review	
	

1.5.1.1	 Transplantation	after	partial	nephrectomy	
	

Normal practice when confronted with a tumour of kidney on procurement is to 

return it to the donor and not use any other organs (54). In cases of deceased 

donors it meant that the contralateral kidney couldn’t be used as well because 

of the concerns of micro metastasis and bilaterality of some of the renal cell 

carcinomas (RCC). Penn (55), reviewing the Cincinnati transplant tumour 

registry (CTTR), described a total of 14 cases of ex vivo resection of small renal 

cell cancers detected incidentally followed by transplantation. Frozen section 

was employed, and where margins were clear, kidneys were used although it is 

not clear whether all of the tumour bearing kidneys underwent frozen section. 

Of the cadaveric donors, the contralateral kidneys, all of which appeared 

healthy, were transplanted as well. Apart from these cases of renal carcinomas, 

there was one case of oncocytoma within the kidney, which was transplanted 

after resection. Of all the cases where the tumour was adequately resected 

before transplantation there was no recurrence in a follow-up ranging up to 210 

months. Buell et al. (54) presented 14 cases of transplantation after renal 

tumour resection from the same database as used by Penn. No recurrence has 

been noted up to a follow-up of 200 months. Median tumour size was 2.0 cm 

(range 0.5– 4.0 cm) and all were of low histological grade. They have described 
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two further cases since the initial data review with no recurrence and good graft 

function. A similar case series from Australia (56) only included elderly 

recipients or those with significant co morbidities and high chance of death 

without transplantation. Furthermore the recipients had high levels of HLA 

mismatching with the donors and were selected on the basis that if there was a 

recurrence to occur, stopping immunosuppression may help in tumour lysis by 

recipient’s immune response. 41 patients received kidneys after ex vivo 

resection of tumour of which 10 were reported as benign lesion on 

histopathology. One patient returned to dialysis after 30 months. 4 patients died 

of unrelated causes. There was only one recurrence noted 9 years after 

transplantation out of the remaining 30 patients. Notably this tumour recurrence 

was at a distance from the initial resection site, this therefore might not be a 

tumour recurrence but another primary within a “field” change renal tissue. The 

patient refused any further treatment, and the lesion has grown 0.2 cm in 18 

months since diagnosis. In a follow-up study on these patients this group has 

recently published long-term outcomes, which are significantly better than wait-

listed patients on dialysis and are comparable to the live unrelated transplants 

(57). Mannami et al.(58) from Japan published a series of 42 “restored” kidneys 

from live donors. Eight donors with small renal cell carcinoma (<3.5 cm) 

underwent donor nephrectomy and ex vivo resection of the tumour followed by 

transplantation of the kidney. Five patients were alive, three with functioning 

grafts, two died with functioning grafts from unrelated causes, and one was lost 

to follow-up. No tumour recurrence has been noted in any of these patients. 

Another 8 patients had donor nephrectomies, which had benign diseases of 

which 5 had partial resection and kidneys were used for transplantation. Three 



Chapter	1—27	
	

recipients are alive with functioning grafts, while four have gone back to dialysis 

(after 3,18,51,73 months). One recipient died of unrelated pathology. There 

have also been 6 case reports (59)(60)(61)(62)(63)(64) of live related kidney 

donation when a tumour was detected incidentally in or ex vivo and the kidney 

was transplanted after resection. No recurrence has been noted in any of these 

cases with a follow-up of up to more than 10 years.  

 

 

1.5.1.2	 Partial	Nephrectomy	for	Tumours	Diagnosed	after	
Transplantation	
	

Renal cell carcinoma represents around 4.6% of all the tumours in allograft 

recipients with only 10% of these occurring in the allograft itself (55). The other 

main subgroup is when a tumour was detected after transplant. Again the 

standard practice here has been to perform transplant nephrectomy (65) with 

the patient invariably returning to dialysis and normally being put on a waiting 

list for another transplant if feasible. 

Until now, more than 50 cases of allograft renal cell tumours have been 

described in the literature of which at least 35 cases have had nephron sparing 

surgery (NSS) for their allograft tumour (66)(67)(68)(69)(70)(71)(72)(73)(74). 

Tumour sizes have ranged, from 0.5 to 4.0 cm although there have been two 

case reports of larger (6–8 cm) tumours all being successfully treated with NSS 

(68)(67). Postoperative follow-up is from one month to more than 10 years with 

one recurrence 5 years after NSS in renal allograft (75). This was in a 74-year-

old recipient five years after initial transplant. A 2.4 cm RCC was incidentally 



Chapter	1—28	
	

detected without any evidence of distant metastasis. It was treated with radical 

nephrectomy and the patient has been disease free on haemodialysis after that. 

		

1.5.1.3	 Contralateral	Transplanted	Kidney	with	a	Renal	
Tumour	
	

These kidneys again are normally not used as RCC can be bilateral especially 

the papillary subtype (76). Penn has described 14 cases in which the 

contralateral kidney was transplanted from patients with renal tumour. One 

patient had recurrence in the allograft, which was removed for rejection. This 

patient died 75 months after transplantation from a de novo cancer of one of his 

own kidneys. The remaining patients did not have any recurrence with a follow-

up ranging from 0.5 to 153 months. 

Nicol et al. (56) described 2 similar cases with no recurrence. Barrou et al. (76) 

has described a case of two allograft recipients from a single donor with a 

tubulopapillary tumour (17mm) in the right kidney; only the left kidney was 

utilized for transplantation. Shortly after transplantation, the recipient underwent 

an ultrasound (US) examination of the allograft, which did not reveal any 

tumour. Three months later a biopsy was done for rejection, which revealed a 

poorly differentiated tumour, and the patient underwent radical allograft 

nephrectomy. No additional chemotherapy was given apart from discontinuation 

of immunosuppression (prednisolone and azathioprine). Lymph nodes that had 

been noted to be enlarged on CT scan disappeared two month after 

nephrectomy. The patient underwent re transplantation two years later and was 

disease free and dialysis independent at 3-year follow-up. Another patient 
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received the heart transplant from the same donor but died from bony 

metastasis from the renal cell carcinoma. 

	1.5.1.4	 Accidental	Transplantation 
 

In at least 4 cases (55)(61)(69)(77) there have been accidental transplantation 

of RCC mistaken as a benign pathology on procurement. Partial 

nephrectomy/enucleation in all these cases was performed before 

transplantation with adequate resection margins. Routine histopathology 

revealed the resected tumour to be malignant. All recipients retained the 

allograft because of complete excision of the tumour and were kept under close 

follow-up with no recurrence so far. The cases where there have been 

transplantation of tumour, either partially resected or unrecognized at the time 

of transplant have resulted in disastrous outcomes (55)(76)8. 

 

 1.5.1.5	 	Miscellaneous	
	

Manammi et al.(58) reported a series of 8 patients who underwent nephrectomy 

for a distal ureteric transitional cell carcinoma (TCC). One patient had a 

recurrence of TCC after 15 months and was offered graft nephrectomy but 

opted for partial resection of ureteric tumour to prevent returning to dialysis. He 

died three years after partial resection from a squamous cell carcinoma of lung 

with liver metastasis. His TCC also had squamous metaplasia and a DNA study 

to determine exact origin of primary tumour could not be established because of 

inadequate tissue samples. The remaining patients were either alive with 

functioning grafts or died of unrelated causes. 
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	1.5.1.6	 	Opinion	of	Patients	and	Transplant	Specialists 
 

Transplantation of kidneys with cancers is a novel idea not only among patients 

but also among the transplant community. To be able to exploit this potential 

donor pool it is of utmost importance that both the health care specialists; 

transplants surgeons and nephrologists and the patients (both donors and 

recipients) are comfortable with the idea of using such kidneys. To determine 

this, structured questionnaires were sent to focus group of patients on the North 

East renal transplant waiting list, post nephrectomy patients for small renal 

cancer, nephrologists and transplant surgeons in the UK. 

Results are shown in Table 3 and have a generally high response rate. Those 

respondents that had lost their kidney, removed for tumour, had the highest 

consent rate and patients potentially receiving such kidney the lowest. The 

transplant surgeon and nephrologists had views somewhere in between. This 

survey was done in UK from where there have been no case reports of using 

organs after removal of tumour and but still the response was largely 

favourable. Given that since this survey there has been an increase in total 

number of such organs being utilized, one can extrapolate that current belief 

may be more favourable. 

Table 3: Opinions of transplant patients and clinicians  
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Opinion of Patients and Transplant Specialists (29) 

 

	1.5.1.7	 	Summary	of	literature	review  
 

One of the worries about transplantation of tumour-affected kidneys is the 

potential of tumour recurrence and growth in a state of potential immune 

inattention due the immunosuppressive therapy. Renal cell carcinoma is known 

to be an immunogenic tumour (78) but in the presence of immunosuppression? 

If there was any transplantation of tumour cells in the host, then there is a 

potential of continued growth in a host with a compromised immune system. 

Furthermore, immunosuppression in itself has been known to increase the 

incidence of de novo malignancy (79)(80). Because of these concerns, an 

immunosuppressive agent with no potential to increase de novo malignancy 

and better still to have antitumour activities would probably be ideal.  

The incidence of RCC has increased in Western countries in the last few years 

owing to the widespread use of US and CT scanning (81)(33). Most RCC are 

now picked up at an early stage on investigations done for other reasons. 

Furthermore the incidence of RCC in allografts will continue to increase as older 
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people donate organs and graft survival is improved by better 

immunosuppression. Longitudinal studies have shown that many small tumours 

have a slow growth pattern with low metastatic spread in tumours of < 3 cm 

(82)(34). Autopsy studies have shown that RCC are present in 1–20% of 

patients dying from unrelated cases, meaning that many of the tumours will not 

prove to be clinically significant in the course of patient’s life (83)(84). 

The gold standard treatment of resectable renal cell carcinoma has been radical 

nephrectomy. Recent evidence has changed this practice dramatically as 

survival after radical nephrectomy (RN) and partial nephrectomy (PN) has 

shown to be comparable (85). Favourable outcomes have been observed after 

NSS for < 4 cm RCCs and RN has been described as “surgical overkill” (86) for 

these tumours. 

Furthermore, local recurrence after NSS has been reported to be < 5% with 

recurrences mostly associated with large and multifocal tumours. A significant 

risk of dying in patients on dialysis particularly in older patient has been one of 

the driving forces to increase the number of kidney donors. Renal 

transplantation seems to confer a substantial survival advantage over dialysis in 

patients with end-stage renal failure (87). A significant number of patient 

accepted for dialysis are older patients, who have a mortality risk of 25%. With 

longer waiting times for a transplant, it is inevitable that many of the patients will 

die before they can receive a transplant which would have improved their 

quality of life and longevity(87). Furthermore 16 to 23% of suspicious lesions 

resected from kidneys are either benign or of low malignant potential (88)(89) 

and not using these kidneys with small tumours after partial nephrectomy for 

transplantation seems wastage of precious organs when one considers the 
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benefits of transplantation over dialysis. 

 

A suspicious lesion found at multiorgan retrieval should have an excision biopsy 

and histological confirmation of clear margins before any of the organs can be 

transplanted. A malignant lesion in the kidney when unrecognized and 

transplanted continues to grow under the immunosuppression carries high risk 

of metastasis and can result in fatal outcome. If the biopsy confirms clear 

margins with favourable histology then these organs could be used for 

transplantation, as risk of recurrence is very low. The situation is more complex 

when it comes to using restored organs from live (related/unrelated) renal cell 

carcinoma patients. Major difference being that these are living cancer patients 

first and therefore must never be treated primarily as potential organ donors to 

prevent any bias in treating their primary problem which may lead to provision of 

less than optimal treatment and ultimately harm to these patients. This is shown 

by Takahara et al. (90) in their review of Mannami et al. series concerning a 

ureteric carcinoma patient, where adherence to standard practice for treating 

these tumours was not practiced with disastrous consequences. With changing 

trends, radical nephrectomy is now regarded as an alternate standard of care to 

partial nephrectomy for T1a tumours when partial nephrectomy is not 

technically feasible. This is due to the comparable oncological outcomes after 

partial nephrectomy and evidence that radical nephrectomy is an independent 

predictor of low GFR. A positive outcome for a recipient can never justify harm 

to a live donor; on the contrary, for a transplant with a live donor to be regarded 

as a success means that both the recipient and the donor have done well(91). 

Live related donors in Nicol et al. series were given the options of observation, 
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radical or partial nephrectomy without any mention of the possibility of use of 

organs for transplantation. Only after the patients had decided to opt for radical 

nephrectomy possibility of domino donation was discussed. This approach has 

the benefit of making sure that patients make their own decisions without any 

pressure from clinicians. Another important factor is to make sure that beliefs of 

the clinician do not affect the patient’s treatment choices. 

Importance of detailed informed consenting cannot be over emphasised for the 

recipients of such restored organs. All the relevant information especially of the 

origin of the organ and potential of recurrence and associated risk must be 

discussed fully and the patients understanding checked. Routine follow-up of 

the patients with annual US have been suggested to make sure any recurrence 

is diagnosed as early as possible. Tumours have been detected at early stage 

with better outcomes because of regular follow-ups. If one kidney is found to 

have a tumour it is important that the other kidney is closely followed up. It is 

easier in the live donor setting when the donor can be carefully followed up but 

in cadaveric donation there has to be a central database for tracking the 

contralateral kidney (70) which might be transplanted into a recipient in a 

different unit.  

Immunosuppression is essential after transplant and unfortunately this has been 

associated with the higher incidence of cancers in recipients as opposed to the 

general population (80). Certain newer immunosuppressive agents have anti-

tumour (92) activity and their use can, in theory not only reduce the chances of 

recurrence but they can also be used to treat patient should a recurrence occur. 

 

Furthermore the Human Tissue Act 2004 (93) that covers the use of organs for 
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transplant in the UK allows anyone to be a donor including live related and 

unrelated (altruistic donor) provided there is adequate consenting. This means 

that donation can also occur from patients suffering from small renal cell 

carcinoma who have radical nephrectomy as primary treatment provided 

measures are taken to ensure that these patients are treated appropriately in 

the first place and both donor and recipients had given informed consent. 

 

1.6	 	 ROLE	OF	IMMUNOSUPPRESSION	IN	
TRANSPLANTATION	
 

Longevity of successful renal transplants relies most heavily on perioperative 

and postoperative immunosuppression. Refinements in selection of patients, 

surgical techniques and HLA matching all have important role in allograft 

survival but the biggest improvement in graft survival was noted with the 

introduction of cyclosporine immunosuppression.  

1.6.1	 	 Evolution	of	immunosuppressive	agents	
	

Since the introduction of renal transplantation into clinical practice various 

strategies have been utilised to prevent the rejection. This included 

transplantation from identical twins, whole body radiation followed by bone 

marrow transplantation along with renal transplantation during the very early 

days of transplantation. Although it was initially thought that the success of 

transplantation was dependent on simultaneous bone marrow and renal 

transplantation, later it was shown that some success could be achieved with 

cytoablation and corticosteroids.  

After initial success, the next logical step was to look for immunosuppressive 
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medications to prevent rejection. The initial work was done with methotrexate 

and cyclophosphamide, which lead to severe bone marrow depression but 

moderate allograft survival (143 days) without needing bone marrow ablation. 

This lead to the development of the less toxic 6-mercatopurine and later 

azathioprine which though variable in success but at least was not as morbid to 

recipients as frequently. Azathioprine inhibits DNA and RNA synthesis by 

interfering with the purine synthesis. This in turn blocks the lymphocyte 

proliferation and the production of interleukin 2 (IL-2). 

Another improvement in immunosuppression came in 1960s in the form of 

heterologous anti-lymphocyte globulin (ALG)(94). It was used with azathioprine 

and improved allograft survival further but due to its heterologous nature it was 

used more for rescue of rejection occurring after transplant. The more ‘refined’ 

monoclonal OKT3 superseded it for a short time though most transplant 

specialists preferred the side effects of ATG to those of OKT3 (the first 

monoclonal antibody against all T cells). 

During this period there were steady improvements in allograft survival but the 

biggest change came about with the introduction of cyclosporine in early 1980s 

when it was shown to significantly reduce acute rejection rates seen early soon 

after transplantation. This point in transplantation is often regarded as a major 

breakthrough as it paved the way for other solid organ transplantations. These 

were mainly the vital organs which though possible to transplant, their 

dysfunction produced death of the recipient. Such that for the transplant 

recipient to survive, success of the simpler non-vital graft had to be sorted first. 
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1.6.2	 	 Calcineurin	inhibitors	(CNIs)	
	

Cyclosporine (CsA) has been the most widely used CNI up to most of 1980s 

and 1990s for solid organ transplantation until FDA approved tacrolimus in 1997 

which lead to it becoming the first line CNI treatment in most of the developed 

countries. By 2003, around 67% of new kidney transplant recipients were being 

discharged on Tacrolimus as a maintenance therapy(95).  

Although shown to be more potent in preventing rejection than cyclosporine, 

Tacrolimus shares the basic mechanism of action with CsA. 

1.6.2.1	 Mechanism	of	action	
	

Due to lack of precise in vitro tests of acute rejection and its effects on 

transplanted allografts most of the initial understanding of the mechanism of 

action of CsA had been based on its vitro effects on lymphocytes(96). These in 

vitro studies have shown that it is a potent inhibitor of generation of cytotoxic T 

cells as opposed to azathioprine and steroids in patients with solid organ 

transplantation(97). 

The mechanism of action of CsA at molecular level was not described until early 

1990s (98) when it was shown to be mainly as a result of CsA binding to 

cyclophilins in the cell cytoplasms(99).  This complex then binds to Calcineurin, 

a calcium dependent phosphatase that normally has a pivotal role in 

transcription of interleukin-2 (IL-2). Thus Calcineurin inhibition by CsA leads to 

inhibition of IL-2 production and other lymphokines which in turn prevents 

further proliferation of CD4+ T cells and cytotoxic T cells from its 

precursors(100)(101). 
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CsA is also shown to exert its immunosuppressive effects by increasing the 

production of transforming growth factor (TGF)-β both by normal T cells and 

also in individuals with renal transplantation(102). This in turn inhibits IL-2 

production and IL-2 stimulated up regulation of IL-2 receptors, hence affecting T 

cell responses(103). 

1.6.2.2	 Benefits	and	side	effects	
 

Even from the early days of renal transplantation CsA has shown to be more 

effective than azathioprine based immunosuppressive protocols in terms of 

long-term patient and graft survival. This was shown (fig 5) by a multicentre 

European trial in 1993(104) 

 

	

Figure 5 CsA and AzA comparison for long- term graft survival. CsA had better 
survival when compared to AzA (104) 

 

Since then CsA has been used in various combinations with azathioprine, 

steroids, mycophenolate and induction agents with steady improvements of 

graft survival rates. 

The groups of patients benefiting mostly were the elderly, very young, patients 

An excellent randomized multicenter trial was conducted
in Canada, in which cyclosporine and prednisolone therapy
was compared with standard therapy based on azathioprine
and prednisolone in 209 cadaver renal allograft recipients.54

In this first analysis, actuarial graft survival at 1 year was
84% in the cyclosporine group compared with 67% in
patients receiving standard therapy, with patient survivals of
97% and 90%, respectively, in the two groups. At 3 years,
graft survival was 69% in the cyclosporine-treated group
and 58% in the control group, a less striking difference than
in the initial analysis.15 Patient survival was 90% in the
cyclosporine group and 82% in the control group. A detri-
mental effect on graft survival was seen in cyclosporine-
treated patients if they received kidneys that had been
preserved for longer than 24 hours or if the surgical anasto-
mosis time took longer than 45 minutes, suggesting that
cyclosporine nephrotoxicity is more likely to occur in kidneys
that have some ischemic damage.

In Minneapolis, all HLA-mismatched living or cadaver
donor transplants were eligible for a trial in which
cyclosporine plus prednisolone was compared with conven-
tional therapy of azathioprine, steroids, and antilymphocyte
globulin.91,235,236 All patients had had a splenectomy and at
least 5 U of blood before transplantation. The trial com-
prised 230 patients and included cadaver and living related
transplants and diabetic and nondiabetic recipients. Overall
graft survival rates at 2 years were 82% in the cyclosporine
group and 77% in the control group, and patient survival
was 88% and 91%, respectively. In the living related trans-
plants, graft survival at 2 years was 87% in the cyclosporine
group and 83% in the control group, whereas the 2-year
graft survival figures in the cadaver transplants were 78%
and 73%, respectively. These differences in survival were not
significant, but the cumulative incidence of rejection
episodes in the first year after transplantation in the
cyclosporine group was half that in the control group, as was
the incidence of infection.

Similarly, Starzl and colleagues,313,314 first at Denver
(where treatment was not standardized) and then at
Pittsburgh, reported impressive results with cyclosporine
and prednisolone (at a maintenance dose of 20 mg/day after
a burst of high-dose prednisolone) in primary and second-
ary cadaver transplants. Graft survival was about 90% at 
1 year in primary cadaver transplants. In 26 patients 
who received 27 cadaver second transplants, 1-year graft 
survival was 78%. After that initial experience, virtually all

contraindications to the use of cyclosporine in renal trans-
plantation were disregarded, and in 96 primary cadaver
grafts, patient survival at 1 year was predicted as 90%, and
graft survival was predicted as 80%.314 Early anuria was not
considered a contraindication to cyclosporine, which was
sometimes considered to be the result of rejection or
nephrotoxicity, or both, although it did cause diagnostic
problems in the management of patients.

In the Sydney controlled trial of cyclosporine versus aza-
thioprine, prednisolone, and antilymphocyte globulin,
60 patients receiving first cadaver grafts were entered, and
graft survival of 70% at 1 year was similar in both groups.
Persistent anuria after transplantation was a major problem
in the cyclosporine group.297 In the Oxford trials, all patients
were started on cyclosporine, but were randomly assigned at
3 months either to azathioprine and prednisolone or to
remain on cyclosporine. The objective was to reduce
nephrotoxicity.227,229 This approach is discussed later in this
chapter.

This early experience with cyclosporine in prospective
controlled trials and in uncontrolled observational studies
indicated that cyclosporine was a major advance in
immunosuppressive therapy, as was evident in the
Collaborative Transplant Study, which had data from more
than 200 transplant centers and several thousand renal
transplants.249 Many side effects had become evident, the
major one being nephrotoxicity, and so subsequent proto-
cols were designed to obtain the same improved immuno-
suppression achieved with cyclosporine, but with 
a reduction in side effects resulting from lower doses of
cyclosporine (Table 16-2).

CYCLOSPORINE WITH OR WITHOUT
STEROIDS
The initial use of cyclosporine in Europe was based on the
experimental data and the early Cambridge experience,
using a high dose of cyclosporine alone (monotherapy),
whereas in North America cyclosporine was used with
steroids. Gradually, most units added steroids to their
cyclosporine protocols, but not with any convincing evi-
dence that steroids were necessary. In the United States, there
had been a tendency to use high-dose steroids, at least in the
early weeks after transplantation. Four prospective con-
trolled trials comparing cyclosporine alone with
cyclosporine and steroids were performed.83,123,160,210,316
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with diabetes and sensitized patients as in pre cyclosporine era most of these 

patients were thought not suitable for transplantation. 

Despite being a revolutionary drug in the field of transplantation CsA is not 

without its side effects. The most important side effect is of nephrotoxicity, 

which can be immediate, acute or chronic.  

Acute nephrotoxicity is thought to be the result of reduction in blood flow and 

increased vascular resistance. It is quite important to differentiate this from 

acute rejection as the treatment course is completely opposite for these two 

conditions. 

Chronic CsA nephrotoxicity is also a big problem in the long term and is thought 

to be a result of increased circulating levels of TGF-ß. 

Apart from major nephrotoxic side effects, CsA can cause hypertrichosis, 

hyperkalemia, hypomagnesemia, hyperuricaemia, glucose intolerance, 

reversible hepatotoxicity, neurological disturbances and minor gastrointestinal 

upsets. 

1.6.2.3	 Cancer	risk	
	

One of the other most serious adverse effects of CsA is development of 

neoplasia. As with other immunosuppressive medicines there is an increase in 

the incidence of lymphomas(105) and skin cancers post solid organ 

transplantation. The normal tumour scavenging ability of the competent immune 

system is disabled leading to more aggressive and invasive tumours. 

The effects of CsA on tumour development are studied in detail and it is 

believed that the overall level of immunosuppression is also important as well 

as the specific agents used. It has been shown by Hojo that, independent of its 
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immunosuppressive effect, CsA can lead to morphological changes including 

increased cell motility and anchorage independent invasive growth leading to 

increased number of metastasis in a mouse model. These effects were 

attributed to the raised TGF-ß levels associated with CsA treatment as these 

were counteracted by anti TGF-ß monoclonal antibodies(106). Tumour 

angiogenesis by vascular endothelial growth factor dependent mechanism can 

also account for the increased incidence of tumours with CsA treatment (107) 

as opposed to Rapamycin.  

CsA also increased IL-6 production in Epstein Barr virus infected cells which 

leads to increased proliferation of B cells and possibly be the cause of 

lymphoproliferative disorders(108).  

 

1.7	 NEWER	IMMUNOSUPPRESSIVES	WITH	ANTI-NEOPLASTIC	
EFFECTS	
	

The search for an ideal immunosuppressive agent did not stop after CsA 

showed initial promising results as it had some major side effects in the long run 

especially chronic allograft nephrotoxicity blunting the initial advantage over 

contemporary immunosuppressives and also the increased incidence of cancer. 

Sirolimus, everolimus and Leflunomide are a few agents, which have both the 

immunosuppressive properties and also are known for anti-neoplastic effects. 

1.7.1			Mammalian	Target	of	Rapamycin	(mTOR)	inhibitors	
	

Two of the most common mTOR inhibitors are Sirolimus and Everolimus. Most 

of the animal and clinical studies for mTORs have been done with Sirolimus. 

These agents are very closely related to each other although in future there 
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may emerge some important clinical differences.   

1.7.1.1	 Mechanism	of	action	
	

Sirolimus is a fermentation product of the microorganism Streptomyces 

hygroscopicus. It is a potent inhibitor of T and B cells as a response to antigen 

stimulation. For the activation of lymphocytes there has to be interaction of 

interleukins and IL receptors as well as co-stimulatory molecules (CD28), which 

then leads to activation of TORC1 complexes. Sirolimus binds to FK binding 

protein 12(FKBP 12) and this complex blocks the activation of TORC1 complex 

leading to cell cycle arrest in late G1 phase(109). 

It also has a direct inhibitory effect on the apoptosis of dendritic cells which 

have a pivotal role in the transplant immunology(110). It also inhibits cytokine 

and growth factor stimulated proliferation of the fibroblasts, tumour cells and 

smooth muscle cells(111)(112)(113). 

 

1.7.1.2	 Role	in	transplantation	
 

There have been several studies looking at the role of sirolimus either as a 

primary immunosuppressive agent or as a replacement of cyclosporine. The 

Sirolimus European Renal Transplant Study Group, which looked at first 

cadaveric renal transplant recipients receiving either CsA based or sirolimus 

based primary immunosuppression showed very similar graft and patient 

survivals as well as episodes of acute rejections(114). Similar results were 

noted when azathioprine used in the above-mentioned study was replaced with 

mycophenolate mofetil (MMF). The acute rejection rates and patient and graft 

survivals were similar with different side effect profile(115). An RCT performed 
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in 2006 compared sirolimus MMF and prednisolone with tacrolimus based 

immunosuppression and again showed these two to be comparable although 

the acute rejection rate was higher in sirolimus based regime but it did not reach 

statistical significance(116). Two large trials from USA showed significantly 

improved acute rejection rates and graft survivals with CNI based 

immunosuppression when compared to sirolimus based treatments(117)(118). 

The Rapamune US study group showed reduced acute rejection rates with 

sirolimus when compared with azathioprine in CsA and steroid based regimes 

but the 12-month creatinine was lower in sirolimus group(119).  

Sirolimus has also been used as sole agents in the maintenance phase of 

immunosuppression after transplantation. One of the first big trials with more 

than 400 patients from Manchester showed better creatinine clearance in the 

sirolimus arm when it was used as a maintenance immunosuppressive after the 

withdrawal of CsA at 3 months post transplant(120). An RCT from Cambridge 

suggested that the impaired graft function possibly due to CNI nephrotoxicity 

could be reversed with sustained improvement at 2 years post transplant by 

conversion to sirolimus at three months. This along with other similar studies 

point to potential benefits of sirolimus as a maintenance agent in terms of graft 

function and to potentially reduce the incidence of chronic allograft 

nephropathy(121). 

1.7.1.3	 Side	effects	
	

It was the result of large studies where sirolimus was used alone rather than in 

combination with CsA that shed light on potential side effects of sirolimus. Most 

of the side effects are the result of the immunosuppressive and anti proliferative 
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effects although some remain to be clearly explained so far.  

The risk of infection is not much different from other immunosuppressive 

agents. This effect is most probably due to its immunosuppressive properties. 

Hyperlipidaemia can be a problematic side effect as most of the renal transplant 

patients are arteriopaths as well and are already at a high risk of heart disease. 

More than half of the patients on sirolimus treatment develop increased levels of 

triglycerides and cholesterol, which may also have implication with chronic 

allograft rejection(122). 

Among one of the most serious side effects is pneumonitis. Symptoms can vary 

from fever, fatigue cough to pulmonary failure. 

From a surgical point of view, delayed wound healing is an important side 

effect. This may lead to skin and soft tissue infections or poor wound healing 

internally at the anastomosis sites e.g. ureteric anastomosis. These effects 

have been linked to its effects on fibroblasts and neovascularization. 

Developments of lymphocoeles are also more common in patients on sirolimus 

treatment. 

Other side effects include skin rashes sometimes needing dose reduction or 

even withdrawal of treatment, anaemia, thrombosis, aphthus ulcers, proteinuria 

among other minor side effects. 

1.7.1.4	 Effects	on	neoplasia	
	

mTOR inhibitors belong to the relatively new group of immunosuppressive 

medications, which have some anti tumour potential as well. This effect can be 

very useful as all the patients on immunosuppression are at an increased risk of 
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developing malignancies and if a good immunosuppressive agent can also be 

able to have potent anti tumour properties then it can solve this major issue. 

Both in vitro and in vivo studies have shown that sirolimus has both these 

properties. Although mTOR inhibitors have potent immunosuppressive effects, 

which in itself are risk factors for tumour cells to evade one’s immune system, 

but it’s anti tumour effects are significantly potent as well. 

There are several studies which suggest that with sirolimus based 

immunosuppression the over all rates of de novo malignancies are significantly 

less than CsAs. A large retrospective analysis was performed on post transplant 

malignancies in more than 33 thousand deceased donors from 264 centres in 

USA. This study looked at both the skin and non-skin solid organ malignancies 

rates and showed that the rate of malignancies with sirolimus/everolimus and 

mTOR plus CNI combination was 0.6% as compared to CNI alone which was 

1.81%(92).  

Efficacy of mTOR inhibitors has also been shown in cases of advanced renal 

cell carcinoma. A large double blind trial randomised 272 patients into an 

Everolimus group and 138 in a placebo arm for the treatment of advanced renal 

cell carcinoma. There was progression of disease in 37% of patients in the 

treatment arm as opposed to 65% in the placebo arm (p 0.0001) with a median 

disease free survival of 4.0 versus 1.9 months(123). 

Similar encouraging results were noted when Everolimus was used for the 

patients with advanced pancreatic neuroendocrine tumours. 207 patients in the 

treatment were compared with 203 patients in placebo arm and were found 

have significantly better progression free survival of 11 months as compared to 
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4.6 months in the placebo arm (p <0.001). 34% of patients were still alive at 18 

months as compared to 9% with placebo(124). 

mTOR inhibitors were found to be useful in hepatocellular carcinomas and in 

advanced breast carcinomas as well(125)(126). 

mTORs have been shown to be effective for the post transplant 

lymphoproliferative disorders as well. A case of complete remission of 

disseminated PTLD has been reported in literature after conversion to 

sirolimus(127). 

With an increasing cohort of patients on immunosuppression post transplant 

there is an increasing incidence of Kaposi’s sarcoma. mTOR inhibitors have 

been found useful for their treatment as well. A case series of 25 patients with 

cutaneous Kaposi’s sarcoma when converted from cyclosporine to sirolimus 

showed complete biopsy proven remission within 6 months of treatment(128). 

These effects of mTOR inhibitors are very encouraging and over the past 10 

years there has been mounting evidence on their efficacy. Although by no 

means these are the perfect solutions but a medication to be 

immunosuppressive and anti neoplastic in transplant setting is very useful 

feature that we wished to explore. 

1.7.2	 	 Leflunomide	
	

Leflunomide has also been used for immunosuppression after solid organ 

transplantation with variable success. It has been the analogues of the 

metabolites of Leflunomide that have shown most promise, as the half-life of the 

drug is more manageable. The metabolites of leflunomide are called 
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malononitrilamides (MNAs) and FK778 is the most common and well-studied 

agent in organ transplantation. 

Currently leflunomide is used approved as a disease-modifying agent for 

rheumatoid arthritis, although there are several possible applications of this 

drug. 

1.7.2.1	 Mechanism	of	action	
	

Leflunomide exerts its immunosuppressive and anti-inflammatory effects 

through multiple pathways. The most important mechanism of action is the 

inhibition of pyrimidine synthesis. Activated lymphocytes depend exclusively on 

the de novo synthesis of the uridine monophosphate, as they are unable to use 

the pyrimidine salvage pathway. Leflunomide inhibits the mitochondrial enzyme, 

dihydroorotate dehydrogenase which is responsible for the production of 

pyrimidines(129)(130), leading to the inability of lymphocytes to synthesise RNA 

and DNA. 

The other main mode of action of leflunomide is the inhibition of tyrocine 

phosphorylation. With the substitution of uridine in vitro, the inhibition of 

dihydroorotate dehydrogenase pathway occurs with no effect on tyrocine 

phosphorylation pointing to a separate mechanism of action(131).  

1.7.2.2	 Role	in	transplantation		
	

Leflunomide is currently only licenced for the use in rheumatoid arthritis 

patients. But in past it has been used for solid organ transplantation.  

A phase II multicentre study looked at the primary end point of acute rejection in 

renal transplant recipients. The study divided patients into 3 groups; high dose 
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leflunomide, low dose leflunomide and placebo, with all groups receiving 

tacrolimus and corticosteroids. A total of 149 patients were randomised into 

these groups. There was no significant difference between the graft survival, but 

the acute rejection rates were lower in leflunomide group (26.5%, 25.9%) as 

opposed to placebo (39.1%)(132).  

There has also been evidence in animal studies that leflunomide can reduce the 

chronic rejection in allografts(133). 

1.7.2.3	 Side	effects	
	

Most of the insight into the side effects of leflunomide has come from the 

studies where it was used for the treatment of arthritis. A phase II trial of 358 

patients divided into leflunomide, sulphasalazine and placebo, looked at the 

efficacy and safety profile of leflunomide for arthritis patients has shown that the 

most common side effects were diarrhoea (17%), nausea (10%), alopecia (8%), 

and rash (10%). There were transient abnormalities in the liver function of the 

leflunomide group of patients(134). There have also been reports of anaemia, 

microangiopathy, oesophagitis and electrolyte disturbances(135)(136). 

Leflunomide has shown to have some anti proliferative effects along with 

immunosuppression and hence is a suitable agent for the inclusion in our 

study(137)(138)(139)(140). 

 

1.8	 TRANSPLANT	IMMUNOLOGY	
 

Much of the improvement in the outcomes of the allografts after transplantation 

has been due to the development of better immunosuppressive agents, and it 
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has been the improving understanding of the immunology of transplantation that 

has paved the way for better immunosuppressive agents. 

Immunological response after transplantation is a dynamic multifaceted process 

with a wide range of activation and stimulatory mechanisms involved.  

Immunological response to the transplantation can be divided into various 

stages; pre transplantation and post transplantation or by the type of immune 

system – innate or adaptive. 

 

1.8.1	 	 Innate	immune	response	to	transplantation	
 

Even before the organs are transplanted there is plenty of trauma or tissue 

injury leading to activation of innate immune response against the transplanted 

tissue.  

In cases of donation after circulatory arrest, there is organ injury due to first by 

warm ischaemia and then by variable periods of cold ischaemia followed by 

reperfusion injury. In case of donation after brain dead (DBD) donors the 

overwhelming release of cytokines as direct result of neuroendocrine responses 

due to brain death also leads to activation of complement and coagulation 

cascades even before the organs are transplanted. 

Up regulation of cell surface adhesion molecules including P selectins and 

integrins along with the milieu of cytokines helps in the migration of immune 

mediator cells. There are suggestions that the more the initial injury to the 

organ, the worse the immunological outcomes(141) probably as a result of the 

induction of proinflammatory cytokines including interleukin 1 (IL-1), IL-6 and 

tumour necrosis factor (TNF-α)(142).  

The complement system normally is activated as a response to non specific 
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infections but it can also be stimulated as a result of hypoxia and tissue injury 

(143)(144) which is a hallmark of organ transplantation as a result of 

procurement process. 

1.8.2	 	 Adaptive	alloimmunity	
	

Adaptive immunity or the specific or acquired immunity is more specific and 

directed than the innate immunity. Hence it requires the effector cells to be 

stimulated and then migrate to the site of interest, which is allograft in 

transplantation. The whole process is an intricate combination of antigen 

presentation, allorecognition and then activation, migration and targeting of the 

allograft by the effectors cells. 

These stages are of paramount importance and are discussed. 

1.8.2.1	 Antigen	recognition	and	presentation	
	

The immune system distinguishes self from non-self antigens to prevent auto 

immunity. The histocompatibility antigens are unique to every individual of even 

the same species and thus are the targets of the immune system in clinical 

transplantation. The most important and well characterised is the Major 

Histocompatibility Complex (MHC) antigens but more recently the role of minor 

histocompatibility antigens have been recognised as well.  

Genes in the MHC locus are divided into class I, II and III but class I and II are 

thought to exert the most influence on the allograft rejection.  

Class I MHC proteins are expressed on almost all nucleated cells and generally 

activate the CD8+ T cells and normally present proteins synthesised 

intracellularly. Class II MHC complexes are expressed on B-lymphocytes, 
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dendritic cells and some endothelial cells. These complexes are generally 

responsible for activation of CD4+ cells and generally process extracellular 

peptides although this is not absolute as there can be some cross 

presentation(145).  

There are three ways the antigens are presented. In the direct antigen 

presentation the donor derived MCH proteins as well as other allogeneic 

proteins will be presented to recipient T cells by the donor antigen presenting 

cells. Even with the elimination of leukocytes for the allograft, which is essential 

for the direct pathway of antigen presentation, the rejection can still occur. The 

second type of antigen presentation is via the indirect pathway where the 

antigens derived from the donors are processed and presented by the recipient 

antigen presenting cells to the recipients T cells leading to downstream 

activation of cytokines leading to rejection response(146).  

In the ‘semi direct’ pathway the donor APCs transfer cellular membrane proteins 

and MHCs to the recipient APCs. These chimeric APCs then stimulate both 

CD4 + and CD8+ T cells.  

1.8.2.2	 Role	of	co	stimulation	
 

Once the antigens are presented to the T cells receptors (TCR), their fate is 

largely dependent on the type of co stimulation at the time of antigen 

presentation. These cells depending on the co stimulatory signal can start 

proliferating, become anergic or develop into memory cells. 

It has been shown that where there is absence of co stimulatory signals through 

a lack of stimulatory cytokines, T cells can become anergic, which can be 

reversed by replacing the missing cytokines(147). There are a large number of 
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co-stimulatory signals but probably the most studied one is CTLA 4, which 

inhibits T cell activation. 

Broadly speaking co stimulatory interactions are either from CD28-B7 family or 

tumour necrosis factor receptor (TNFR) / tumour necrosis factor (TNF) family.  

CD28 is present on the T cell surface and it interacts with CD80 and CD86. 

Interaction of CD28 with CD80/86 promotes activation of T cells while CTLA 4 

interaction with CD80/86 inhibits T cell activation. 

CD40 ligand (CD154) is expressed on the surface of activated T cells. This 

interacts with CD40 and is needed for the activation of B cells and dendritic 

cells. These interactions lead to production of different cytokines, which activate 

various effector cells. 

 

1.8.2.3	 T	cell	differentiation	and	the	role	of	regulatory	cells	
 

After the initiation of immune response by antigen presentation to TCR, naive T 

cells differentiate into helper T cells. These cells mostly are CD4+ and once 

activated also express CD154. Generally Th1 differentiation is promoted by IL-

2, Th2 by IL-4, Th17 by IL-6 and Treg by TGF-β. 

Th1 cells have been shown to be responsible for acute rejection associated with 

transplantation(148)(149) while Th2 and Treg cells are implicated in the negative 

feedback mechanisms leading to protection from alloimmunity(150). This has 

lead to a vast interest in their role to prevent allograft rejection.  

CD4+ CD25+ regulatory cells are the most well studied group of regulatory 

cells. Earlier experiments have suggested that these regulatory cells are 

needed to prevent autoimmunity. After thymectomy of an adult rat and split 
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dose gamma irradiation the rats developed autoimmune diseases. This has 

been shown to be reversed by transfer of CD4+ CD25+ Treg cells(151)(152). 

More recently their role in prevention of allograft rejection has been studied. 

These T cell subsets were isolated in the long term surviving cardiac (153)(154) 

and pancreatic(155) allografts pointing towards their role in the development of 

tolerance. 

1.8.2.4	 Humoral	mechanism	of	rejection	
	

Two main mechanism of tissue damage by antibodies are either through the 

activation of complement or antibody dependent cellular cytotoxicity. If a patient 

is transplanted a kidney who already has preformed antibodies against the 

MHC of the transplanted organ, it will lead to hyper-acute rejection. This type of 

rejection is also seen if the organ is transplanted across the ABO blood group 

without implementing the immunosuppressive protocols of ABO incompatible 

transplantation (antibody removal). These scenarios of hyper acute rejection are 

quite rare these days due to the refinements in tissue typing and cross 

matching. Development of these antibodies could be because of multiple 

previous blood transfusions where the recipient gets sensitized by the HLA 

antigens of the WBCs in the blood, previous pregnancies where it’s the 

exposure to the paternal antigens which leads to the development of an 

antibody response or previous transplant or via cross reactivity of various 

infective agents’ antigens. 

The humoral arm of adaptive immune system also plays an important role in the 

long term as well. Donor HLA specific antibodies (DSA) can develop during the 

episodes of acute rejections. Presence of DSA is an adverse sign for the 
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allograft both for the short and the long term as its quite difficult to treat and can 

show resistance to treatment with antilymphocytes and steroids regimes(156). 

Positivity of C4d staining (157) on renal biopsy is an indicator of the antibody 

mediated rejection and necessitates a more intensive therapeutic rescue 

regimen. 

1.8.3	 	 Role	of	Natural	Killer	(NK)	cells	
 

Natural killer cells are an important part of innate immune response. Their main 

role has been against the cancer cells and virus infected cells as a first line of 

defence. Although most of the NK cells are present in peripheral blood, lymph 

nodes and bone marrow, they can be recruited to the sites of inflammation by 

various cytokines(158). A lack of MHC class I expression either completely or 

even partially can lead to recognition by NK cells and leads to the lysis of these 

cells. Many of the cancer cells lack normal MHC expression thus making them 

susceptible to attack by NK cells.  

NK cells also play active role in adaptive immunity by their interaction with the 

dendritic cells that can be positively or negatively influenced by them. Some T 

cells also express NK cell receptors which influences their interaction with the 

other cells of adaptive immune system(159).  

The response from NK cells is much quicker than T and B cells as it’s due 

mostly to the preformed secretory granules containing effectors with properties 

to induce apoptosis. There also is some evidence of memory with NK cells as 

the second response to the same antigens is even quicker than the initial 

stimulus(160). 
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1.9	 	 TUMOUR	IMMUNOLOGY	
	

1.9.1	 		 Immunological	response	to	tumours	
	

As tumour cells are also usually self,  the majority of the antigens associated 

with them do not incite an immune response due to the tolerance process. Still 

there are few antigens that are recognised by either the innate immune system 

or adaptive immune response of the host. The antigens could be originating 

from tumour / viral genes, they could be the result of mutation in normally 

occurring genes or they could be the result of overexpression of normal genes 

or foetal antigens(161). All these processes make these tumour antigens 

susceptible to recognition by MHC and therefore attack by the T cells. 

Broadly, tumour antigens can be divided into two categories. 

 

1.9.1.1	 Tumour	specific	antigens	
 

These antigens are produced from the tumour cells and may be the result of 

several mutations. These antigens are thus new and so can lead to induction of 

cell-mediated immune response. The majority of these antigens are the result of 

chemical or viral exposure. The T cells then eliminate the cells expressing these 

antigens thus either leading to complete destruction of the tumour load or 

selecting the cells, which either express these antigens at very low level or don’t 

express them at all. Thus making them invisible to the immune system. 

Virally induced tumour antigens can be similar among different tumours induced 

by the same virus and injecting hosts with the cells from one type of tumour can 

protect them from the other tumours caused by the same virus. This principle is 
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used for the production of vaccine for cervical cancer where human papilloma 

virus is present in 80% of invasive tumours(162). 

1.9.1.2	 Tumour	associated	antigens	
 

These antigens are not specific to the tumour and are either produced at some 

stage of development or are produced at very low levels and tumour cells alter 

their expression positively. Alpha foetoprotein (AFP) is normally expressed 

during the embryonic stages of development and is only present in very small 

amounts in non-pregnant adults. Its levels are raised to many folds in liver 

cancers and it forms an important prognostic indicator. Similarly 

carcinoembryonic antigen (CEA) is overexpressed by a proportion of colonic 

cancers. In some types of breast cancers HER2 antigens are overexpressed 

which is not an embryonic antigen. 

1.9.2	 		 Immune	response	to	tumour	development	
 

There are several pathways that regulate the human cells and prevent tumour 

development. Just because of the mere numbers of cells present in humans 

and multiple stimuli from carcinogens, without these protective mechanisms life 

would be impossible. Nucleotide excision repair (NER) pathway is one of the 

several well characterised ways by which unregulated growth is prevented(163). 

There are other simpler mechanisms where disruption of extracellular-matrix 

association can lead to apoptosis. If the tumour cells evade these basic defence 

mechanisms then there is the specific protection by the immune system. 

The immune system can help achieve this by either protecting against tumour 

inducing viruses and reducing pre tumour inflammatory response or by 



Chapter	1—56	
	

specifically attacking the tumour/tumour associated antigens. 

Immune system can both protect and indirectly promote the tumour growth 

contrary to the initial belief, a model called immune-editing. Initial studies have 

shown the importance of T, NK T cells and NK cells in their role of tumour 

destruction as in their absence animals are more prone to develop several 

cancers. But more recent studies have shown that cancers developed in animal 

models with deficient immune system are much more immunogenic than the 

animals with intact immunity. This observation points towards these tumours 

being naturally selected to be less immunogenic and thus more able to evade 

host response. Perhaps this is the final step required for any tumour to evade 

the host immune system as otherwise hosts with normal immune systems 

should destroy all the tumour load(164).  

Vesely et al. describe this process of immune-editing in three stages(165) Fig 6. 

The first phase is elimination where cancer cells are attacked by the immune 

system and are destroyed. The second phase of equilibrium is where there is a 

balance between the growth of tumour cells and destruction and the final stage 

is escape where least immunogenic tumours evade the immune system and 

undergoes the phase of exponential growth(165). 
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Figure 6 Immune-editing. Three stages of Elimination of cancer cells (first stage), 
Equilibrium between growth of tumour cells and destruction (second stage) and Escape 
associated with exponential growth (third stage). (165) 

 

Key immunological players of cancer eradication are natural killer (NK) cells and 

certain macrophages from the innate immune system and TH1 and cytotoxic T 

cells of adaptive immune system as well as antibody response to tumours by B 

cells. Conversely, TH2 and Treg cells’ prominence in the tumour milieu is an 

adverse prognostic sign. Again there are several pathways through which the 

tumour cells evade the natural defence of the hosts including reduced MHC 

expression or selection of such tumour cells which are less immunogenic, up-

regulation of anti-apoptotic mediators and lack of co-stimulatory signals which 

are essential to mount an immune response and in its absence can lead to 

tolerance of the tumour. 
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1.10	 	 SUMMARY	OF	LITERATURE	REVIEW	
 

The use of organs affected by small renal tumours have been attempted in past. 

Most of the initial reports of the use of these organs have been retrospective 

studies. One of the very first reports of the use of organs affected with small 

renal cell carcinomas was from the Cincinnati group where Penn(55) looking at 

Cincinnati transplant tumour registry (CTTR), described a total of 14 cases of ex 

vivo resection of small renal cell cancers detected incidentally followed by 

transplantation. There were no recurrences from these cases and the other 

organs were transplanted from these donors without any adverse effects. 

Similar results were reported by Buell(54) again with no recurrence. Later on 

Nicol (56) presented a quite impressive case series from Australia where these 

kidneys with small renal tumours were transplanted after ex-vivo resection after 

careful selection of recipients. Their group chose elderly patients or patients 

with comorbidities and high chance of death without transplantation. All the 

recipients had full informed consent and were given the choice of rejecting 

these organs. Of the 41 kidneys transplanted after ex vivo resection, 10 had 

benign pathology and 31 had a malignant tumour. There was only one case of 

recurrence that was away from the site of resection. Similar case series were 

reported from Japan(58) with no recurrence. All these and several case 

series(29) point towards the unexpectedly promising results after transplanting 

these organs after tumour resection.  

Similarly there are more than 50 cases of allograft renal tumours, which have 

been successfully treated by partial nephrectomy rather than graft nephrectomy.  
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Chapter 2  
EXPERIMENTAL DESIGN 
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2.1	 Research	hypothesis	
 

The main aims of our study were 

 

• To assess the role of standard immunosuppressive agents on 

transplanted tumour growth and compare with immunosuppressive 

agents with anti-neoplastic properties. 

• To assess the role of matching on tumour growth  

• To assess the role of rejection in eliminating transplanted tumour load. 

 

There are more than 7000 new cases of renal cell carcinomas diagnosed in the 

UK every year and more than 50% of these are T1a tumours (less than 4 cm 

unilateral tumours). The current standard of treatment for these tumours is 

partial nephrectomy and radical nephrectomy is now regarded as an alternate 

standard. Despite this there still are a large number of patients undergoing 

radical nephrectomy for these small tumours due to various reasons. There is a 

potential of these organs to be restored by ex vivo resection of the tumours and 

then be transplanted. The current literature, although quite limited, is very 

encouraging. Although the long term incidence of recurrence and patient 

survival are comparable between patients undergoing partial nephrectomy and 

radical nephrectomy(85) and this is one of the main reason of partial 

nephrectomy now being regarded as a standard procedure for these tumours in 

a urological setting , the situation after transplantation is more complicated.  

Transplant recipient are on life long immunosuppression and as explained 

earlier, host immune system is an important barrier to tumour development and 

growth. In the event of any inadvertent tumour transplantation in these patients 



Chapter	2-62	
	

the results could be devastating.  

The main aim of this research project was to look at the role of different 

immunosuppressive agents on tumour development and growth in a transplant 

setting to identify the immunosuppressive agents, which can be most suited to 

situations where these restored organs are transplanted.  

The hypothesis was that under the influence of regular immunosuppression any 

transplanted tumour load will continue to grow. Also perhaps there will be an 

ideal form of immunosuppression that could be used for these restored organs. 

Certain immunosuppressive agents with anti neoplastic properties (Sirolimus 

and Leflunomide) could be used in these situations and the anti neoplastic 

properties utilised to rid of any inadvertently transplanted tumour from the host.  

The other observation from a pure immunological point of view is of the role of 

matching in transplantation. The better-matched organs could incite less of an 

immune response against them and vice versa. As the tumours are also derived 

from the donors, they share most of the antigens with them apart from the 

tumour specific or tumour derived antigens. In cases of tumour transplantation 

along with these restored organs or tumour recurrence in these kidneys 

matching can possibly play an important role. Our hypothesis was that the 

tumour derived from more mismatched donors will incite a more robust rejection 

response thereby producing a better clearing of any tumour load. This situation 

can be used as a helpful aid to other treatments when a recurrence is 

diagnosed in these organs. A graft nephrectomy will be required for most of 

these situations followed by withdrawal of all immunosuppression. In this 

scenario, without any immunosuppression the hosts immune system will be 

better equipped to reject any left over tumour load e.g.; in local lymph nodes. 
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Barrou et al. (76) has described a case of two allograft recipients from a single 

donor with tubulopapillary tumour (17mm) in the right kidney; only the left kidney 

was utilized for transplantation. Shortly after transplantation, the recipient 

underwent an ultrasound (US) examination of the allograft, which did not reveal 

any tumour. 3 months later a biopsy was done for rejection, which revealed a 

poorly differentiated tumour, and the patient underwent radical allograft 

nephrectomy. No additional chemotherapy was given apart from discontinuation 

of immunosuppression (prednisolone and azathioprine). Lymph nodes that had 

been noted to be enlarged on CT scan disappeared two month after 

nephrectomy. The patient underwent re transplantation two years later and was 

disease free and dialysis independent at 3-year follow-up. This example 

suggests that hosts immune system can be used for rejection of any left over 

tumour and by transplanting organs with less well matching perhaps this 

rejection of tumours will be even stronger.  

 

The immunosuppressive agents used for our project were Cyclosporine, 

Sirolimus and Leflunomide. This choice of immunosuppression gave us the 

opportunity to assess the tumour behaviour under “normal” 

immunosuppression without any anti neoplastic effects (cyclosporine) and 

newer agents with some antiproliferative properties.    

The tumour was transplanted into two different strains of rats to mimic well-

matched and poorly matched groups. The role of matching and rejection of 

tumour is compared in these two groups after withdrawal of any 

immunosuppression. 
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To enable real time in vivo monitoring, a highly sensitive IVIS spectrum 

imaging system was used for analysis. At the end of the study period further 

analysis by flow cytometry was performed to assess immunological response 

to the tumour in the transplant setting. 

Our project can be outlined as below  

	

Figure 7 Flow sheet showing project outline. 
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Figure 8 Schematic diagram outlining the project methodology. 

   

2.2	 Subcutaneous	injection	of	renal	tumour		
 

The purpose was to induce a tumour by injecting a known number of tumour 

cells under the surface of the skin. Such a model has been used previously 

(166).  The normal immunosuppression used in this situation was 

cyclosporine. After inoculation of 1.2×107 tumour cells the animals were 

monitored for four weeks and then euthanased to measure their tumour size 

and then they underwent a post mortem to determine whether or not there 

has been distant spread. After tumour injection 5 initial groups were 

developed: one with no immunosuppression (control), then four groups one 

receiving the standard immunosuppressive drug cyclosporine which was 

administered for 4 weeks or the test immunosuppressive anti-proliferative 

drugs: again administered for 4 weeks. The animals receiving 

immunosuppression were further divided into treatment continue group where 

immunosuppression was continued for 4 weeks and treatment withdrawal 

group where immunosuppression was stopped after two weeks; to assess the 

role of rejection with no immunosuppression.  
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We used two different rat strains; Wistar and Lewis. The cell line was from 

Wistar origin and was developed after exposure to an oral carcinogen and 

were shown to be stable(167). Well-matched groups were mimicked when 

these tumour cells were injected into Wistar animals and poorly matched 

when these tumour cells (of Wistar origin) were injected into Lewis rats. 

 

 

 

2.3	 Monitoring	the	tumour	
	

To enable in vivo visualisation and objective estimation of tumour load as a 

measure of tumour behaviour in our model we transfected the cell line with 

Luciferase and Green Florescent Protein (GFP).  Stably transfected cells 

were then selected for injection in the subcutaneous tissue and the animals 

were scanned in IVIS Spectrum imaging system to monitor the tumour 

growth. Towards the end of the study period of 4 weeks the animals were 

euthanased by schedule 1 of Home Office protocol and a formal post mortem 

was performed to assess any distant metastasis. 

2.4	 	 Choice	of	Immunosuppressive	agent	
	

We studied the effects of three immunosuppressive agents on the 

transplanted tumour behaviour.  

2.4.1	 	 Cyclosporine	
	



Chapter	2-67	
	

This, along with tacrolimus is the most commonly used immunosuppressive 

agent used in clinical transplantation. CsA revolutionised the 

immunosuppression by significantly reducing the rates of acute rejection in 

1990s compared to previous agents. Although from the mid of 2000s, 

tacrolimus has taken over as the most commonly used primary 

immunosuppressive agent, they both are Calcineurin inhibitors and share 

mechanism of action and side effects. One of the important side effects of 

CsA is the increased incidence of tumour development as is with most of the 

immunosuppressive agents. These effects are thought to be due to increased 

cell mobility and increased anchorage independent growth and also due to 

increased angiogenesis(106)(107). 

	

2.4.2	 	 Sirolimus	
 

The profile of Sirolimus fits very well to the research hypothesis of an 

immunosuppressive medication that has antineoplastic properties as well. 

Although the rates of acute rejection may be slightly better with CNIs when 

compared to Sirolimus, its potency as antineoplastic agent has been tested 

for different tumours. Sirolimus behaved as a one of the two test agents in the 

study to exploit these anti tumour effects. We used two different doses of 

Sirolimus; the high dose (2.0mg/kg/day) as used in many animal studies for 

urothelial tumours (168) and low dose (0.5mg/kg/day) normally used to study 

the immunosuppressive effects(169)(170).  

2.4.3	 	 Leflunomide	
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The other immunosuppressive we used for our research was Leflunomide. 

Leflunomide exerts its immunosuppressive and anti-inflammatory effects 

through multiple pathways. The most important mechanism of action is the 

inhibition of pyrimidine synthesis. Activated lymphocytes depend exclusively 

on the de novo synthesis of the uridine monophosphate, as they are unable 

to use the pyrimidine salvage pathway. Leflunomide inhibits the mitochondrial 

enzyme, dihydroorotate dehydrogenase which is responsible for the 

production of pyrimidines(129)(130), leading to the inability of lymphocytes to 

synthesise RNA and DNA.  

Leflunomide is currently only licenced for the use in rheumatoid arthritis 

patients. But in past it has been used for solid organ transplantation.  

It has shown improved outcomes when used with CNIs and steroids (132) and 

also has shown reduced acute rejection rates in animal models (133). 

Various studies have shown anti tumour role of these 

agents(171)(138)(172)(139), which makes leflunomide suitable to assess our 

hypothesis. 

 

2.5	 Grant	and	licence	
 

The work carried out in this project was appropriately licenced. The project was 

licenced through Home Office animal licence (Licence no. PPL 60/4042) for a 

total of five years. The animal work on our project lasted from June 2010-Feb 

2012. I held personal licence granted by Home office after successfully 

completing modules 1-4 of animal handling, kept at all times in the animal 

department of Newcastle University.  
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The grant was provided by Northern Counties Kidney Research Fund (NCKRF). 

The Initial grant was of £3000 for the pilot work and the subsequent grant was 

for £ 19,270.54 (Grant reference BH111133). 
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Chapter 3  
DEVELOPMENT OF STABLY 
TRANSFECTED RAT TUMOUR CELL 
LINE 
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3.1	 INTRODUCTION	
 

Transfection of the cell line with luciferase and Green florescent protein was 

one of the very important steps of our experiments. Despite the rapid growth 

(24 hours), without any transfection with luciferase and GFP, all the 

assessment of the tumour growth under experimental conditions would have 

been very subjective with high chances of bias and human error. Using the 

objective method of measuring the tumour load with IVIS Spectrum Imaging 

system as described in more detail later prevented this.  

Injecting native cells into rats means that tumours can only be detected once 

palpable and the rats would have required sacrificing. Transfecting the cells 

with a reporter gene allows the real-time monitoring at subclinical levels and 

the rats can be kept alive throughout the study period. 

Plus, without knowing the effects of the different immunosuppressive agents 

on tumour growth, it would have been impossible to determine any subtle 

changes. If there was not a big difference in the effectiveness of one 

immunosuppressive over the other then these changes would have gone 

unnoticed.  

Apart from refining the results and removing the bias to a great deal from 

these experiments, transfection of our cell line also meant that the animals 

had to undergo the experiments for shorter period. Because of the very high 

sensitivity of the IVIS imaging system we needed a lot less tumour load to be 

able to study the effects of immunosuppressive agents and the role of 

matching on them. This was a major refinement, leading to lot less animal 

stress during these experiments.	
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3.2	 FLUORESCENCE	AND	BIOLUMINESCENCE	
	

Bioluminescence results in the release of photons, which can be picked up by 

photon sensitive equipment. The photon emission is secondary to the 

generation of an exited high-energy state of the electrons in the molecules, 

which are inherently unstable. When the molecules come back to their resting 

state, this leads to energy production in the form of photons emission. 

There are some basic differences between bioluminescence and 

fluoroscence. For any sort of florescence there has to be an external source 

of energy, in the form of light that is used to excite the molecules from its 

resting state while in bioluminescence this is a chemical process. Usually the 

amount of light emitted by the florescent assays is much higher than the 

bioluminescent assays, as there is an external source of energy, so the 

amount of energy delivered can be increased to a great deal. But this does 

not translate to the better overall sensitivity of these assays. This is due to the 

fact that any estimation of photons must be calculated by subtracting the 

background “noise” or background signals. As there is an external source of 

energy, usually the background signal is also very bright in cases of 

florescence, hence reducing the overall sensitivity of the assay. 

The photons needed to excite the fluorochromes can also interfere with the 

results of the assays. But in biological samples, the tissues may have their 

own inherent florescence that can interfere with the final results. 

These issues are much less of a problem in cases of bioluminescence as 

there is no external light source required. This means that inherent 
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florescence will also not be interfering with the analysis. Due to these, there is 

a very small background signal making any light measurement far more 

sensitive towards the experimental assay. 

Thus bioluminescence is preferred over the florescent processes although 

florescence has its important uses as well, especially in light microscopy and 

flow cytometric analysis where bioluminescence cannot be used or has very 

limited role. 

The most commonly used bioluminescent enzyme is Firefly Luciferase 

(others are Renilla luciferase and Aequorin). 

3.2.1	 Firefly	Luciferase	
	

This is a naturally occurring enzyme found in firefly and in bacterial species 

such as Vibrio sp. and results in bioluminescence in these organisms. The 

chemical process leading to light (photon) emission has the following steps. 

Conversion of Luciferin (substrate of Luciferase) to high-energy state 

Oxyluciferin, which is an unstable molecule. This is an active process 

needing an input of energy in the form of ATP and requires oxygen. 

This high energy state of oxyluciferin is unstable and thus gets converted to 

the stable low energy state of oxyluciferin, releasing the energy absorbed in 

the initial reaction as photons. 



Chapter	3-74	
	

	

Figure	9	 Schematic	 of	 mechanism	 of	 bioluminescence	 (173).	 Cells	 are	 initially	 transfected	 with	 Luciferase	
enzyme.	Once	transfected,	these	cells	have	the	ability	to	emit	light	in	the	form	of	photons	in	the	presence	of	O2,	

ATP	and	luciferase.	

	

3.2.2	 Green	Florescent	Protein	(GFP)	
	

This is another naturally occurring protein that has excellent florescent 

properties and has been used as a reporter extensively. The enhanced form 

of GFP (eGFP) is preferred now because it offers higher intensity emissions 

after blue light excitation(174).  

The other benefit of GFP has been the ease of determining the transfection 

process with florescent microscopy. It is useful for flowcytometry as opposed 

to the bioluminescent proteins. 

3.3	 	 IVIS	SPECTRUM	IMAGING	SYSTEM	
 

This is an imaging modality specifically designed to image small animals for 

the detection of florescent and/or bioluminescent signal with very high 

sensitivity. A schematic diagram of the imaging system is shown in the figure 

below.  
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This can be divided into three distinct parts; 

Imaging Chamber 

This contains a sound proof, light tight imaging chamber with heated stage to 

keep the anaesthetised animals’ body temperature regulated. It has 

integrated gas anaesthesia and an Oxygen delivery mechanism. 

The stage is motor controlled to adjust the lens position for the best possible 

image capture.  

CCD Camera 

A highly sensitive back illuminated CCD camera, with 13.5-micron pixels. The 

camera is thermoelectrically cooled to -90°C to reduce the background noise. 

 

Lenses  

There is 6-inch diameter optics with focal length varying from f/1-f/8. It also 

homes an emission filter. 

The basic purpose of this arrangement is  

• To be able to capture the faintest possible light signals with minimal 

detectable radiance of 70 photons/sec/sr/cm2 

• To reduce the background noise, which is achieved by keeping the 

animals anaesthetised so that there is no movement and maximum 

amount of information is gathered, by means of super cooling of the CCD 

camera and by the use of complex software algorithms to calculate the 

actual signals and subtracting the background “noise”. 
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Figure 10 Schematic diagram of IVIS Spectrum taken from the IVIS manual.  
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Figure 11 IVIS spectrum imaging system. Used for our experiments in Newcastle 
University. Main chamber homes the anesthetised animals. Anaesthetic delivery system 
mixes oxygen with anaesthetic gases both to induction chamber and main chamber. 
Computer software is used to analyse the acquired data. 

 

 

Principle of IVIS spectrum  

Florescence 

Emitted light from the excitation filter wheel feeds through a fibre optic bundle 

to illuminate the specimen from either the top, in epi-illumination (reflectance) 

mode, or from underneath the stage. If the specimen has fluorochrome it will 

absorb the light of excitation wave length and emit its own light of certain 

wave length depending upon the fluorochrome. This light is then picked up by 

the super cooled CCD cameras through an array of filters to create the 

image. The software in the attached CPU has the ability to subtract the 

background illumination from the final signal received, generating the true 

reading of fluorescence. 

	

Main	chamber	

Computer	monitor	
for	software	

Anaesthetic	delivery	
system	and	
anaesthetic	chamber	
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Bioluminescence 

The specimen was placed in the light proof dark chamber and luciferin was 

added to the sample to start the reaction with luciferase. Exposure times can 

be either automatic or it can be set to capture the images depending on their 

light emission. Again the photons produced are picked up by the CCD 

camera. Again for the accuracy of the measurement of light emission, the 

background noise is subtracted from the original image. 

To enable the real time monitoring of the rat kidney tumour cells, these were 

transfected with luciferase. This is described along with the basic cell culture 

below. 

 

 

 

 

3.4	 MATERIALS	AND	METHODS	
 

3.4.1	Cell	culture	
	

The cell line used throughout the experiments was BP36B, a rat renal tumour 

cell line. Basic cell culture techniques were practiced and perfected on A549 

(human lung carcinoma) (175) before embarking on the transfection of the 

BP36B cell line. 

The rat tumour cell line, BP36b, was acquired under a standard MTA from the 

Cell Bank at the RIKEN BioResource Centre (Ibaraki, Japan). These cells 

were developed by Tokuzen et al. (167) by exposing the Wistar male rats to 
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N-ethyl-N-hydroxyethylnitrosamine (EHEN),a known carcinogen, and by 

feeding EHEN to 6 weeks old male Wistar rats for 3 weeks, 14 rats showed 

the presence of the tumour. The cells were isolated and cultured in RPMI 

1640 with 10% FCS and antibiotics in the humidified incubator with 5% CO2 

at 37°C.  

Tokuzen et al. developed three rat renal tumour cell lines (BP13, BP30 and 

BP36B). All of these cell lines had epithelial appearance in monolayers and 

were moderately differentiated basophilic tumours of proximal tubular origin.  

The cell line chosen for our experiments was BP36B as the doubling time of 

this cell line was 17 hours as compared to 29 and 21 hours respectively for 

the other tumour cell lines. Also this cell line was most successful in inducing 

tumour in a xenotransplant model after pre-treatment of the nude mice with 

anti-asialo GM1 antibody (an NK cell depleting antibody)(176).  

This cell line was reported very stable even after 100 passages. The cell 

characteristics were tested in the cell lines for up to 3 years from the receipt 

and the doubling times and the cell line characteristics have remained stable 

throughout this period. These cells were then split into 6 flasks initially and 

later on 1:8 splitting ratio was adopted once the cell line was stabilised in 

our lab.   
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Figure 12 Light microscopic appearance of BP36B rat renal tumour cell line (10X). 
These cells grew in monolayer and remained epithelial in appearance. The doubling 
times were consistent with the reported times by the cell bank. 

 

 

Figure 13 Light microscopic appearance of BP36B rat renal tumour cell line (40X). 
These cells grew in monolayer and remained epithelial in appearance. The doubling 
times were consistent with the reported times by the cell bank. 
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The cell culture medium (Roswell Park Memorial Institute RPMI-1640) was 

purchased from the Biosera® Labtech International Ltd. and was stored at 2-

8°C. L-Glutamine (Sigma-Aldrich Company Ltd) was added at a 

concentration of 0.3g/l. along with heat inactivated FBS (Sigma-Aldrich 

Company Ltd) to a concentration of 10% to prepared final enriched medium 

for cell culture usage. 

To avoid microbial contamination Penicillin and Streptomycin (1,000 units of 

Penicillin and 0.1 mg if streptomycin/ml) (Sigma-Aldrich Company Ltd) were 

used routinely for all the cell cultures as per protocol of the cell culture lab. 

When required Amphotericin B was also added to a final concentration of 

2.5mg/lit to prevent fungal infection.  

Our cells were cultured in multi-well plates and flasks with porous caps in an 

open incubator system. The average temperature of the incubator was kept 

at 37°C with a CO2 concentration of 5% in a humidified environment. For 

buffering purposes, the RPMI 1640 used for our cell cultures contained 

2gm/lit of sodium bicarbonate.  

3.4.2	Thawing	of	cryopreserved	cell	line	
 

The cells were kept in liquid nitrogen and were carefully removed. These 

eppendorfs were then quickly placed in pre-heated water baths at 37°C. This 

reduces the damage to the cells that can accompany slow thawing of the 

cryopreserved cells. The aim was to thaw the cells in less than a minute.  

The eppendorf was then transferred to the hood and wiped with 70% alcohol. 

The cells along with the contained medium were then transferred to a centrifuge 

tube containing the RPMI1640 that again was warmed at 37°C and cells 
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centrifuged at 200g for 5 minutes to form a clear pellet.  

The centrifuge tube was then brought back in the hood and the excess medium 

decanted carefully to avoid disturbing the cell pellet at the base at this stage.  

Then the cells were re-suspended in the RPMI 1640 medium (supplemented 

with L-Glutamine, 10% FBS and antibiotics). Care was taken to re-suspend 

cells gently by repeated pipetting of the medium.  

Next the cells were transferred into two 75cm2 flasks containing approximately 

30 mls of culture medium to fully immerse the cells.  

These flasks were then closed with porous caps and inspected under light 

microscope before being incubated at 37°C in humidified CO2 incubator.  

A record book was kept updated in the lab for any changes to the number of 

cryopreserved cells. 

To ensure a constant growth rate the cells were subcultured at a confluence 

of approximately 70-90%. Typically this resulted in passaging the cells two to 

three times a week.  

Cells were passaged by removing the media and washing with Dulbecco’s 

Phosphate Buffered Saline (DPBS) gently to remove any left over culture 

media. Pre-warmed trypsin was added to cover the cell layer all over; 

typically between 3-5 mls for 75cm2 flasks. The flask was gently rocked and 

left for 1-2 minutes to allow the cells to detach from the flask. 

After this 5-10 mls of culture media was added to inactive the trypsin and 

prevent cell damage. The cells were then pelleted by centrifugation at 400 g 

for 5 minutes and re- suspended in fresh culture media prior to distribution 

into new flasks and place back in the incubator. 
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3.4.3	Cryopreservation	
	

The cells undergo both karyotypic and phenotypic changes if they are sub 

cultured for long time. To prevent this and keep them as original to their initial 

properties it is important to cryopreserve them. Weaimed to cryopreserve our 

cell line as soon as there was a surplus.  

Weadopted following protocol for freezing the cells 

The cells were cryopreserved at a high concentration. As there is cell 

damage during the thawing process, it is important to start with a higher 

concentration of healthy cells for cryopreservation. Wenormally used at least 

on T75 flask for this purpose that roughly contains 7.5×106 cells. 

After trypsinization of the cells they were re-suspended in the growth medium 

to inactivate the trypsin followed by centrifugation for 5 minutes.  

The supernatant was decanted and the cells were suspended in 1 ml of 

freezing medium. The freezing medium was prepared before the start of the 

freezing process and included 70% RPMI, 20% FBS and 10% Dimethyl 

Sulfoxide (DMSO).  

These suspended cells were then transferred into the pre-labelled Eppendorf 

tube. This was then placed in the polycarbonate container for gradual 

freezing. This contained isopropyl alcohol which helps in lowering of the 

temperature of the cells 1-2°C per minute. This is important as it prevents cell 

damage by either too rapid or too slow cooling. 

The cells were left in the -80°C freezer overnight and then next day were 

transferred into the liquid nitrogen in a dedicated Dewar. 
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Labelling of the cells included type and passage of cells and date of freezing. 

This was recorded in the nitrogen lab book as well. 

 

3.5	 RESULTS	
	

3.5.1	Puromycin	kill	curve	
 

For the selection of the transfected cells, puromycin was used. The adequate 

dosing was calculated by undertaking the kill curve.  

BP36B cells were grown in 24 well tissue culture plate in 0.5 ml of culture 

medium.  

These cells were cultured till they reach around 70% confluence to get the 

best results. This was followed by adding rising concentration of puromycin 

into the wells. Weused the following concentrations; 1mg/ml, 2mg/ml, 

4mg/ml, 6mg/ml, 8mg/ml, 10mg/ml, 12mg/ml, 15mg/ml, 20mg/ml. This was 

done in duplicates.  

In the final well the cells were cultured in normal growth medium without any 

puromycin and they acted as controls. The culture medium was replaced 

every 2 days for 10 days and the wells were examined for any signs of visual 

toxicity e.g.; separation of the cells for the adherent surface of the multi-well 

plate.  

The cells with 10mg/ml of puromycin were completely destroyed within 1 

week while with 6 and 8 mg/ml concentrations there were still some cells left 

in the medium beyond 7 days; hence 10mg/ml was used as the final 

concentration in the experiments to select the stably transfected cells. 
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Figure 14 Selection antibiotic. Schematic diagram of the concentration of 
Puromycin in the multi-well plate to determine the kill curve. The boxes represent the 
wells with the concentration. 

 

	

3.5.1	 	 Transfection	
 

Transfection is the process of introducing nucleic acids into cells by non-viral 

methods. Transduction is the process whereby foreign DNA is introduced into 

another cell via a viral vector. These are common methods to introduce a 

foreign gene into host cells. Weused viral vector to transduct our cell line. 

Wetried transfection with two different vectors as with the first set of 

experiments, the cell line failed to transfect. 

 

3.5.1	 	 Failed	transfection	
 

The initial attempt of transduction was done with Firefly luciferase lentiviral 

particles acquired from GeneCopoeiaTM Rockville, USA. In this vector the 

luciferase and Puromycin genes were under the CMV promoter.  
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Figure 15 Lentiviral vector. These were used for transduction of tumour cells 
initially. The tumour cells successfully formed monocolonies but were not 
bioluminescent. Both luciferase and Puromycin genes was under CMV promoter. Figure 
from literature provided by vendor. 

 

These viral particles were delivered on dry ice from local distributor from 

France.  

Transduction was performed according to the instructions by the 

manufacturer.  

Prior to transduction the cells were grown in the cell culture to make sure they 

were not infected and there was no change in the growth pattern. 

At day 1, 5 x 104 cells were plated in a well in 12 well-plate. These were 

grown in the standard culture medium with the necessary antibiotics for 24 

hours at 37°C with 5% CO2 overnight.  

On day 2 for each well, Weprepared 0.5 ml of virus suspension diluted in 

complete medium with Polybrene at a final concentration of 5–8 µg/ml to 

increase the permeability. Following concentrations of the letivirus (0.1µl, 5µl, 

10µl, 50µl and 100µl) to determine the most appropriate concentration for 

best transfection results.  
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The cells were infected by removing the old culture medium and replacing it 

with 0.5 ml of diluted viral supernatant. The lentivirus and the medium were 

gently mixed by rotation. Vortex was avoided as per instruction by the 

manufacturer.  

For one well, Weadded 0.5ml of complete DMEM with Polybrene. This well 

behaved as control. The plate was placed for 2 hours at 4-8°C and then 

transferred to 37°C incubator with 5% CO2 and incubated overnight. On day 

3 the cells were split and medium was replaced and on day 4 the culture 

medium was replaced not containing any polybrene and incubated for 

another 48 hours. 

From day 6 the selection process was started with Puromycin at a dose of 

10ug/ml as calculated by the kill curve. The old medium was replaced with 

fresh complete medium containing the puromycin every 3–4 days until drug-

resistant colonies became visible. This time in our experiment was around 7-

9 days. 

Intriguingly, the antibiotic selection was very clear with stable monocolony 

formation upon usage of puromycin but Wewas not able to elicit any 

luciferase expression. This was later found to be due most probably due to 

mycoplasma infection. 

The expression of luciferase was tested by using IVIS spectrum imaging 

system but no bioluminescent signals were detected. 

These experiments were repeated twice with similar results. The 

manufacturer was consulted and the cells were attempted a re-transfection 

with a new batch of the same lentivirus without any success. 
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To increase the chances of any subtle expression of luciferase, Weeven 

undertook the ultrasonic lysis of these cells but were still unable to detect any 

successful transfection. 

3.5.2	 	 Successful	transfection	
	

Following the initial failed attempts at transfecting the cells, Wechanged the 

vector.  

The other change was that this time the viral vector also carried the gene for 

eGFP as well as Luciferase. The vector used was LVP 020 from GenTarget 

Inc San Diego, USA. These came in dry ice; with a total volume of 200uL 

containing 1×107 IFU/ml. Luciferase was expressed under a tetracycline 

includible suCMV promoter. These were able to express high levels of 

luciferase without any induction. CMV promoter is one of the strongest 

promoters when compared to other RNA polymerase II promoters and hence 

it was advantageous that the most important gene (luciferase) was under its 

promotion.  

 

	

Figure 16  Lentiviral construct. Luciferin was expressed under suCMV 
promoter. This lentiviral construct also expressed GFP. The puromycin and GFP genes 
were under the influence of Rsv promotor. The tumour cells once transducted were 
successfully expressing luciferase and GFP. Lentiviral construct from the GenTarget Inc 
San Diego, USA information sheet.   

The GFP and Puromycin were both under the Rous sarcoma virus (Rsv) 

promoter(177). 
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The protocol from the manufacturer for transduction was followed in principle.  

The cells were seeded as previously in a 24 well plates in the RPMI 1640 

medium with antibiotics at a rough seeding of 5×104 cells in 0.5ml of medium. 

The cells were around 40% confluent at the time of transduction. 

On day 1, the old culture medium was replaced with the fresh medium. The 

lentiviral particles were thawed to the room temperature. Three different 

concentrations of the lentiviral particles were added to the cell lines (5uL, 

10uL, 25ul and 50uL). These meant that the multiplicities of infection MOI 

were 1, 2, 5 and 10 respectively. These cells were incubated in the CO2 

humidified incubator at 37°C for 72 hours.  

The culture medium was then changed with the one containing puromycin. 

The optimal dose of puromycin was calculated prior to these experiments as 

below. The optimal dose of Puromycin was found to be 10ug/ml. The cells 

were grown in this medium under standard conditions and the medium 

changed every 2-3 days.  

There were different rates of growth of cells with differing MOIs. The cells 

with MOI of 5 were the fastest to grow and there were 2-3 monocolonies in 

the multiwell plate. Cells infected with MOI of 2 were the second fastest to 

form monocolonies while the cells with MOI of 1 were very slow to grow and it 

took them 3 weeks before any appreciable monocolony formation was 

noticed.  

Once the cells were growing to near confluence in the monocolonies they 

were trypsinised and transferred initially to petri-dishes and then to 25cm2 

flasks followed by 75cm2 flask.  
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Figure 17  Visible monocolonies. Cells transfected with a MOI of 5.0. 
Magnification of 10X.  

	

Figure 18 Slow growing monocolonies. Very slow growth rate and not very clear 
monocolonies formed by the cells infected with MOI of 1.0. Magnification 10X. 
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3.6	 	 IN	VITRO	CONFIRMATION	OF	TRANSFECTION	
	

For	the	confirmation	of	successful	transduction	Weused	three	methods.		

3.6.1	 	 Florescence	microscopy	
	

This was the easiest method of determining successful transduction. The fact 

that the cells were being selected with puromycin was already an indirect 

indication that they would be expressing GFP as well, as both of these genes 

were under the same promoter sequence in the viral vector.  

The cells were tested under the florescent microscope to assess 

transduction. There were two controls for this. First were the BP36B cells with 

no transduction.   

	

Figure 19 Florescent microscopy. Clumps of BP36B cells as seen with florescent 
microscopy. To get brighter signals, the cells were trypsinised and concentrated before 
being examined under florescent microscope. 
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The other control was BP36B cell line with Floroscene diacetate (FDA). This 

is normally used for cell viability testing. The control cells did not show any 

significant florescence. The cells with FDA produced easily visible staining 

under microscopy. Then our transfected cells with MOI of 2 and 5 were 

examined under the same settings and the cells in clumps revealed good 

florescent signal. 

3.6.2	 	 Luminometer	for	luciferase	
	

The expression of luciferase as a marker of successful transfection was 

elicited by light emitted after the lysis of the transfected cells followed by the 

exposure to luciferin. Weused premade Bright-Glo™ Luciferase Assay 

System from Promega Corporation Wisconsin, USA.  

The cells were trypsinised and suspended in the culture medium and equal 

amount of Bright-Glo reagent was added in the Eppendorf tubes. Both the 

cells and the reagent were at room temperature to aid cell lysis. 

This was left for 2 minutes then these were transferred to the Luminometer. 

After 10 seconds of exposure, the cells gave following readings. 

Table 4: Bioluminescent signals from luminometer. Cells with different MOIs 

were used for the measurements. Maximum signals were seens with the cells 

transfected with MOI of 2.5. 

Control	 MOI	2.5	 MOI	5.0	 MOI	5.0	
14.7/10sec	 >9999/10sec	 1487/10sec	 3980/10sec	
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3.6.3	 IVIS	spectrum	imaging		
 

The cells were tested in the IVIS spectrum imaging system as well, for 

conformation of transduction. Weagain used Bright-Glo™ Luciferase Assay 

System to lyse the cells and expose them to the luciferin. The Eppendorf 

tubes were then transferred to the IVIS and images were taken at the 

standard exposure time of 30 seconds for controls, cells with MOI of 2.5 and 

the ones with MOI of 5.0 after waiting for 2 minutes to allow for the lysis of the 

cells.  

The cells were initially examined for the expression of luciferase by the 

bioluminescence and then for GFP for florescence.  

The photon emission was brightest with cells transduced with MOI of 2.5 when 

compared to the cells with MOI of 5.0. This was in keeping with the luminometer 

readings undertaken previously. The control cells did not exhibit any 

bioluminescence. 
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Figure 20 IVIS Spectrum image. Bioluminescence from luciferase transduced cells. 
The control cells (Left) did not show any signals, the brightest glowing cells (middle) 
were transduced with MOI of 2.5 and cells with MOI of 5.0 (right) were also positive for 
the expression of luciferase but were less bright. 

	

Similar results were noticed when the florescence was tested for these cells. 

Again the cells infected with MOI of 25 were the brightest and there was no 

signal from the control cells.  

	

Figure 21 IVIS image for florescence. MOI 5.0, Controls, MOI 2.5 and MOI 5.0 from 
left to right 
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4.1	 IN-VIVO	ANALYSIS	FOR	PROOF	OF	CONCEPT	
	

After making sure that the cell line was successfully transfected and we were 

able to reliably track the tumour growth in real time, the next stage was to check 

the behaviour of tumour in vivo before assessing different immunosuppressive 

medicines. 

4.1.1	Aims	
	

Before embarking on the live animal work it was important to make sure that the 

luminescent signals would be picked up when these cells are injected in the 

animals. For this purpose weused recently culled animals. This was important, 

as the cells would be injected in the subcutaneous tissue as compared to the 

transparent and thin Eppendorf tubes which could easily transmit the emitted 

light from these cells, in other words this was to check the penetrance of the 

emitted light.  

The other issue that could affect these animal studies was the auto florescence 

of the animals. This is more of a problem for GFP signals but not an issue for 

luciferase, as it does not exist in rats naturally. 

The third important issue was the ability of detecting signals from any deep-

seated metastasis of the tumour tissue should it happen during the study 

period.  

4.1.2	Methods		
	

The injection of cells and the subsequent detection of florescence were as 

follows 
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The animals were humanely culled by schedule 1 of the home office protocol.  

As these were dead animals, it was important to inject the cells in the 

subcutaneous tissue along with the substrate, luciferin. Hence, weagain used 

the Bright-Glo system from Promega as described earlier to inject these 

animals. 

The fur was shaved on the ventral aspect of the animal and a subcutaneous 

injection of cells mixed with Bright-Glo was done in the right flank. 

A deep injection was done on the left flank near the spleen and on the right side 

deep in the groin region. 

The animal was then transferred in the IVIS machine and image was taken with 

automatic exposure. 

Then the carcass was turned dorsum up and again was injected with the cell 

and reagent mixture in the mediastinum. Again the animal was transferred into 

the dark chamber and image acquisition performed. 

4.1.3	 	 Results		
	

With subcutaneous injection in the right flank, there was a very bright signal 

after 30 seconds of exposure.  

There was a good signal from the deep injection in the left flank and the right 

groin region. This signal was less intense than the more superficially placed 

cells in the right flank. As both the injections were done at the same time and 

the photon intensity of the right sided injection was very high compared to the 

other injection, the minimum units or signal pick up were quite high. This was 
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not of any clinical significance but an important lesson was learnt here was that 

if there was one very intense signal at one area and a weaker signal from an 

adjacent area on the same frame then the weaker signal may not be picked up 

in that image.  

To reduce any false negative results due to this phenomenon, whenever there 

was an intense signal and a chance of distant spread, weused to cover the 

brighter area to look for weaker signals. 

The deep injection in the mediastinum also produced good signals after an 

exposure time of 60 seconds.  

 

	

Figure 22 Ventral view of bioluminescent signals from dead rat. Both the 
transfected cells and luciferin (Promega Bright Glo system) were injected to see if 
subcutaneous injection will lead to signals pick up by the IVIS spectrum imaging system. 
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Subcutaneous	
injection		

Deep	right	groin	
injection	



Chapter	4-100	
	

 

 

	

Figure 23 Dorsal view of bioluminescent signals from dead rat. Both the transfected cells 
and luciferin (Promega Bright Glo system) were injected into the mediastinum to see if 
IVIS spectrum imaging system will pick up deep seated signals in cases of metastasis. 

 

As these analyses were only to see if the bioluminescence was picked up in 

rats with our model, no background noise was calculated and there were no 

radiance calculations. 

4.2	 	 PILOT	ANIMALS:	IN-VIVO	ANALYSIS	
 

4.2.1	 	 Aims	
	

After the proof of the concept, firstly that the cells were successfully expressing 

luciferase and later that wewould be able to detect these signals through these 

Deep	mediastinal	
injection	

	

	

	

Subcutaneous	Right	flank	
injection	from	dorsum		
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rats after subcutaneous injection, wewanted to experiment on small number of 

animals to make sure that all the above still held in the living animal scenario.  

  

4.2.2	 	 Methods	
	

Pilot study on live animals looked at followings 

• Tumour growth in well matched (Wistar) and poorly matched (Lewis) rats 

with no immunosuppression 

• Tumour growth in the presence of Cyclosporine 

• Role of rejection by stopping immunosuppression after 2 weeks. 

	

4.2.2.1	 Cell	preparation	
 

The cells even when fully trypsinised did not separate from each other 

completely and remained in clumps. This made it difficult to determine the exact 

number of cells by cell counters, flowcytometry or by haemocytometers.  

To standardize the numbers of cells injected into the animals weused two 

75cm2 flasks at approximately 80% confluence for injection. This gave a tumour 

load of around 1.2×107 cells per animal at the time of subcutaneous injection 

which is similar to the literature figures of between 106-108 cells in small 

animals(178)(179).  

After the cells were trypsinised they were transferred into the 20ml tube 

containing complete medium and were transferred to the animal facility in 
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Newcastle University. There the cells were spun and the medium discarded and 

cells washed gently with DPBS twice before being suspended in 100uL of 

DPBS for the injection. 

 

 

4.2.2.2	 Animal	housing	conditions	
	

All the rats were housed in the animal facility of Newcastle University to very 

high standards. The facility is run by senior veterinary and technical 

professionals and is regularly monitored by the home office staff to ensure 

animal well-being is not compromised at any stage.  

The rats were bought from Charles River® Margate United Kingdom. These 

animals were housed for a week for acclimatisation before any intervention was 

performed. The starting weight of the rats was between 70-80gm as they grow 

quite quick; especially Wistar rats and dosing of luciferin can become an issue 

with bigger animals. weonly used male Wistar and Lewis rats for these 

experiments to avoid any hormonal fluctuations during the study period. 
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Figure 24 Wistar Rats weights   Figure 25 Lewis Rats weights 
(Charles River)  

Difference in weight gain between the two species 

	

 

All the rats were kept in clean quite uncluttered rooms. There was a separate 

procedure room to prevent any distress to the other rats. The light dark cycle 

was 14 hours/ 10 hours. The rooms temperature was kept between 20-24°C at 

all times.  

The bedding was wooden shaving, which was kept dry and changed regularly. 

Tap water was supplied without any restrictions and animals were fed pelleted 

chow. 

 

4.2.2.3	 Tumour	cell	injection	
 

The animals were anaesthetised as per protocol described later. Right flank of 

the animals were shaved in preparation of the injection.  
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A 25 G needle was used for the subcutaneous injection of the tumour cells. 

Before any injection of the cells, a small proportion of these cells were checked 

in the IVIS machine by adding Bright-Glo to make sure they were still 

expressing the luciferase.  

The flank skin was pinched and after gentle mixing of the cells in the syringe 

they were injected in the subcutaneous plane. 

A single syringe was used for injecting one animal. weavoided vigorous shaking 

to minimise the trauma to the cells, although a gentle flick before the injection 

was done to make sure they were adequately suspended in the medium. 

4.2.2.4	 Intraperitoneal	Luciferin	injection	
	

To enable the animals to bio-luminesce, substrate of luciferase, luciferin was 

injected into the rats. The easiest way of injecting these animals with multiple 

luciferin injections was through intraperitoneal injections as repeated 

intravenous administration through tail vein can lead to thrombosis and prevent 

further luciferin delivery. 

The preferred site was the left lower abdominal quadrant with a 21-gauge 

needle.  

The dose of luciferin was calculated for all the animals before starting the 

experiments based on their weights.   

The animals were manually restrained with the head pointing down to get the 

bowel out of the way of injection and then the luciferin was injected with a 

needle just penetrating the abdominal wall. 
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The luciferin was bought from Gold biotechnology® Missouri USA. This was D-

Luciferin, potassium salt that was water-soluble. The luciferin was dissolved in 

PBS to make the stock solution with a concentration of 80mg/ml. This was 

achieved by dissolving 1 gm of GoldBio Luciferin in 12.5mls of PBS. The 

recommended dose of luciferin was 150mg/kg body weight of the rat and the 

optimal concentration for IP injection was 15mg/ml. For a 100gm rat this came 

to 1ml of the solution to get the recommended concentration of 150mg/kg. 

weused the following formula to calculate the dose  

 

 

 

 

4.2.2.5	 Luciferin	kinetic	curve	
 

At the beginning of every new batch of animals the kinetic curve of luciferin was 

calculated. Intraperitoneal (IP) injection of luciferin has to be absorbed through 

the peritoneal membrane and then it gets into the blood stream, followed by the 

delivery to the subcutaneous right flank region where the transfected cells were 

transplanted. This process can vary a lot depending on multiple variables 

 

Dose of Luciferin  =  0.15 × Weight of rat in grams  
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including the size of the animal, accuracy of the injection, temperature of the 

injected luciferin and the general well being of the animal as well as the 

conscious status of the rat.  

To minimise any variability wetried to keep these variables to as minimum as 

possible and also calculated the kinetic curve of luciferin. It gave a rough 

estimation of the peak absorption of the drug in that particular rat which could 

be generalised for similar animals.  

Kinetic curve was calculated by multiple exposures to the IVIS camera after IP 

injection (Fig 26). Five minutes after the injection the animals were first scanned 

and every two minutes for a total of 25 minutes then onwards. The brightest 

reading occurred when there was a maximum concentration of luciferin 

available at the target tissue and that time was the optimal for further imaging.  

For our experiments this time was 15 minutes after the luciferin injection. To 

reduce any bias even further, wealways took two reading when imaging the 

animals on either side of the 15 minutes and the higher reading was used for 

the analysis.  
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Figure	26	Kinetic	 curve	 of	 Luciferin.	 Calculated	 for	 Lewis	 rat	 in	 the	 Pilot	 study.	 The	 radiance	was	 calculated	 by	
subtracting	the	background	signals	from	the	signals	of	Region	of	Interest	(ROI).	

 

4.2.2.6	 Anaesthetic	protocol	
  

The animals were induced in the anaesthetic induction chamber of either the 

IVIS spectrum machine or the separate induction chambers in the procedure 

room.  

Before the experiments wemade sure that the vaporiser containing Isoflorane 

and the Oxygen tank were full. Firstly the Oxygen was turned on at a flowmeter 

rate of 1 litre/minute and the rat was placed in the induction chamber and the lid 

secured. The stopcock to the induction chamber was then opened with the 

vapour dial at 3% for isoflorane. Normally it took the animals 2-3 minutes before 

they fell unconscious. At this stage the stopcock was turned for the imaging 

chamber of the IVIS and the animals were placed there with their noses 
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positioned into the nose cones. At this point the concentration of the isoflorane 

was between 1-2% depending on the size of the rats.  

Once the animals were there and they were stably anaesthetised, the imaging 

was commenced. 

	

Figure	27	Anaesthetic	chamber	and	isoflorene	delivery	system	of	IVIS	spectrum.	

	

	

Figure	28	Anaesthetic	manifold.	Nose	cones	for	maintenance	of	anaesthesia	in	the	imaging	chamber	

	

	

4.2.2.7	 	 Experimental	protocol	
 
The cells were trypsinised, washed, prepared and injected according to the 

above-mentioned protocols. After the injection of the cells, the animals were 

Charcoal	filters		

	

	

	

Isoflorene	container	with	vapour	dial	at	the	
top	

Anaesthetic	chamber	for	induction	
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also injected with luciferin and then scanned in the IVIS spectrum. The animals 

were scanned under the automatic exposure if there were positive signals and 

in the absence of any signals they were exposed for the maximum exposure of 

5 minutes to detect any faint signals. 

After the first scan the animals were recovered in the cages under direct 

observation until mobile.  

After the initial scan, the animals were scanned once every week for a total of 4 

weeks. After the end of the study period of 4 weeks these animals were culled 

by schedule 1 as per home office protocol by cervical dislocation and a post 

mortem performed to detect any gross metastasis. Harvesting of spleen and 

enlarged lymph nodes was performed at this stage for flow cytometric analysis. 

 

4.2.3	 	 Results	
 

4.2.3.1	 Tumour	growth	in	well	matched	(Wistar)	and	poorly	
matched	(Lewis)	rats	with	no	immunosuppression	
	

4.2.3.1.1 Well-matched group 
	

Wistar rats were injected with 1.2×107 BP36b cells in the right flank and the 

animals were scanned on the day of injection and then every week for 4 weeks. 

Generally there was a steady decline in the number of cells as depicted by 

reducing luminescence on IVIS images. By week 1 most of the cells were 

“rejected” and by the 2nd week there was no residual luminescence at all (fig 

29). This demonstrates that in the absence of any immunosuppression there 
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was a trend to eliminate the tumour load. As it was the Wistar cell line injection 

into Wistar rats, this group was a well-matched combination. Despite the cell 

line and the animals of being of similar strain, they were not identical as Wistar 

rats are out bred. Due to the small number of animals, no statistical analysis 

was performed at this stage. 

 

	

Figure 29 Tumour behaviour in the well-matched group with no 
immunosuppression. The entire tumour load was cleared within two weeks. The three 
lines represent three Wistar rats in this group. 

	

	

4.2.3.1.2 Poorly matched group 
	

Two Lewis rats were injected with 1.2 × 107 cells into the right flank. The 

animals were scanned on day 0 and then once every week. Tumour present at 

day 0 of injection disappeared at 1st week IVIS scan as opposed to the Well-

matched Wistar group above, where tumour took two weeks to clear from the 
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immuno-competent animals. This was in line with the hypothesis that the 

tumour would be rejected quicker in a poorly matched animal. 

 

	

Figure 30 Tumour behaviour in the poorly matched group with no 
immunosuppression. The entire tumour load was cleared within first week. The two lines 
represent the Lewis rats in this group. 

	

4.2.3.2	 Tumour	growth	in	the	presence	of	Cyclosporine	in	Lewis	
rats	

	

Two Lewis rats were injected into the right flank with 1.2 × 107 cells under the 

cyclosporine immunosuppression which was continued for four weeks. The 

dose of cyclosporine was selected to be 25mg/kg/day as per the commonest 

dose in literature for immunosuppression purposes(180)(181)(182). Animals 

were scanned every week in the IVIS spectrum. In the presence of cyclosporine 

the tumour continued to grow for the duration of the study with rapid exponential 

growth towards the later half.  
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Figure 31 Tumour behaviour in the poorly matched group with CsA 
immunosuppression. The tumour continued to grow with time during the study period. 
The two lines represent the Lewis rats in this group. 

	

	

Figure 32 Lewis rat with cyclosporine immunosuppression. The tumour injected 
into the right flank has continued to grow. 
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4.2.3.3	 Role	of	rejection	by	stopping	immunosuppression	after	
2	weeks.	
	

Two Lewis rats were injected with 1.2 × 107 cells into the right flank under the 

immunosuppression of cyclosporine. To study the effects of rejection the 

treatment was continued for two weeks and then stopped. Imaging of these 

animals was carried out until 4 weeks after the original injection. Under the 

immunosuppression the tumour kept on growing while after stopping the 

immunosuppression the tumour disappeared within 2 weeks highlighting the 

possible role of rejection(fig33).  

 

	

Figure 33 Tumour behaviour in the poorly matched group with CsA 
immunosuppression stopping after two weeks. The tumour continued to grow with time 
during the initial half while after stopping the treatment the entire tumour load was 
cleared. The two lines represent the Lewis rats in this group. 
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Figure 34 Effects of treatment withdrawal. Example of a rat at Week 2 (left)(with 
immunosuppression) and week 4 (right) (after stopping the immunosuppression for 2 
weeks). The coloured area over the fir in the right image is the “noise” of the IVIS 
imaging due to long exposure times to detect even very low radiance from the region of 
interest.	

	

The basic purpose of these experiments was to make sure that the proposed 

intervention would be possible before embarking on the large-scale 

experiments. With these preliminary experiments wedetected the trend of 

tumour cells being rejected as any other allogeneic transplanted tissue.  

With the initial success of these experiments, westarted the experiments on the 

proposed groups. 
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4.3	 	 CONTROL	GROUP	TO	STUDY	BEHAVIOUR	OF	TUMOUR	
WITHOUT	IMMUNOSUPPRESSION	IN	A	WELL-MATCHED	
COMBINATION		
	

4.3.1	 	 Background	
	

The tumour cells were derived from the Wistar rats and when they were 

transplanted into the Wistar animals, they behaved as a well-matched 

combination. As the Wistar rats were out bread animals, despite being of the 

same strain, there were some differences between the animals’ MHC and the 

cell line. This arrangement mimicked the human situation very closely, where 

even in very good matches between the donor and the recipients there are still 

some differences in the HLA loci. Thus this was therefore a good model to study 

the effects of tumour transplantation. 	

4.3.2	 	 Aim	
	

The main aim was to test animals without immunosuppression and so monitor 

the growth of the tumour in non-immunocompromised situations, as these 

animals then behaved as the controls for the study period.  

These experiments also gave insight into the role of matching on the 

transplanted tumour behaviour. 

4.3.3	 	 Tumour	injection	and	analysis	
	

There were a total of 6 animals in this group. All were Wistar male rats, which 

were acclimatised for one week before the tumour injection in the right flank 
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under anaesthesia. Before the injection of the cells they were tested and 

confirmed for bioluminescence.  

The animals were scanned on the day of injection, and once a week there after 

as per above-mentioned protocol. As these animals were not under the 

influence of any immunosuppressive medication, the scanning of these animals 

was stopped once there were no further bioluminescent signals detected, 

meaning that the entire tumour load had been rejected.  

In this group weobserved that there was a reduced signal to the initial radiance 

on the 1st week’s scan and by the second week all the animals had rejected the 

tumour cells completely.  

After the last scan these animals were culled. A careful post mortem failed to 

detect any gross tumour growth either at the site of initial injection or any 

evidence of enlarged lymph nodes.  
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Figure 35 Role of acute rejection. Rejection of all of the injected tumour cells in the 
absence of any immunosuppression in well-matched Wistar animals within two weeks. 

 

For the data analysis, after the animals were scanned in the IVIS spectrum, the 

regions of interests (ROI) were designated manually. A region of interest (ROI) 

is a user-specified area in an optical image, which the software uses to create, 

and computes objective values of the photon emission which is direct 

representation of the number of healthy luciferase expressing cells. This data 

was then used for statistical analysis. weused two types of ROI; measurement 

ROI which measured the signal intensity in an area of the image with positive 

signals or initial injection (in case of no signals) and an average background 

ROI that measured the average signal intensity in a user-specified area of the 

image that was considered background. 
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The image data output was in photons and emission of photons from the region 

of interest was calculated as radiance, which was displayed in 

photons/sec/cm2/sr. 

While the counts are a relative measure of the photons incident on the CCD 

camera, the photons are absolute physical units that measure the photon 

emission from the subject. 

The radiance unit of photons/sec/cm2/sr is the number of photons per second 

that leave a square centimetre of tissue and radiate into a solid angle of one 

steradia (sr). Measurements in units of radiance automatically take into account 

camera settings (for example, integration time, binning, f/stop, and field of view). 

As a result, images of the same subject acquired during the same session have 

the same signal amplitude regardless of the camera settings because the 

radiance on the animal surface does not change. The advantage of working 

with image data in the photons mode is that camera settings can be changed 

during an experiment without having to adjust the images or the measured ROI 

data. 

	

	

4.4	 CONTROL	GROUP	TO	STUDY	BEHAVIOUR	OF	TUMOUR	
WITHOUT	IMMUNOSUPPRESSION	IN	A	POORLY	MATCHED	
COMBINATION	

	
	

4.4.1	 	 Background	and	aims	
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Lewis rats are an inbred strain and are hence syngeneic. These animals are 

immunologically compatible in cases of transplantation between the individuals. 

But there are significant differences between Lewis and Wistar strains, meaning 

when these animals were injected with the tumour cells of Wistar origin, this 

group behaved as a poorly matched combination in comparison to the above 

group of Wistar animals. 

Again the aim was to test animals without immunosuppression in order to 

monitor the growth of the tumour in non-immunocompromised situations, as 

these animals then behaved as the controls for the study period for Lewis strain.  

These experiments also gave insight in to the role of matching on the 

transplanted tumour behaviour. 

	

4.4.2	 	 Tumour	injection	and	analysis	
 

There were a total of 6 animals in this group. All were Lewis male rats, which 

were acclimatised for one week before the tumour injection in the right flank 

under anaesthesia. Before the injection, the cells were tested for 

bioluminescence.  

The animals were scanned on the day of injection, and once a week there after 

as per above-mentioned protocols. As these animals were also not under the 

influence of any immunosuppressive medication the scanning of these animals 

was stopped once there were no further bioluminescent signals detected.  
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In this group again wenoticed the rejection of transplanted tumour cells but this 

was much faster when compared to Wistar control rats. All the animals rejected 

the entire tumour load within the 1st week of injection of tumour cells. To 

confirm further, these animals were again scanned for the 2nd week and again 

did not reveal any residual tumour load.   

After the last scan these animals were culled and a careful post mortem 

conducted. This examination failed to detect any gross tumour growth either at 

the site of initial injection nor were there any enlarged adjacent lymph nodes.  

These results were in line with our hypothesis that the response to the 

transplanted tumour could be dependent on the degree of matching between 

the host and the donor. This finding can have important bearing when it comes 

to transplantation 

with restored 

kidneys after 

tumour resection. 

	

 

Figure 36 Role of acute rejection. Rejection of all of the injected tumour cells in the 
absence of any immunosuppression in poorly-matched Lewis animals within just one 
week. 
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4.4.3	 	 Comparison	

	

Figure 37 Direct comparison between Wistar and Lewis rats. Complete rejection of 

transplanted tumour cells; stronger in poorly matched Lewis animals 

 

When	both	these	groups	were	compared,	there	was	a	statistically	significant	difference	

between	the	two	groups	in	terms	of	tumour	rejection	(p	<0.05).	This	is	in	line	with	our	

hypothesis,	that	with	increasing	mismatch	between	the	donor	cells	(Wistar	origin)	and	

hosts,	there	will	be	stronger	rejection	response.	
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4.5	 CYCLOSPORINE	GROUP	
	

Next welooked at the effects of cyclosporine on the transplanted tumour cells. 

This was really important because in clinical scenarios if there is inadvertent 

tumour transmission along with the restored kidneys (after T1a tumour resection 

followed by transplantation), the patients would not be immuno-competent as 

they would most likely be on at least one or two immunosuppressive 

medications. This, we know, takes away one of the body’s first lines of defence 

against de novo and transplanted tumours(165) hence making these patients at 

much higher risk of unchecked tumour growth.  

To check our hypothesis of the effects of immunosuppression on tumour 

growth, and role of matching and rejection on the tumour load elimination 

wedivided these animals into two groups for each strain; ones with continued 

immunosuppression for 4 weeks of study period and one with two weeks of 

immunosuppression and two week after withdrawal to study rejection. 

4.5.1	 	 With	continued	immunosuppression	
	

In this group of rats, the treatment with cyclosporine was continued for the 

entire study period of four weeks to study its effects on transplanted tumour 

cells. 

Cyclosporine was given at a dose of 25mg/kg/day. The cyclosporine was 

started 2 days before the injection of the rats with transfected tumour cells to 

make sure there was adequate level of cyclosporine in circulation at the time of 

the injection. The cyclosporine was administered by oral gavage. After initial few 

gavages the animals were more acclimatised and tolerated the procedure 
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without much resistance. There were no incidences of gavage failure or any 

trauma associated with it.  

The dosing was done once everyday in the mornings without fail. The oral 

solution was used and the formulation was Neoral® oral solution (Novartis 

Pharmaceuticals Corporation New Jersey, USA). 

To further look at the effects of matching on tumour dynamics this treatment 

‘continued’ group was further divided into well-matched and poorly matched 

animals. 

 

4.5.1.1	 Well-matched	and	poorly	matched	combination	
 

There were a total of four Wistar rats in this group. The area of injection of 

tumour cells was shaved at the time of injection and was kept shaved to reduce 

any background interference with the signals and also to enable us to identify 

the area of initial injection site. This helped in marking the Regions of Interests 

(ROIs) when analysing the results. With continued immunosuppression 

webegan to palpate the tumours at the site of initial injection, which continued to 

grow till the end of the study period.  
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Figure 38 Wistar rat with right flank injection. Three weeks after the injection of 
tumour cells. Very high signal intensity from the tumour in the right flank subcutaneous 
tissue. This tumour was palpable at this stage and grew even further till the end of study 
period. 

	

Based on the bioluminescent signals there was initially a steady growth of the 

tumour till third week of the continued immunosuppression followed by 

exponential growth leading to formation of palpable tumour masses in the right 

flank. This perhaps was due to neo-angiogenesis as was evident on gross post 

mortem examination of these rats. 
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Figure 39 Dissection of the right flank. The skin is dissected off the ventral 
abdominal wall. The tumour clearly visible with evidence of increased vascularity around 
the tumour 
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Figure 40 CsA treatment continue group. Rapid growth of transplanted tumour cells 
towards the end of study period represented by bright bioluminescent signals. 

 

	

Similarly there were six Lewis rats in the other group. Same protocol of tumour 

injection and monitoring was adhered to for these animals as well. 

Again, by the end of the study period there were palpable tumours in the right 

flank.  

	

	

Figure	41	Lewis	 rat	 with	 right	 flank	 injection.	 Four	 weeks	 after	 the	 injection	 of	 tumour	 cells.	 Very	 high	 signal	
intensity	from	the	tumour	in	the	right	flank	subcutaneous	tissue.	This	tumour	was	palpable	at	this	stage.		
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Despite the fact that these animals were poorly matched to the injected tumour 

cells, under the influence of cyclosporine there was uninterrupted growth in 

these rats as well. 

With continued cyclosporine immunosuppression, there was both gross and 

indirect (bioluminescent) evidence of continued tumour growth in both strains. 

	

	

Figure	42	CsA	 treatment	 continue	 group.	 Rapid	 growth	 of	 transplanted	 tumour	 cells	 towards	 the	 end	 of	 study	
period	represented	by	bright	bioluminescent	signals.	

	

	

4.5.2	 	 With	treatment	withdrawal	
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In this protocol the rats were given the cyclosporine for two weeks. To assess 

the role of rejection on the tumour cells we experimented with the treatment 

withdrawal protocol. The animals were scanned like the previous protocols. But 

after two weeks of treatment, the cyclosporine was stopped but animals were 

kept alive for another 2 weeks without any treatment. These were scanned as 

normal to monitor the tumour growth.  

	

Figure	43	Flow	 diagram	 of	 protocol	 to	 study	 role	 of	 rejection	 and	 matching.	 After	 two	 weeks	 of	 continued	
immunosuppression	the	treatment	is	withdrawn	to	study	the	effects	of	acute	rejection.	

	

	

4.5.2.1	 Well-matched	and	poorly	matched	combination	
	

In this group, the rats were given standard 25mg/kg/day of cyclosporine via oral 

gavage as previously for two weeks. The animals were scanned once every 
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week. At the two-week mark, the cyclosporine was stopped and rats were 

continued to be scanned once every week for another week till the end of study 

period. At the end of a total of four weeks, all the animals were euthanased and 

post mortem performed as usual. 

There were a total of eight animals in this group. There were strong 

bioluminescent signals from these rats till the immunosuppression was stopped. 

After that the bioluminescence started to reduce and eventually disappeared in 

majority of the animals. At the end of the study period, there were still four 

Wistar rats with positive tumour load. 

	

Figure	44	CsA	 treatment	withdrawal	 group.	Wistar	 rats	 at	 4	weeks	post	 tumour	 cells	 injection.	 This	 image	was	
taken	after	300	seconds	of	exposure	(maximum)	to	detect	any	left	over	signals	from	the	transfected	tumour	cells.	
The	rat	on	the	left	side	has	rejected	the	entire	tumour	load	while	there	was	still	positive	signals	from	the	Wistar	
on	the	right	of	the	image.		

	

	

By	the	end	of	the	study,	half	of	the	animals	have	rejected	the	tumour	fully	while	the	

rest	still	had	considerable	load	of	the	tumour	cells.	This	was	in	contrast	to	the	animals	
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in	the	well	matched	treatment	continued	group	where	the	tumour	continued	to	grow	

in	all	the	animals.	

	

	

	

Figure	45	CsA	treatment	withdrawal	in	Wistar	rats.	Continued	growth	of	the	transplanted	tumour	cells	under	the	
influence	of	 CsA	 immunosuppression	 till	 two	weeks.	 This	was	 followed	by	 reduction	 in	 bioluminescent	 signals	
due	to	withdrawal	of	immunosuppression.	

	

Again with the Lewis rats the treatment with cyclosporine was continued for two 

weeks, at which point the treatment was stopped and once weekly scanning 

was continued.  

There were a total of six Lewis rats in this group. Again under the cyclosporine 

immunosuppression the tumour continued to grow but after stopping the 

immunosuppression, by the end of the study period there was no detectable 

bioluminescence from any of the animals. 
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Figure	46	CsA	poorly	matched	 rats.	 Lewis	 rats	at	 two	weeks	of	 cyclosporine	 immunosuppression.	Bright	 signals	
were	achieved	from	all	the	animals	tested.		
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Figure	47	CsA	 Poorly	 matched	 rats	 with	 treatment	 withdrawal.	 Lewis	 animals	 at	 four	 weeks	 after	 the	 initial	
injection.	This	scan	was	done	two	weeks	after	stopping	the	immunosuppression	and	no	signals	were	detected	

	

	

	

	

Figure	48	CsA	 Poorly	matched	 rats	 with	 treatment	 withdrawal.	 Continued	 growth	 of	 the	 transplanted	 tumour	
cells	 under	 the	 influence	 of	 CsA	 immunosuppression	 till	 two	 weeks.	 This	 was	 followed	 by	 complete	
disappearance	of	bioluminescent	signals	after	the	withdrawal	of	immunosuppression.	
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4.5.3		Comparison	
	

When the results of the two strains (Wistar and Lewis) were compared head to 

head, we found that under the influence of continued cyclosporine 

immunosuppression the tumour continued to grow in both strains. The growth 

was exponential towards the end of the study period, most likely due to 

neoangiogenesis.  

The growth of tumour was significantly more in Wistar group of animals as 

compared to Lewis at the end of 4 weeks (p<0.05).	

	

Figure	49	Direct	 comparison	 of	Wistar	 and	 Lewis	 rats	 with	 continued	 CsA	 immunosuppression.	 The	 growth	 of	
tumour	was	significantly	stronger	among	well-matched	Wistar	animals.	The	scanning	schedule	in	weeks	is	shown	
at	the	X-axis.	
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When comparison was made between the two strains, representing well 

matched and poorly matched combinations, after withdrawal of treatment the 

poorly matched animals appeared significantly well equipped to reject any 

tumour load than well matched Wistar animals. The most likely explanation of 

this effect is the level of MHC matching, mounting stronger acute rejection 

response in the less well-matched animals. Again on direct comparison the 

results were statistically significant	(p	<0.05).		

	

	 	 	 Wistar	 	 	 	 	 	 Lewis	

Figure	50	Direct	comparison	of	Wistar	and	Lewis	rats	in	withdrawal	of	CsA	immunosuppression.		Lewis	rats	were	
significantly	more	effective	in	rejecting	tumours	when	compared	with	the	well-matched	Wistar	rats.	

	

4.6	 SIROLIMUS	TREATMENT	GROUP		
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After finishing the control group of cyclosporine immunosuppression, we looked 

at the effect of Sirolimus immunosuppression on the transplanted tumour 

behaviour. 

4.6.1	 			 Background	
	

The reason for selecting Sirolimus was two fold. Firstly, Sirolimus has shown 

promising results due to its anti neoplastic properties. Secondly, long-term 

treatment with cyclosporine can lead to chronic allograft nephropathy and 

preservation of a smaller (resected) kidney with a non-nephrotoxic drug could 

be preferable. 

The most important reason for using an mTOR inhibitor was the possibility of 

tumour regression in an immunosuppressed host. 

Sirolimus is a fermentation product of microorganism Streptomyces 

hygroscopicus. It is a potent inhibitor of T and B cells as a response to antigen 

stimulation. For the activation of lymphocytes there has to be interaction of 

interleukins and IL receptors as well as co-stimulatory molecules (CD28), which 

then leads to activation of TORC1 complexes. Sirolimus binds to FK binding 

protein 12(FKBP 12) and this complex blocks the activation of TORC1 complex 

leading to cell cycle arrest in late G1 phase(109). 

It also has a direct inhibitory effect on the apoptosis of dendritic cells which 

have a pivotal role in the transplant immunology(110). It also inhibits cytokine 

and growth factor stimulated proliferation of the fibroblasts, tumour cells and 

smooth muscle cells(111)(112)(113).  
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Sirolimus has also been used as a sole agent in the maintenance phase of 

immunosuppression after transplantation. One of the first big trials with more 

than 400 patients from Manchester showed better creatinine clearance in the 

sirolimus arm when it was used as a maintenance immunosuppression after the 

withdrawal of CsA at 3 months post transplant(120). An RCT from Cambridge 

suggested that the impaired graft function possibly due to CNI nephrotoxicity 

could be reversed with sustained improvement at 2 years post transplant by 

conversion to sirolimus at three months. This along with other similar studies 

point to potential benefits of sirolimus as a maintenance agent in terms of graft 

function and to potentially reduce the incidence of chronic allograft 

nephropathy(121). 

There are several studies, which suggest that with sirolimus based 

immunosuppression the over all rates of de novo malignancies are significantly 

less than CsAs. There was a large retrospective analysis performed on post 

transplant malignancies in more than 33 thousand deceased donors from 264 

centres in USA. This study looked at both the skin and non-skin solid organ 

malignancies rates and showed that the rate of malignancies with 

sirolimus/everolimus plus CNI combination was 0.6% as compared to CNI, 

alone which was 1.81% (92).  

Efficacy of mTOR inhibitors has also been showed in cases of advanced renal 

cell carcinoma. A large double blind trail randomised 272 patients into 

everolimus group and 138 in placebo arm for the treatment of advanced renal 

cell carcinoma. There was progression of disease in 37% of patients in the 

treatment arm as opposed to 65% in the placebo arm (p</= 0.0001) with a 

median disease free survival of 4.0 versus 1.9 months(123). 
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Similar encouraging results were noted when everolimus was used for the 

patients with advanced pancreatic neuroendocrine tumours. 207 patients in the 

treatment were compared with 203 patients in placebo arm and were found to 

have significantly better progression free survival of 11 months as compared to 

4.6 months in the placebo arm (p <0.001). 34% of patients were still alive at 18 

months as compared to 9% with placebo(124). 

mTOR inhibitors were found to be useful in hepatocellular carcinomas and in 

advanced breast carcinomas as well(125)(126). 

mTORs have been shown to be effective for the post transplant 

lymphoproliferative disorders as well. A case of complete remission of 

disseminated PTLD has been reported in literature after conversion to 

sirolimus(127). 

With increasing cohort of patients on immunosuppression post transplant there 

is an increasing incidence of Kaposi’s sarcoma. mTOR inhibitors have been 

found useful for their treatment as well. A case series of 25 patients with 

cutaneous Kaposi’s sarcoma when converted from cyclosporine to sirolimus 

showed complete biopsy proven remission within 6 months of treatment(128). 

These effects of mTOR inhibitors are very encouraging and over the past 10 

years there has been mounting evidence on their efficacy. Although by no 

means these are the perfect solutions but a medication to be 

immunosuppressive and anti neoplastic in transplant setting is very useful 

feature that wetried to explore.  

4.6.2	 	 Dose	
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The dose used in animal studies varies between the types of intended 

intervention. For its immunosuppressive and inhibitory effects on vascular 

intimal hyperplasia the dose range is reported to be between 0.3-0.5mg/kg/day 

orally. The studies where both cyclosporine and sirolimus have been used 

together the target dose was lower to achieve the therapeutic levels due to 

synergism in the pharmacokinetics(183)(184)(185).  

Where Rapamycin was used for the treatment of urothelial carcinomas, the 

most common dose used was 2mg/kg/day(168)(186). 

For our experiments, we used two different doses of sirolimus. The lower dose 

weused was 0.5mg/kg/day while the high dose tested was 2mg/kg/day. 

4.6.3	 		 Sirolimus	high	dose	
	

4.6.3.1	 With	continued	immunosuppression	
	

Again this group was divided into well-matched and poorly matched animals. 

There were 6 animals in each group tested. 

 

 

4.6.3.1.1 Well-matched and poorly matched combination 
	

1.2 × 107 cells were injected into the Wistar and Lewis rats in the right flank as 

per protocol under general anaesthesia. Sirolimus was started a day before the 

tumour injection and was continued for a total of four weeks of treatment via 

oral gavage. There were 6 Wistar rats in this group and the behaviour of tumour 
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was studied by once weekly IVIS spectrum scanning under general 

anaesthesia.  

With sirolimus dosing, all the Wistar animals were free of tumour load at the 

third scanning (two weeks from the day of subcutaneous injection).  

This effect was stronger in the high dose group (2mg/kg/day) when compared to 

low dose group (0.5mg/kg/day). 

	

Figure	51	Well-matched	 (Wistar)	 animals	 with	 continued	 sirolimus	 immunosuppression.	 All	 tumour	 load	 was	
cleared	by	the	week	two	of	the	study	period.	

 
With high dose of sirolimus all the six Lewis rats cleared the tumour load as 

evident by lack of any IVIS bioluminescent signals by week two of study period. 
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Figure	52	Sirolimus	high	dose	with	continuous	immunosuppression	in	poorly	matched	animals.	Again	all	animals	
rejected	the	tumour	cells	with	first	two	weeks	of	study	period.	The	scanning	was	done	once	every	week	(Week	0,	
1,2,3,4)	

	

4.6.3.2	 With	treatment	withdrawal	
	

To study the role of acute rejection in tumour elimination these animals were 

given sirolimus immunosuppression for initial two weeks from tumour injection 

and then the immunosuppression was withdrawn till the end of the study period. 

Tumour behaviour was monitored with once weekly IVIS imaging as previously. 

This group was further divided into two subgroups based on matching. 

 

4.6.3.2.1 Well-matched and poorly matched combination 
	

There were 6 rats in each of these high dose groups. 
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All the animals had rejected the tumour cells by the week 2 of IVIS spectrum 

scanning. All the animals were scanned till the completion of the study period of 

four weeks even if there was no detectable signal while the study was still 

underway. This helped not only in confirming the initial results but also ruled out 

absence of signals due to technical problems. 

 

	

Figure	53	Well-matched	Wistar	treatment	withdrawal.	Animals	again	rejected	the	tumour	load	with	the	first	two	
weeks	 of	 high	 dose	 sirolimus.	 There	was	 no	 reappearance	 of	 tumour	 cells	 after	 treatment	withdrawal	 at	 any	
point	of	study	period.	

 

 

	

There were six animals in poorly matched group as well but three animals died 

during scanning. This was completely unexpected and happened during the 1st 

scanning episode for these animals. All the other variables were similar to any 

other scanning protocol after tumour injection. These animals were acclimatised 
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for a week before any experimentation, were kept in same conditions to the rest 

of the animals, the anaesthetic protocol was similar as well. Other animals 

studied and scanned that day did not have any adverse effects. The post 

mortem examination of these animals did not reveal any thing unusual either. 

The tumour load was eliminated fully by week three scanning. 

 

	

Figure	54	Poorly	matched	treatment	withdrawal.	In	these	three	Lewis	animals,	there	was	some	residual	signals	by	
the	week	 two	scanning.	At	week	 three	 there	were	no	signals	 left	again	proving	 the	effectiveness	of	 treatment	
withdrawal.	

 

 

4.6.4	Sirolimus	low	dose	
	

4.6.4.1	 With	continued	treatment		

		
Similarly this group was divided into two to include both Wistar and Lewis 
strains. 
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4.6.4.1.1 Well-matched and poorly matched combination 
	

This group consisted of 6 Wistar and 6 Lewis rats receiving 0.5mg/kg/day of 

sirolimus. By week 3, all the animals had rejected the entire tumour load. This 

was consistent with the earlier finding with the high dose group, apart from a 

slightly longer time taken for tumour cells elimination. 

 

 

	

Figure	55	Low	dose	sirolimus	treatment.	Week	1	and	week	4	IVIS	images	of	the	Wistar	rat	with	low	dose	sirolimus	
treatment.	There	is	complete	elimination	of	tumour	load	during	the	study	period.	
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Figure	56	Low	dose	sirolimus	treatment.	Well	matched	Wistar	animals	with	continued	immunosuppression	with	
low	dose	Sirolimus,	again	was	successful	in	clearing	all	the	tumour	load	by	week	three	of	scanning.	

 

 

	

Figure	57	Poorly	matched	–	Low	dose	sirolimus.	Week	1	and	week	4	IVIS	images	of	the	Lewis	rat	with	low	dose	
sirolimus	treatment.	There	is	complete	elimination	of	tumour	load	during	the	study	period.	
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Figure	58	Low	dose	sirolimus-Lewis	rats.	Poorly-matched	Lewis	animals	with	continued	immunosuppression	with	
low	dose	Sirolimus,	again	was	successful	in	clearing	all	the	tumour	load	by	week	four	of	scanning.	

	

4.6.4.3	 Treatment	withdrawal	
	

This group was divided into Wistar and Lewis animals as well. 

4.6.4.3.1 Well-matched and poorly matched combination 
	

This group had 6 Wistar rats receiving low dose sirolimus treatment for two 

weeks followed by discontinuation. Again all the animals rejected the tumour 

load at the end of the study period of 4 weeks. By the time the treatment was 

withdrawn, the tumour load was already reducing. This was in contrast to the 

cyclosporine group. 
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Figure	59	Well-matched	 rats	 with	 low	 dose	 sirolimus.	 The	 tumour	 load	 was	 reducing	 which	 continued	 upon	
treatment	withdrawal	and	by	the	end	of	study	period	there	were	no	bioluminescent	signals	left.	

	

4.6.4.4	 Poorly	matched	treatment	withdrawal	
	

This group had 6 Lewis rats receiving low dose sirolimus treatment for two 

weeks followed by discontinuation. In this group, all the animals rejected the 

tumour load by week 3 of the study period. Again this effect was in accordance 

to the previous observations that the rejection of the tumour is significantly 

stronger in the less well-matched group of rats. Due to the very strong primary 

effect of sirolimus itself, there was no significant difference between these 

groups on direct comparison. This observation was most likely due the fact that 

at the time of treatment withdrawal, the tumour load is already so small that we 

fail to elicit any significant differences between these groups. 
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Figure	60	Lewis	 rats-Treatment	 withdrawal.	 Week	 0	 and	 week	 4	 IVIS	 images	 of	 the	 Lewis	 rat	 with	 low	 dose	
sirolimus	treatment	withdrawal.	There	is	complete	elimination	of	tumour	load	during	the	study	period.	

	

	

	
Figure	61	Lewis	 animals	 with	 low	 dose	 sirolimus	 treatment	 withdrawal.	 The	 tumour	 load	 was	 reducing	 which	
continued	upon	treatment	withdrawal	and	by	the	end	of	week	three	there	were	no	bioluminescent	signals	left.	

	

		

4.7	 	 LEFLUNOMIDE	
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4.7.1	 	 Background	and	dosing		
	

Leflunomide has both immunosuppressive and anti-inflammatory effects. The 

main effect is exerted by its inhibition of pyrimidine synthesis pathway. This 

prevents the availability of pyrimidine to the lymphocytes, which depend solely 

on the de novo synthesis of the pyrimidines as they lack the pyrimidine salvage 

pathway.  

Although currently not used as a standard immunosuppressive in solid organ 

transplantation but it has been used previously with promising results 

comparable to the cyclosporine immunosuppression. Various studies have 

shown anti tumour role of these agents(171)(138)(172)(139)(140), which makes 

leflunomide suitable to assess our hypothesis. 

The dose of leflunomide used for our experiments was 20mg/kg/day. This was 

based on the various dose ranges used in literature for rats in transplantation 

models. The doses range from 5mg/kg/day to 35 mg/kg/day(187)(188)(133). 

The powdered form of leflunomide was purchased from Stratech Scientific Ltd. 

Suffolk, United Kingdom. The powdered form is not soluble in water and hence 

was dissolved in DMSO according to the literature and manufacturer’s 

instructions(189)(190)(191). 54mg leflunomide was dissolved in 1 ml of filtered 

DMSO to make up stock solution that was then diluted in drinking water to make 

up final concentrations for animal use.  

weonly studied the effects of leflunomide in Wistar rats (well matched group). 

This was due to the use of some animals at the beginning of the pilot study for 

the proof of the concept.  
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4.7.2		With	continued	immunosuppression	in	well	matched	group	
	

There were 7 Wistar animals in this group. The tumour cells were injected in the 

right flank and animals were gavaged with oral solution of leflunomide at the 

previously agreed dose of 20mg/kg/day. The rats were scanned in IVIS 

spectrum once weekly.  

Three out of 7 Wistar rats in this group rejected the tumour by the end of the 

study period. The remaining number of animals showed a trend towards 

reducing tumour load as well, but were unable to eliminate the bioluminescent 

signals completely during the course of study period.  

	

Figure	62	Well-matched	Wistar	animals	in	the	leflunomide	treatment	continue	arm.	There	was	a	steady	decline	in	
the	bioluminescent	signals	from	these	animals	from	tumour	injection	site.	Despite	weakening	signals	not	all	the	
animals	rejected	complete	tumour	load	by	the	end	of	the	study	period.	

	

4.7.3		With	treatment	withdrawal	in	well	matched	animals	
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Again 7 Wistar rats were studied in this group. Leflunomide was stopped after 

two weeks of continuous treatment and animals were monitored for tumour 

behaviour. By the end of the study period, four out of the 7 animals studied in 

this group had rejected the tumour and showed no bioluminescence. The rest of 

the animals although did have positive signals but the intensity of the signal was 

significantly lower than at the beginning of the study. 

 

	

 

Figure	63	Leflunomide	 treated	Wistar	 animals-treatment	withdrawal.	 Complete	 elimination	of	 the	 tumour	 load	
from	the	Wistar	rats.	There	is	considerable	background	“noise”	which	is	due	to	long	exposure	times	to	detect	any	
small	residual	tumour	bioluminescence.		
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Figure	64	Treatment	withdrawal	after	two	weeks	in	Leflunomide	treated	animals.	By	the	end	of	study	period	4/7	
animals	have	rejected	the	tumour	load	and	rest	were	showing	reducing	tumour	load.	

 

 

4.8		 COMPARATIVE	ANALYSIS		
	

The focuses of the comparative analyses were to look at the role of matching 

and acute rejection on the tumour elimination. The second part was focused at 

looking at the role of different immunosuppressive agents on the behaviour of 

transplanted tumour cells. 

	

4.8.1	 	 Role	of	matching	on	tumour	rejection	
	

As mentioned earlier when there was no immunosuppression given, the poorly 

matched animals were far more effective in rejecting the tumour load as 

opposed to the well-matched Wistar animals. This difference between groups 

was significant (p<0.05). The tumour elimination was much more rapid in the 

Lewis animals as below. 
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Figure	65	Direct	 comparison	between	Wistar	 and	 Lewis	 rats	 after	 tumour	 cells	 injection.	 Complete	 rejection	of	
transplanted	tumour	cells;	stronger	in	poorly	matched	Lewis	animals	

	

	

Similar effect was evident in the treatment groups. Although to some extent it 

could be appreciated among all treatments studied but this effect was most 

pronounced in the cyclosporine group. This was due to the observation that the 

tumour growth continues under this immunosuppression and at the time of 

withdrawal of treatment there was still a significant tumour load.  

Two different sets of observations proved our hypothesis of a positive role of 

acute rejection in tumour destruction. Firstly, reduction of tumour load after 

treatment withdrawal among the same group of animals, and secondly 

comparing the effects of withdrawal of treatment across well matched and 

poorly matched strains. 



Chapter	4-153	
	

4.8.2	 	 Rejection	within	similar	strain		
	

The best example of role of rejection within a strain was in cyclosporine group 

as mentioned above. For Wistar rats, when the treatment was withdrawn, half 

the animals rejected the tumour load entirely as opposed to the continued 

growth of the tumour in the treatment continue group (fig 66 and fig112).  

	

	

	

Figure	66	Comparison	 between	 treatment	 continue/withdrawal	 groups	 in	 CsA	 treatment-Wistar	 animals.	 As	
opposed	to	continued	treatment,	there	was	significant	reduction	in	tumour	load	after	treatment	withdrawal.	For	
comparison	purposes	the	bioluminescent	ranges	are	kept	similar	on	Y	axis	hence	the	final	reading	in	CsA	group	is	
out	of	the	scale.	

	

The tumour load was significantly reduced at the end of the study period after 

treatment withdrawal (p<0.05 Mann Whitney U test). These statistical 
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differences were noted from week 3 and 4, before that the differences in the 

bioluminescence were not significant affirming the role of acute rejection after 

the treatment withdrawal. 

Similar effects were seen in the Lewis rats before and after treatment 

withdrawal (fig 67 and fig 113). 

	

	

	

Figure	67	Comparison	 between	 treatment	 continue/withdrawal	 groups	 in	 CsA	 treatment-Lewis	 animals.	 As	
opposed	to	continued	treatment,	there	was	significant	reduction	in	tumour	load	after	treatment	withdrawal.	For	
comparison	purposes	the	bioluminescent	ranges	are	kept	similar	on	Y	axis	hence	the	final	reading	in	CsA	group	is	
out	of	the	scale.	By	the	end	of	study	in	treatment	withdrawal	group,	all	the	animals	have	cleared	the	tumour	load	
fully.	

	

Again there were no differences between the two groups when compared up to 

week three of the treatment but by week 4 there was significant difference in 

signal emissions (p<0.05). 
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4.8.3	 	 Rejection	between	strains		
	

Again this effect was best shown in the cyclosporine group. When Wistar and 

Lewis rats were compared against each other after treatment withdrawal, poorly 

matched Lewis animals were significantly (p<0.05) well equipped in rejecting 

the tumour cells. This effect was likely due the wider MHC differences in these 

animals to the injected tumours cells from Wistar rats as all the animals in the 

Lewis group rejected the tumour load after treatment withdrawal while only half 

were able to clear the tumour load by the end of the study period (fig 68 and fig 

114). 

 

	

	

	

Figure	68	Direct	 comparison:	 treatment	 withdrawal	 Wistar	 v	 Lewis.	 Although	 well	 matched	 animals	 showed	
significant	tumour	rejection	after	treatment	withdrawal,	the	poorly	matched	Lewis	animals	were	most	effective	
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in	eliminating	complete	tumour	load.	These	results	were	clear	in	CsA	group,	as	there	was	significant	tumour	load	
at	the	time	of	withdrawal	of	treatment.		

	

Although there were brighter bioluminescent signals in the Lewis animals at the 

time of injection (time 0), by the end of the study period despite having more 

tumour load to start with, these rats were better in rejecting the tumour load (p 

<0.05 at week 4).  

As mentioned earlier due to effectiveness of sirolimus in tumour elimination 

even at low dose, we did not see any difference between treatment withdrawal 

and continuation groups and between the well-matched and poorly matched 

groups (fig 69 and fig 115).  
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Figure	69	Sirolimus	 treatment	 low	 dose.	 There	 was	 no	 difference	 between	 well-matched	 and	 poorly	 matched	
strains.	 This	was	most	 likely	due	 to	effectiveness	of	 Sirolimus	as	an	anti	neoplastic	 agent,	 leaving	both	animal	
strains	with	very	little	tumour	load	at	the	time	of	treatment	withdrawal.	

	

4.9	 	 ROLE	OF	IMMUNOSUPPRESSION	
	

The direct comparisons between the immunosuppressive groups pointed 

towards our hypothesis that newer immunosuppressive medication will be better 

in rejecting the transplanted tumours. 

4.9.1	Cyclosporine	v	High	dose	Sirolimus	
	

With high dose sirolimus treatment both Wistar and Lewis rats eliminated the 

entire tumour load within the study period as opposed to the cyclosporine 

treated animals where transplanted tumour continued to grow. These results 

were statistically significant (p <0.05). (fig70 and fig 116). 
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Figure	70	Direct	comparison	between	Wistar	rats	on	CsA	(Left)	or	Sirolimus	high	dose	(right)	immunosuppression.	
As	 opposed	 to	 steady	 increase	 in	 tumour	 load	 with	 CsA,	 there	 was	 complete	 elimination	 of	 bioluminescent	
signals	with	Sirolimus.	

	

Similar results were noted with Lewis rats (fig 71 and fig 117). 

	

	

Figure	71	Direct	comparison	between	Lewis	rats	on	CsA	or	Sirolimus	(high	dose)	immunosuppression.	As	opposed	
to	 steady	 increase	 in	 tumour	 load	 with	 CsA,	 there	 was	 complete	 elimination	 of	 bioluminescent	 signals	 with	
Sirolimus.	
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4.9.2	Cyclosporine	v	Low	dose	Sirolimus	
	

Both Wistar and Lewis rats eliminated the entire tumour load within the study 

period as opposed to the cyclosporine treated animals where transplanted 

tumour continued to grow. These results were statistically significant as well (p 

<0.05). These animals treated with low	dose took slightly longer than the high 

dose sirolimus group but still were able to entirely clear the tumour load within 

the 4 weeks of the study period (fig 72 and fig 118).	

	

	

	

Figure	72	Direct	comparison	between	Wistar	rats	on	CsA	or	Sirolimus	(low	dose)	immunosuppression.	As	opposed	
to	 steady	 increase	 in	 tumour	 load	 with	 CsA,	 there	 was	 complete	 elimination	 of	 bioluminescent	 signals	 with	
Sirolimus.	
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Results with Lewis (poorly matched) animals were similar with statistically 

significant improved results (fig 73 and fig 119). 

	

Figure	73	Direct	 comparison	 between	 Lewis	 rats	 on	 CsA	 and	 Sirolimus	 (low	 dose)	 immunosuppression.	 As	
opposed	to	steady	increase	in	tumour	load	with	CsA,	there	was	complete	elimination	of	bioluminescent	signals	
with	Sirolimus.	

	

	

4.9.3	Cyclosporine	v	Leflunomide	
	

Despite the lack of leflunomide treated animals’ complete elimination of tumour, 

there were 3 animals by the end of the study period that had managed to clear 

the tumour load (fig 74 and fin 120). This was in contrast to the continued 

tumour growth in the cyclosporine group.  
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Figure	74	Direct	 comparison	 between	Wistar	 rats	 on	 CsA	 or	 Leflunomide	 immunosuppression.	 As	 opposed	 to	
steady	 increase	 in	 tumour	 load	 with	 CsA,	 there	 was	 gradual	 reduction	 of	 bioluminescent	 signals	 with	
Leflunomide.	

	

	

	

4.10	 POST	EUTHANASIA	ANALYSIS	
	

	

At the end of the study period of four weeks, all the animals were euthanased 

by Home Office Schedule 1 of cervical dislocation. During every IVIS imaging 

session, the right flank was palpated for evidence of gross tumour growth as 

well. This examination was repeated on the euthanased animal after dissection 

of the subcutaneous tissue of initial tumour injection (fig). 
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Figure	75	Palpable	 tumour	 in	 the	 right	 flank	at	 the	 site	of	 injection	4	weeks	prior.	On	 right,	 comparison	with	a	
standard	21	gauge	needle.	This	was	a	Lewis	rat	with	continued	Cyclosporine	immunosuppression	for	4	weeks.	

	

Figure	76	Dissection	 of	 the	 right	 flank	 skin	 off	 the	 ventral	 abdominal	 wall.	 The	 tumour	 clearly	 visible	 with	
evidence	of	increased	vascularity	around	the	tumour.		
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The dissection of the injection area was performed whether or not there was 

any detectable positive signal. After this, a midline laparotomy was performed to 

assess any gross evidence of distant metastasis. The inguinal and para-aortic 

regions were carefully dissected to detect any grossly enlarged lymph nodes. 

Only in 5 animals with very bright bioluminescent signals there were detectable 

inguinal lymph nodes. Due to lack of lymph node yield, the spleen was used for 

the flowcytometric analysis for the sake of reproducibility. 

	

	

Figure	77	Dissection	and	isolation	of	subcutaneous	tumour	in	a	Wistar	rat	with	Cyclosporine	immunosuppression.	

	

	

4.11	 	 DISCUSSION	
	

	

The need for increasing the organs for transplantation is very real. Any 

increase, whether by increasing the standard pools of live and deceased donors 

or looking for new sources will help the cause. Whatever the source, it has to be 

able to provide safe allografts. Restored kidneys sourced from patients with 

small renal tumours have the potential to increase the donor pool significantly 



Chapter	4-164	
	

as shown earlier but there is no clear evidence that these kidneys can be safe. 

After partial nephrectomy, in patients with T1a tumours the oncological 

outcomes and long-term survival is comparable with patients having radical 

nephrectomy, hence the shift towards partial nephrectomy as the preferred 

method of treatment in the majority of patients(43)(44). Although this finding 

was the background of the reported cases of deliberate transplantation of these 

restored organs, but there remains a few important clinical and ethical 

questions. First of all, what would happen if these organs were transplanted and 

the recipient given immunosuppression, would that increase the chances of 

recurrence and metastasis? What should be the best possible 

immunosuppression in order to prevent any recurrence? What would be the 

best strategy with regards to immunosuppression if there was a recurrence, 

should the immunosuppression be continued, stopped or replaced? Can we use 

the body’s natural immune response to fight any foreign tumour transplanted 

along with the allograft and would the tumour be significantly immunogenic for 

this strategy to work? There have been no experiments to answer these 

questions and hence the literature is completely lacking in this regards.  

We set up our experiments specifically to answer these particular questions.  

4.11.1	 Role	of	rejection		
 
Acute rejection, exercised by the hosts’ immune system is one of the barriers to 

transplantation. Although it provides its own challenges for transplantation, it 

has an important role in preventing the tumour growth. 
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Even before they are transplanted, the allografts undergo trauma of 

transplantation; harvesting, warm and cold ischaemic damage and ischaemia 

reperfusion injury. This “primes” these organs for the maximal immune 

response from the adaptive immune system (192).  

While the initial responses are non-specific and mediated by complement 

system, Natural killer cells and macrophages, the adaptive immune response is 

very specific to the donor antigens. MHC is the glycoproteins that are at the 

core of adaptive immunity. These are one of the most polymorphic proteins. 

MHC class I proteins are present on the cell surface of all nucleated cells and 

present intracellular antigens to CD8+ T cells. MHC class II proteins are present 

on the surface of antigen presenting cells and B cells. They present exogenous 

antigens to CD4+ T cells. Both subclasses of MHC play an important role in the 

allograft rejection as the graft survival can be prolonged when the transplanted 

donor tissue is lacking in either one or both of 

them(193)(194)(195)(196)(197)(198). For transplantation, greater the antigenic 

difference between donor and the recipient, the more is the propensity for 

rejection and vice versa. Hence as a general rule, it is preferable to transplant 

organs across minor MHC differences.  

Immune system also plays a paramount role in preventing tumour development. 

Cancer cells, in order to propagate have to evade the individual’s own immune 

system. This is due to the fact that the tumours either express tumour specific 

antigens or tumour associated antigens. These are non-self and are readily 

recognised by the host immune system. For the tumours to grow, they have to 

evade the immune system. This process of “immune editing” selects for the 

“escape mutants” that are less immunogenic and hence can propagate in the 
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presence of a competent immune system. Reduced MHC expression and poor 

costimulatory signals by the tumour cells are a few of the mechanism for such 

immune editing (199)(200)(201).  

Based on their ability to incite an immune response the tumour cells can be 

classified into immunogenic (regressors) which are rejected in the naïve 

syngenic animals, intermediate immunogenic (progressors) which require prior 

immunisation for rejection and non immunogenic tumours(202).  More 

immunogenic the tumour, the better equipped the immune system will be to 

cause rejection. Renal cell carcinoma is an immunogenic tumour (203) as is 

evident by the tumour infiltration of the T cells (204). Hence our experiments to 

assess the role of rejection in different experimental conditions are quite 

relevant.  

To assess the role of rejection we divided the experimental groups into well-

matched Wistar animals and poorly matched Lewis animals. As the tumour cells 

were of Wistar origin, there were far less differences in the MHC proteins when 

these tumour cells were transplanted into the Wistar animals as compared to 

the Lewis rats. Furthermore, as the Wistar rats were outbred and not syngeneic 

despite the donor cells of being same strain they were not identical to them. 

This recreates the human transplant scenario very closely, where even the most 

closely matched transplants (excluding identical twins) have some minor 

allogeneity(205).  

When the tumour cells were transplanted without any immunosuppression there 

was an aggressive response against the tumour cells by both the groups. This 

is in line with the hypothesis that the immunogenic renal cell tumours will incite 
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an immune response that will lead to their rejection in the presence of a 

competent immune system.  

This immune response was significantly stronger in the poorly matched Lewis 

animals as compared to the well-matched Wistar rats. This effect is again due 

to wider MHC differences in the poorly matched animals as highlighted above. 

These effects were also seen quite clearly in the cyclosporine 

immunosuppression arm of experiments. The tumour cells continued to grow in 

both the arms but when the immunosuppression was stopped in the treatment 

withdrawal arms of both well-matched and poorly matched groups there was a 

steady decline in the tumour load. This points towards the efficacy of acute 

rejection once the immunosuppression is stopped. Of interest here was the 

finding that this rejection was again found to be significantly more effective in 

the poorly matched Lewis animals due to wider MHC differences between the 

donor and recipient tissues.  

These findings have important clinical bearing. In cases of transplantation with 

restored kidneys after ex vivo resection of tumours, if there was any recurrence 

of tumour then acute rejection could be used to clear the recipients of any 

tumour load after the graft nephrectomy. In these situations, perhaps the 

allografts with less well MHC matching will prove better at rejecting any residual 

tumour load.  

4.11.2	 Effects	of	cyclosporine	immunosuppression	
 

Cyclosporine immunosuppression has revolutionised the field of 

transplantations since its introduction in 1980s. It has greatly increased the graft 
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survival and is now the most commonly used immunosuppressive medication 

along with Tacrolimus for renal transplantation. It exerts its effects by reducing 

the production of Interleukin-2 (IL-2) and IL-2 receptor expression, thereby 

reducing T cell expression. 

Renal transplant confers significant quality of life and survival benefits for 

patients on dialysis but the risk of developing cancer after transplant also 

increases. The cumulative risk adjusted risk of cancer increases in direct 

proportion to the time since transplantation. In adults aged less than 35 years 

this risk after 10 years significantly higher than the general population while 55 

years and older patients this risk increases even further(206).  

	

Figure	78	Cumulative	risk	of	cancer.	Cumulative	risk	of	cancer	(excluding	non-melanocytic	skin	and	lip	cancer)	in	
kidney	transplant	recipients	by	age	at	transplantation(206)	

 

Cancer rates described in literature normally underestimate the real picture due 

to relatively short follow-ups and more focus on patients transplanted recently. 

A large US study looking at the incidence of cancer after renal transplantation 
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only reported cancers in the first three years after transplantation. Prevalence 

studies show a different picture, with an incidence of 34-50% if transplant 

recipients were followed for 20 years or more(207)(208)(209). 

Although the risk of cancer increases with increasing age and being on dialysis 

also increases incidence of cancers but the significantly higher incidence of 

cancer over and above the general population is believed to be due to the 

effects of immunosuppressive medications. An impaired immune response due 

to strong immunosuppression is one of the most important mechanisms. Other 

potential mechanisms include recurrent infections with oncogenic viruses. 

Then there is direct neoplastic effect of the cyclosporine immunosuppression. 

This is due to aberrant production of cytokines regulating tumour growth, 

metastasis and angiogenesis(210). 

All these factors make it of paramount importance that any restored kidney 

transplanted must be free of any gross cancer as cancer growth may be 

uninterrupted in immunosuppressed hosts. Also tailoring of immunosuppression 

to agents with antineoplastic properties may lead to better outcomes when 

transplanting these organs.  

Our experiments on both Wistar and Lewis rats showed these effects of 

cyclosporine immunosuppression. When the immunosuppression with CsA was 

continued in either strains there was on-going growth of the tumour cells 

despite, in both the strains.  

The growth was exponential towards the end of the study period due most 

probably to neoangiogenesis.  
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These findings have important clinical implications. If there was an inadvertent 

tumour transfer or de novo renal tumour development then under the influence 

of continued CsA immunosuppression the tumour cells are likely to grow 

uninterrupted. Hence not only it would be important to very closely monitor 

these implants but also change the immunosuppression if possible. 

4.11.3	 	 Immunosuppression	with	antineoplastic	agents	
	

Calcineurin nephrotoxicity was one of the main side effects of CNIs. mTOR 

inhibitors are devoid of this side effect and hence promised a great deal for 

renal transplant patients. Despite initial expectations these agents have not 

been able to replace CNIs for long-term immunosuppression due to their own 

side effects profile. But there is growing body of evidence that these can be 

good alternatives to CNIs after an initial period of with calcineurin inhibitors. 

Use of mTOR inhibitors as denovo immunosuppressive agents was studied by 

ORION and Symphony studies. ORION study had 469 patients who were 

divided into three groups. Group 1 had sirolimus and tacrolimus with gradual 

withdrawal of tacrolimus after week 13. Group two was given MMF and 

sirolimus. This group was discontinued early due to high rates of acute 

rejections. Group 3 was given tacrolimus and MMF. There were no significant 

differences in the primary end points of eGFR and graft loss among the groups 

but the rates of biopsy proven acute rejections were significantly higher in the 

sirolimus groups(211). The Symphony study – another randomised control trial, 

in its one year results reported better results in terms of acute rejection, eGFR 

and graft failure with tacrolimus, MMF and steroid based regime than three 

other regimes including one containing sirolimus. A further two years follow up 
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of the Symphony study showed continued benefit with Tacrolimus arm of the 

study with those patients maintaining eGFR and low rates of acute rejections. 

Although the total number of patients who remained on sirolimus by the end of 

the follow up had numerically high eGFR but due to higher incidence of acute 

rejections and side effects a significant patients crossed over to the tacrolimus 

arm and these results would not bear any clinical relevance(118,212).   

Sirolimus has been used with the combination of CNI’s. The rates of acute 

rejection episodes in the combination has been shown to be less than the other 

treatment arms(213,214). Although the rates of acute rejection were low, but the 

side effects including lymphocoele and the wound infections were higher. Also 

the one-year renal function was also worse off in the combination regime(215). 

Due to this, in the 2009 Kidney Disease: Improving Global Outcomes (KIDIGO) 

guidelines it was recommended against to use both CNI and sirolimus in 

combination(216).  

The other strategy of using mTOR inhibitors is to employ them as maintenance 

therapy as a replacement of CNI. One of the first large studies was published in 

2003, which randomised 430 patients into either receiving sirolimus, CsA and 

steroids or have CNI withdrawal after 3 months. The eGFRs and graft survival 

rates at 36 months were significantly better in the CNI withdrawal group, with 

better compliance rates as well(217). Due to chronic allograft nephropathy 

associated with CNIs, withdrawal of these agents after an initial period post 

transplant was shown to be beneficial(121). The timing of withdrawal of CNI is 

varied in different studies but to see the best results it is important to withdraw 

them before the irreversible changes of allograft nephropathy set in. The ZEUS 

study, a large multicentre RCT comparing CsA, MMF and prednisolone versus 
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everolimus, MMF and prednisolone showed significantly better results in terms 

of eGFR in the everolimus arm. Initially the acute rejection rates were higher but 

over the whole study period they were comparable as well(218).  

There was a lot of excitement about mTOR inhibitors in the beginning as 

potentially the agents that would be able to completely replace CNIs and 

prevent the problems associated with chronic allograft nephropathy but due to 

their own side effect profile they have been unable to replace CNIs completely. 

But as maintenance therapy after an initial period of 3-5 months of CNIs they 

have been found superior as described above. Along with these benefits, when 

the antineoplastic effects of these agents are taken into account they have very 

promising prospects, if not in all then definitely in special circumstances. 

Antineoplastic effects of mTOR inhibitors are well documented. These are not 

only shown to be helpful in skin cancers including melanomas but also in post-

transplant lymphoproliferative disorders and Kaposi sarcomas. There is 

gathering evidence for their effectiveness for metastatic renal cell carcinoma, 

HER 2 positive breast cancers, neuroendocrine and pancreatic 

tumours(128,219–224). 

The CONVERT trail, which had 830 patients, randomised to conversion to 

sirolimus or continuation with CsA immunosuppression has shown that the 

incidence of non melanoma skin cancer was significantly lower in sirolimus 

group (1.2 v 4.3 p<0.001). The rate of other malignancies was lower again in 

the sirolimus group but failed to reach statistical significance (p 0.058)(225). 

Similar results were noted when patients with one cutaneous cancer were 

randomly assigned to either continue on cyclosporine immunosuppression or 
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convert to sirolimus. In the conversion arm, the survival free from cutaneous 

squamous cell cancer was significantly longer than in CsA arm(226). 

Knoll and colleagues conducted a systematic review of 21 randomised control 

trials recently. This review looked at the data of 5876 transplant recipients and 

showed that there was 56% reduction in the incidence of non melanoma skin 

cancer and 40% reduction for the rest of malignancies with sirolimus switch. 

Patients receiving de novo sirolimus did not show any improvement in the 

cancer occurrence. These results in themselves are very promising but the 

conversion to sirolimus came at a cost of increased risk of non-cancer related 

deaths. Most likely causes postulated by the authors were increased 

cardiovascular risks and infections. These effects were more pronounced when 

higher doses of sirolimus were used. Increased risk of rejection could be due to 

over immunosuppression in the sirolimus group due to known higher risks of 

acute rejections requiring steroid pulsing(227).  

Despite the reduction in the incidence of cancer, increase in the non-cancer 

deaths in sirolimus group seems quite discouraging. But when this was looked 

at in the context of what happened to the patients who could not get an organ 

for transplantation then the situation was much more promising. The transplant 

waiting list is a “very dangerous” place to be, as the average risk of dying while 

being wait listed is between 6- 10% per year(228–230). This is also depended 

on the age of the patients listed, with worsening survival with advancing age. 

Patients becoming unfit and inactive on the waiting list complicates the situation 

as the risk of dying increases even further. According to an analysis about 30% 

deaths on waiting list occur in patients who had inactive status(231).  
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Figure	79	Death	rate	on	the	kidney	waiting	list	by	age	group,	1994-2003	(229)	

	

 

Thus an elderly patient who has to wait for longer (blood group O and B) the 

risk of dying may be more than 50% over a period of five years(229,232).  

In our experiments, when sirolimus was used as immunosuppressive agent all 

animals were able to reject tumour load within the study period. Although this 

effect was stronger in the higher dose sirolimus animals, the low dose group 

was also significantly better in rejecting the tumour load when compared to both 

CsA and leflunomide groups. 

Because the effect of sirolimus was found to be very strong, wewas unable to 

elicit any difference between the treatment continue and withdrawal groups as 

by the time of withdrawal of immunosuppression the tumour load was already 

very little. 

4.11.4	 	 Conclusions	
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In summary, we have shown with our experiments that we can use acute 

rejection, level of matching and manipulation of immunosuppression to our 

benefit. In the light of the above mentioned findings and extrapolating them to 

the clinical situation, we suggest that kidneys removed for small renal cell 

carcinoma can be used for transplantation in a select group of patients. Perhaps 

the best approach while using these organs will be to do vigilant wide local 

excision with US guidance if needed, to make sure there is no residual 

macroscopic tumour left in the restored organ. After transplantation, continue on 

CNI based immunosuppression for a period of 3-5 months followed by 

conversion to prevent common risks associated with mTOR inhibitors in the 

immediate post operative period. To use acute rejection for any tumour 

elimination, the donor recipient combination should perhaps be less than ideal 

HLA match.  

Of course patient selection and informed consenting when using these organs 

will be more important than any other ordinary kidney transplantation.  

High risk, elderly patients with unacceptably high risk of dying while waiting for a 

kidney will benefit the most from these relatively higher risk organs. Both the 

donor and recipient consent will need to be very thorough and clear. Potential 

recipients must know that these organs have less number of nephrons to start 

with due to partial resection. The risk of tumour recurrence and potential risk of 

relatively aggressive nature must be clearly indicated. Other side effects 

associated with transplanting these kidneys will include risk associated with 

mTOR inhibitors and risks of bleeding, urine leak and lymphocoeles due to 

partial resection. 
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On the other hand the benefits, both in terms of quality of life and survival must 

also be highlighted and the decision must be left for the patients to make to 

avoid any clinician bias. 
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Chapter 5  
FLOW CYTOMETRIC ANALYSIS  
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5.1	 AIMS	
	

Flow cytometric analysis was performed to assess the effect of tumour 

transplantation, different immunosuppression and matching with respect to the 

distribution of subclasses of T cells and Natural Killer population in our 

experimental model.  

5.2	 BACKGROUND	AND	PRINCIPLES	
	

Flow cytometry is the technique of measuring the characteristics of small 

particles as they flow in the fluid medium. The most important properties 

normally measured are the number, size, shape, granularity and, by labelling 

with fluorescent markers, the specific properties of the particles. The particles 

are passed through a laser beam suspended in a fluid medium. These particles 

cause dispersion of the light, which is then picked up by appropriately 

positioned photomultiplier tubes. These are then converted to electrical signals 

which are interpreted by the on board computer.  

The three main parts of the flow cytometer are the fluidics, optics and 

electronics. 

Fluidics acts are the medium through which the particles, usually cells are 

transported. The cells of sizes ranging between 0.2- 150 micrometres are 

suitable for flow cytometric analysis. This requires the cells to be isolated from 

tissues before they can be analysed e.g. spleen. For the results to be precise 

ideally only one cell should pass through the light beam at one time. The 

arrangement of the flow chamber is such that it makes it possible for the cells to 

be passed in a single file on low flow settings. 
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When the light strikes these cells it diverges into different directions. The extent 

of this depends on the physical properties of the cells. There are two different 

type of scattering that is detected by flow cytometer; forward scattered light 

(FSC) and side scattered light (SSC).  

FSC is detected just off the original laser beam path and gives the indication of 

the size of the cells. SSC is usually detected at around 90° angle and gives the 

indication about the shape and granularity of the cells. Combined together these 

measurements can be used to differentiate between different white blood cells 

for instance.  

	

Figure	80	Forward	and	side	scatter	of	incident	beam	of	light	as	a	basic	principle	of	flow	cytometry.	

 

 

The granulocytes being the biggest and most granular scatter the light most and 

appear farthest in both the FSC and SSC. Monocytes are large in size but are 

smoother hence appear to disperse the beam most for FSC. Lymphocytes are 
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the smallest and also non granular and hence are found towards the left of the 

SSC/FSC plot as shown.  

 

	

Figure	81	Forward	and	side	scatter.	An	example	of	forward	and	side	scatter	of	cells	separated	from	a	Wistar	rat’s	
splenic		tissue	after	euthanasia.	The	bigger	and	more	irregular	the	cell	shape	the	more	FSC	and	SCC	they	cause.	

 

A more targeted use of flow cytometry is to incubate the cells with antibodies 

conjugated with a fluorochrome that will bind to cell specific antigens. These 

fluorochromes are excited when hit by monochromatic light moving electrons 

out from their normal orbit to an unstable high-energy state. Upon their return to 

baseline they release energy in the form of photons of light, which invariably is 

of higher wavelength and is different from the excitation wavelength. These 

FSC, SSC and fluorescence signals are channelled by a set of filters and 
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mirrors to specific sensors. These sensors for the florescent light are called 

photo multiplier tubes (PMTs).  

These PMTs then convert the photon energy to electrical signals, which are 

then “read” by the attached computer to produce output data. 

	

	

	

Figure	82	BD	 FACSCanto	 II	 Flow	 cytometer.	Main	 flow	 cytometer	 is	 on	 the	 left	 of	 the	 picture	 and	 the	 data	 is	
analysed	by	the	attached	computer	towards	the	right	of	the	picture.		

	

	

5.3	 CELL	MARKERS	IN	TRANSPLANTATION	AND	CANCER	
	

The most important lymphocytes in the context of transplantation and tumour 

immunology are CD4+, CT8+ T cells and Natural killer cells. Thus these cell 

subsets were studied in our experimental animals. One of the earlier studies 

showing the role of CD4+ and CD8+ cells in allo-rejection, was from Cobbold et 
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al.(233). CD4+ and CD8+ cells were depleted separately and then together and 

the rate of skin graft rejection was studied. This study showed that the survival 

of skin grafts was similar among controls and the animals with removal of just 

CD8+ T cells.  When CD4+ cells were depleted there was a modest increase in 

the survival of skin allografts while a long-term graft survival was achieved when 

both CD4+ and CD8+ cells were depleted. This study pointed towards the 

crucial role that both these cell types play and also highlight their interplay with 

each other for graft rejection. 

 

	

Figure	83	Role	 of	 CD4+	 and	 CD8+	 T	 cells	 in	 skin	 allograft	 rejection.	Depletion	 of	 CD8+	 cells	 did	 not	 have	much	
effect	on	allograft	rejection	(similar	to	controls).	With	CD4+	cells	depletion	there	was	only	a	modest	increase	in	
the	allograft	survival	which	when	both	these	cell	populations	were	depleted	then	there	was	significant	increase	
in	 the	 survival	 of	 these	 allografts.	 This	 study	 highlighted	 the	 importance	 of	 both	 these	 cells	 in	 rejection.	
(reproduced	from	reference	233)	

	

	

5.3.1	 	 CD4+	T	cells	
	

These cells have pivotal role in transplant immunology. Once the T cells are 

activated in the presence of co-stimulatory signals they change into effector 
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cells. The CD4+ “helper” T cells upon activation produce a number of cytokines 

that help exert immunological attack on the non-self alloantigens. These can 

both be “normal” alloantigens from the transplanted kidney or it could be tumour 

antigens. The role of the CD4+ cells as the initiator of the graft rejection has 

been widely demonstrated by various groups(234)(235)(236)(237). Initiation of 

immune response is of paramount importance in body’s natural defence against 

pathogens as well as the transplanted or de novo tumour cells.  

 

5.3.1.1	 Activation	status	and	significance	
	

Majority of the CD4+ cells are naïve under resting conditions. For these cells to 

mount any immune response against transplanted cell they have to be 

activated. There are several markers that get expressed on the activated T 

cells. These include CD25, CD69 and CD154 among others(238)(239)(240).  

5.3.2	 	 CD8+	cells	
	

Cytotoxic T lymphocytes (CTLs) (CD8+) have the most profound effects against 

tumour development and progression. These cells are dependent on the 

production of cytokines mainly produced by the Th1 cells eliciting a coordinated 

defence mechanism against tumours. These cells are also the biggest 

mediators of acute rejection. CTLs are normally present in low levels in non 

rejecting allografts while in rejecting organs their number is significantly 

higher(241)(242) and rejection can be delayed by depletion of these 

lymphocytes(243). 
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5.3.3	 	 Natural	killer	cells	
	

These cells are part of the innate immune system. These are one of the first 

defence mechanisms of the body against foreign and tumour antigens. Although 

initially thought to be not important effector cells in solid organ 

transplantation(244), more recent studies have shown their role in small animal 

model(245). Although these cells alone may be insufficient to cause full blown 

acute rejection themselves, but by interaction with other cells of innate and 

adaptive immune system they have an important role to play. 

Their role against tumours is clearer both in small animals and humans. Mice 

deficient of NK cells have higher incidence of lymphomas and sarcomas, as is 

the case in humans(246)(247)(248)(249).  

The two ways by which NK cells are thought to play a anti neoplastic role is by 

recognising “missing self” – where tumour cells and virus infected cells under 

express the MHC class I proteins in order to evade the immune 

system(250)(251). This mechanism is of particular benefit to the host as one of 

the properties of the tumour cells is to not express MHC class I molecules in an 

attempt to evade the attack by CTLs. These tumour cells can escape cytotoxic 

T cells but are recognised by NK cells via “missing self” mechanism and 

eliminated.  The other mechanism by which NK cell exercise their defence is by 

the identifying “induced-self” antigens. These are the antigens which are 

either not expressed at all on normal healthy cells or are expressed at very low 

levels but as a result of malignancy, infection or trauma are up-regulated 

(252)(253)(254)(159). When these induced-self antigens are expressed in 

significant amount they are recognised by the NK cells, which eliminate them.  
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In short NK cells are an important player in the tumour cells destruction. 

5.3.4	 	 Regulatory	T	cells	
	

In the past 10-15 years there has been growing interest at the role of these 

subsets of T lymphocytes. From a phenotypic point of view these cells are 

identified as CD4+ CD25+ FoxP3+ cells(255). Liu et al. has described the 

down- regulation of CD127 as a potentially important marker of Treg cells(256), 

while TNFR2 has also been implicated as an alternative marker for these 

cells(257). Despite some evidence that there is a subpopulation of CD4+CD25-

FoxP3+ Treg that is positive for TNFR2 (258), the vast majority of studies use 

CD25 and FoxP3 positivity as a marker for identifying these cells.  

The role of Tregs as immunoregulatory cells has now been firmly established 

although there is still a lot about these cells that remains unanswered. They 

have been shown to keep in check the autoimmune and inflammatory 

processes both in humans and in rodents(259)(260). 

Experiments in humanised mice have shown their ability to counter graft versus 

host disease. In these mice, when human lymphocytes were transplanted, 

severe GVHD ensues but co-transfer of Tregs prevents this life threatening 

phenomenon(261). Their protective role has also been shown for the solid 

organ transplantation by the Oxford group(262). 

Tumour associated antigens expressed by the precancerous cells are 

recognised by the immune system thus preventing a large number of 

malignancies. It is only when these initial defences are evaded that the 

transition from pre-cancer to cancer occurs in at least some cases. With Treg 
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cells keeping immune system “in check”, it was hypothesised(263) that this 

could lead to tumour cells evading host defences. There has been evidence to 

suggest that this hypothesis may be correct as large number of Treg cells are 

isolated from established tumours and draining lymph nodes, thereby pointing 

towards their potential role(264). Similarly depletion of Treg cells resulted in 

better antineoplastic responses. Marabelle et al. showed that there were large 

numbers of Treg cells expressing OX40 and CTLA-4 as well as FoxP3. Presence 

of these Tregs at the vicinity of the tumour was a poor prognostic factor for the 

mice. When anti OX40 and anti CTLA-4 antibodies were injected to target these 

Treg cells directly, these mice achieved a systemic clearance of tumour 

load(265). Similar results have been reported by either depleting the tumours 

with Tregs or by injecting them with Treg depleted CD4+ T 

cells(266)(267)(268)(269)(270)(271)(272). 

 

5.4	MATERIALS	AND	METHODS	
	

5.4.1	Choice	of	cell	markers	
	

We selected CD25 as our T cell activation marker. This is expressed by both 

CD4+ and CD8+ T cells as well as by the Treg cells. By using this as one of the 

markers we were able to differentiate the populations of Treg (CD 4+ CD25+ 

FoxP3+) as well as activated CD4+ T cells (CD 4+ CD25+ FoxP3-). Effector 

CD8+ T cells also express CD25 as a marker of activation and was identified as 

CD 8+ CD25+.  CD161 (also called NK receptor protein 1) was used for the 
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detection of the NK cells. These are present on all NK cells and very small 

proportion of T cells(273,274). 

5.4.2		Antibodies	
	

The cell surface antigens targeted to identify the above-mentioned cell 

populations included CD4, CD8, CD25 and CD161. The cells were stained 

according to the protocols provided by the distributors. Antibodies to CD4, CD8, 

CD25, CD161 and FoxP3 were anti-rat and acquired from eBioscience Ltd. 

(Hatfield, United Kingdom), while CD161 was bought from BioLegend (London, 

United Kingdom). The following table shows the dilution used for flow cytometric 

analysis and the conjugated fluorochromes. 

 

 

Antibodies CD4 CD8 CD25 CD161 FoxP3 
 
Dilutions 

 
1/400 

 
1/100 

 
1/100 

 
1/200 

 
1/50 
 

 
Fluorochromes 
 

 
FITC 

 
FITC 

 
PE 

 
FITC 

 
PE-Cy 5 

 

 

	

5.4.3	 	 Isolation	of	Cells	for	Flow	Cytometry	
	

Concentration	of	the	antibodies	titers	used	for	staining	different	T	lymphocytes	as	
well	as	the	fluorochromes	for	the	detection	in	flow	cytometric	analysis.	
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Only a very small number of rats had positively detectable lymph nodes. Hence 

the FACS analysis was performed by harvesting the spleens at post mortem 

examination. 

The splenic tissue was cut into small pieces in a petri dish. With a 5ml syringe 

plunger against a cell strainer the tissue was teased into a single cell 

suspension. Any gross tissue was then removed carefully. Cells were 

suspended in 10 ml of PBS and strained again before being centrifuged at 400g 

for 5 minutes. The supernatant was discarded and to remove red blood cells 

were re-suspended in 5 ml RBC lysis buffer (eBioscience) and incubated for 5 

minutes before adding 15mls of PBS and centrifuging for 5 minutes before 

resuspending in PBS. For most of the analysis a single lysis cycle was sufficient 

to achieve good results but occasionally the process required repeating. 	

5.4.4	 	 Staining	the	Surface	Antigens	
	

The cells suspended in PBS were placed in aliquots of 50	µL and antibodies 

added at the correct dilution (see table) before incubation at 4°C for 30 minutes. 

After the incubation the cells were washed with 2 mls PBS followed by spinning. 

The supernatant was discarded and cells re-suspended in 2 ml of PBS, washed 

and spun again followed by re suspension in 0.5 ml of PBS prior to flow 

cytometric analysis. 

5.4.5	 	 Staining	for	FoxP3		
	

Intracellular staining for FoxP3 was performed after staining the cell surface 

antigens. Cells were pulse centrifuged and resuspended in 1ml of 

fixation/permeabilization working solution (eBioscience) followed by incubation 
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at 4°C for 30 minutes. Then 2 ml of PBS was added and the sample was spun 

at 400g for 5 minutes and supernatant was discarded. The pellet was re-

suspended in 100uL of permeabilization buffer and FoxP3 antibody was added 

at a dilution of 1/50 and the sample incubated for 30 minutes at room 

temperature. This was followed by addition of 2 ml of PBS and centrifugation. 

The supernatant was discarded and the above step repeated. Finally the 

sample was re-suspended in 0.5 ml of PBS prior to flow analysis. 

5.4.6	Flow	cytometric	analysis,	gating	and	compensation	
	

After the staining of both cell surface and intracellular antigens, the cells were 

analysed in the flowcytometer. Both the lymphocyte population and the counting 

beads were gated in order to count the absolute and relative number of cells 

analysed. These gated lymphocytes were then further analysed based on the 

different fluorochromes used. Fig 84 gives an example of our analysed data. 

Additional dot plots are shown in chapter 10 fig 121- 125. 
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Figure	84	Representative	 flow	data	 showing	 the	method	of	 analysis.	 Splenic	 cells	were	 isolated	 and	 stained	 to	
detect	 antigens.	 The	 cells	were	 first	 analysed	by	 forward	 scatter	 and	 side	 scatter	 to	 identify	 lymphocytes.	 The	
lymphocyte	 population	 was	 gated	 (P1)	 and	 the	 gated	 population	 was	 then	 analysed	 by	 fluorescence.	 In	 the	
representative	example	shown	the	lymphocytes	were	analysed	to	determine	the	%	of	CD4+,	CD25+	cells	
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For compensation settings, the unstained cells and the individual antibodies for 

CD4, CD8, CD161, Fox P3 (fixed and unfixed) were used for our experiments. 

Unstained tubes were used first to ensure that the populations of cells were in 

the right  place on the dot plot.  This was done using the FSC and SSC to 

screen the cells of interest. These cells of interest were then gated P1. These 

tubes are then run through the FACS machine and the data recorded as 

compensation control tubes. 

 The positive population was gated for each tube followed by adjusting the P1 

gate and then it was “applied to all compensation” controls. The P2 gate is 

adjusted to fit the positive populations. 

This process was repeated for each stained tube to create a compensation 

matrix for the fluorochrome used (as above). These compensations were then 

named and saved for all our future experiments. 

  

 

5.5	 STATISTICAL	ANALYSIS	
	

The flowcytometric data was analysed using the GraphPad Prism version 6.00 

for Windows, GraphPad Software, La Jolla California USA. Due to wide 

variations in the data points, non parametric analysis using Kruskal-Wallis test 

followed by post hoc analysis by Dunn’s multiple comparison testing were 

performed. The results with p  values of <0.05 were considered as statistically 

significant.  

	



Chapter	5-192	
	

5.6	 	RESULTS	
	

5.6.1	 	 Control	comparison	
	

Before analysing the effect of tumour and different immunosuppressive agents 

on the distribution of different T cells subsets, we looked at the control Wistar 

and Lewis rats. These were normal animals with no tumour injection or 

immunosuppression.  

5.6.1.1	 CD4+	cells	
	

These were the percentage of CD4 + cells as a fraction of the total lymphocyte 

events. Interestingly, there were considerably more CD4+ cells in the Wistar 

control animals than Lewis animals.  
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Figure	85	Comparison	of	CD4+	cells.	The	difference	between	the	CD4	cells	distribution	between	Lewis	and	Wistar	
rats.	The	difference	was	statistically	significant	(p=0.028)	

The observed difference was statistically significant (p=0.028). 

	

5.6.1.2	 Activated	CD	4	cells	
	

Although the proportion of CD4 cells was significantly higher in Wistar than the 

Lewis animals, the percentage of activated (CD4+ CD25+) cells was 

significantly more in Lewis rats (p=0.0283). The significance of these results 

was unclear and we were unable to see any clear explanation in the literature. 
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Figure	86	Comparison	 of	 activated	 CD4+	 cells.	 Percentage	 of	 activated	 (CD4+	 CD25+)	 cells	 between	 Lewis	 and	
Wistar	rats.	P=0.028	

	

	

5.6.1.3	 Regulatory	T	cells	(Treg)	
 

Similar to the higher percentage of activated CD4+ cells in Lewis rats, the 

percentage of Treg cells as a fraction of the total CD4+ cells was higher in the 

Lewis rats. These results were statistically significant when compared to Wistar 

rats (p=0.0286). 
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Figure	87	Comparison	of	Treg	cells.	Treg	formed	bigger	proportion	of	CD	4+	cells	in	the	Lewis	rats	than	the	Wistar	
strain.		

	

5.6.1.4	 CD	8+	cells	
	

CD 8+ cells were between 5-15% of total lymphocytes in Lewis rats and 

between 3-8 % in the Wistar rats but the differences were neither marked nor 

reached statistical significance (p=0.114).  
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Figure	88	Comparison	of	CD8+	T	cells	among	Wistar	and	Lewis	rats.		

	

5.6.1.5	 Activated	CD8	cells	
 

The proportion of activated CD8+ T cells was very small in both the groups. 

These were the cells expressing both CD8 and CD25 cell surface markers. In 

Lewis rats the percentage of activated CD8 cells was between 0.1-0.3% while it 

was 0.08%-0.18% in Wistar rats. Again there was no statistical difference 

between these two strains (p=0.342). 
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Figure	89	Activated	CD8	cells	in	Wistar	and	Lewis	groups.	

 

wealso compared the percentage of activated CD 8 cells of the total CD8 + cell 

population. Again there was no significant difference (p=0.485). 

 

	

Figure	90	Percentage	activated	CD8	of	total	CD8	cells	
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5.6.1.6	 Natural	killer	cells	
 

The Natural killer cell proportion varied from 3-5% for the Lewis rats and for the 

Wistar rats it was between 1-4% with no statistically significant difference 

among these strains (p=0.485). 

	

Figure	91	Comparison	of	NK	 cells.	Natural	 killer	 cells	 distribution	 in	Wistar	 and	 Lewis	 rats	was	not	 significantly	
different	

 

5.6.2	Cell	population	comparison	between	treatment	groups-	
Wistar	group	
 

The cell population and their activated proportions were then analysed among 

different treatment groups. These included animals with tumour injection and 

cyclosporine, sirolimus or leflunomide immunosuppression for treatment 

continue and treatment withdrawal groups for the Wistar animals; and tumour 

injection only and tumour injection with cyclosporine or sirolimus 

immunosuppression for treatment continue and treatment withdrawal groups for 

Lewis animals. 
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5.6.2.1	 CD4+	cells		
	

There were wide variations for the CD4+ cell population among different groups 

but these cells were the most common. For the control and cyclosporine groups 

it varied from 8-70% of the total lymphocyte population studied. These cells 

were greatly suppressed in the sirolimus treated animals (0.3-15%). For 

leflunomide, again their percentage varied from 19-55%. 

Despite these wide variations, the difference in the percentages between CsA 

stop and sirolimus low dose; and between sirolimus low dose and leflunomide 

groups were statistically significant. All treatment groups and the controls were 

compared for CD4+ cells among each other. The comparisons with the 

significant differences are highlighted in the table below the graph. 
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CsA	Stop	
vs.	

Sirolimus	
low	

continue	

CsA	Stop	
vs.	

Sirolimus	
low	stop	

Sirolimus	
low	

continue	vs.	
Leflunomide	
continue	

Sirolimus	
low	

continue	vs.	
Leflunomide	

stop	

Sirolimus	
low	stop	vs.	
Leflunomide	
continue	

Sirolimus	
low	stop	vs.	
Leflunomide	

stop	

0.0346	 0.0153	 0.0014	 0.0069	 0.0005	 0.0029	

 

 

Figure	92	Comparison	 of	 proportions	 of	 CD4+	 cells.	 Comparison	 of	 proportions	 of	 CD4+	 cells	 under	 different	
immunosuppressive	 medications.	 The	 number	 of	 lymphocytes	 are	 shown	 on	 the	 Y	 axis	 as	 ranks	 as	 the	 non	
parametric	 test	 used	 for	 these	 comparison	 was	 Kurskal-Wallis	 test.	 The	 table	 below	 it	 shows	 the	 statistically	
significant	results	on	post	hoc	paired	analysis	with	Dunn’s	test.	
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5.6.2.2	 Activated	CD4	cells	
 

These were the cells expressing both CD4 and CD25 cell surface receptors 

only. The proportions of activated CD4 cells ranged from 0.06-12% among 

various groups studied. The only single statistically significant result was 

between sirolimus low dose and high dose treatment continuation groups (p 

<0.0103).  
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Figure	93	Comparison	of	proportions	of	activated	CD4+	cells.	Comparison	of	proportions	of	activated	CD4+	cells	
under	 different	 immunosuppressive	 medications.	 The	 only	 one	 statistically	 significant	 paired	 comparison	 was	
between	sirolimus	low	and	high	dose	treatment	continue	groups	(p	<0.0103).	

	

 

 

5.6.2.3	 Regulatory	T	cells	
	

These are the CD4, CD25 and FoxP3 expressing cells. Generally the animals 

treated with Sirolimus low dose had higher proportions of Treg cells population 

although the differences between the groups were too small to be significant.  
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Figure	94	Treg	comparisons.	Comparison	of	proportions	of	Treg	as	a	proportion	of	total	CD4+	cells	under	different	
immunosuppressive	medications	

5.6.2.4	 CD8	+	cells	
 

welooked at the total number of CD8 cells and activated CD8 (CD8+CD25+) as 

a proportion of total lymphocytes events as well as the number of activated CD8 

cells out of the total CD8 population. 

Control animals had very small CD8 population ranging from 0.08-0.19% of the 

total lymphocytes. This was in contrast to the animals with tumour injection and 
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immunosuppression, where the mean value varied from 5-9%. These results 

are in line with the fact that CD8+ cells are one of the main effector cells when it 

comes to rejection and tumour destruction. 

All treatment groups and the controls were compared for CD8+ cells among 

each other. The comparisons with the significant differences are highlighted in 

the table below the graph 
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Treatment	 Control	vs.	CsA	Stop	 Control	vs.	Leflunomide	continue	

Significance	 0.0042	 0.0378	

	

Figure	95	CD8+	cell	comparisons.	Comparison	of	proportions	of	CD8+	cells	of	total	 lymphocytes	under	different	
immunosuppressive	medications.	The	CD8+	cells	were	in	abundance	as	compared	to	the	control	animals	with	no	
tumour	injection.	

	

 

When the activated CD8 population was analysed, generally there were more of 

these cells in the animals with tumour injection, although the significant 

differences were only seen between control and Sirolimus low dose continue 

groups and sirolimus group versus leflunomide treatment continue group. 
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Treatments	 Control	vs.		
Sirolimus	
low		
continue	

Sirolimus	
low	continue	
vs.	Sirolimus	
high	
continue	

Sirolimus	
low	continue	
vs.	Sirolimus	
high	stop	

Sirolimus	low	
continue	vs.	
Leflunomide	
continue	

Significance	 0.0117	 0.0071	 0.0308	 0.0481	

	

	

	

Figure	 96	 Activated	 CD8	 T	 cell	 comparisons.	 Comparison	 of	 proportions	 of	 activated	 CD8+	 cells	 of	 total	
lymphocytes	under	different	immunosuppressive	medications.	The	cells	populations	with	significant	differences	
in	numbers	are	shown	in	brown	colour.	The	activated	CD8+	cells	were	generally	in	higher	number	as	compared	to	
the	control	animals	with	no	tumour	injection.	
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Next weanalysed the number of activated CD8+ cells as a proportion of total 

CD8+ cells. Sirolimus low dose group again had the most number of activated 

CD8+ cells among all groups and the results were significant when compared to 

controls, sirolimus high and leflunomide treatment continue groups. 
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Treatment		 Control	
vs.	

Sirolimus	
low	

continue	

Control	
vs.	

Sirolim
us	low	
stop	

Sirolimus	
low	

continue	vs.	
Sirolimus	

high	
continue	

Sirolimus	low	
continue	vs.	

Sirolimus	high	stop	

Sirolimus	
low	

continue	vs.	
Leflunomide	
continue	

Sirolimus	low	
stop	vs.	

Sirolimus	high	
continue	

Sirolimus	
low	stop	

vs.	
Leflunomid
e	continue	

Significance	 0.0073	 0.0435	 0.0005	 0.0188	 0.0050	 0.0046	 0.0379	
	

Figure	 97	 Activated	 CD8	 comparisons.	 Comparison	 of	 proportions	 of	 activated	 CD8+	 cells	 of	 total	 CD8+	 under	
different	 immunosuppressive	 medications.	 The	 cells	 populations	 with	 significant	 differences	 in	 numbers	 are	
shown	in	brown	colour.	The	numbers	of	activated	CD8+	cells	were	highest	among	the	sirolimus	low	dose	group.	
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5.6.2.5	 Natural	killer	cells	
	

There were no significant differences between the populations of NK cell among 

various immunosuppressives studied. The means ranged from 3-14%. 

	

Figure	 98	 NK	 cells	 comparisons.	 Natural	 Killer	 cells	 distribution	 among	 different	 experimental	 groups.	 The	
numbers	were	variable	under	different	conditions	with	generally	more	NK	cells	when	the	tumour	was	 injected	
but	none	of	these	reached	statistical	significance.		
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5.6.3	 	 Cell	population	comparison	among	treatment	groups	-	
Lewis	animals 
	

5.6.3.1	 CD4+	cells	
	

In Lewis animals, the proportion of CD4+ cells of the total lymphocyte was lower 

than the Wistar animals, with a mean of 3.7%. There were wide variations 

between the groups with the sirolimus low dose continue group having the most 

numbers of CD4 population (mean 28.6%). This was significantly higher than 

that of the control animals.  
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Treatment	 Control	vs.	Sirolimus	
low	continue	

Sirolimus	low	continue	vs.	
Sirolimus	low	stop	

Significance	 0.0295	 0.0026	
	

Figure	 99	 CD4+	 comparisons.	 Comparison	 of	 proportions	 of	 CD4+	 cells	 of	 all	 lymphocytes	 under	 different	
immunosuppressive	medications.		
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5.6.3.2	 Activated	CD4	cells	
	

These are the lymphocytes expressing both CD4 and CD25 cell surface 

receptors. Again the biggest and the only statistically significant difference was 

measured between the controls and sirolimus low dose treatment continue 

groups (p <0.0003). The mean of activated CD4 cells for control was 19.38% 

while for the sirolimus group it was 1.03%. 

	

	

	

Figure	 100	 Activated	 CD4	 comparisons.	 Comparison	 of	 proportions	 of	 activated	 CD4+	 cells	 of	 all	 lymphocytes	
under	 different	 immunosuppressive	medications.	 The	 only	 one	 significant	 difference	was	 between	 the	 control	
and	sirolimus	low	dose	continue	groups	(p	<0.0003).	
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5.6.3.3	 Regulatory	T	cells		
 

The control animals with no immunosuppression had a mean of 51% Tregs of the 

total number of CD 4 positive cells. There was a reduction in this proportion in 

the rats with immunosuppression and those with just the tumour injection. The 

biggest difference that was between the controls and the sirolimus treated 

animals in the continuation arm.  
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Treatment	 Control	vs.	Sirolimus	low	
continue	

Control	vs.	Sirolimus	high	
continue	

Significance	 0.0004	 0.0295	
	

Figure	 101	 Treg	 comparisons.	 Comparison	 of	 proportions	 of	 Treg	 cells	 of	 the	 CD4+	 population	 under	 different	
immunosuppressive	 medications.	 The	 cells	 populations	 with	 significant	 differences	 in	 numbers	 are	 shown	 in	
brown	colour	
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5.6.3.4	 CD	8+	cells	
 

Again welooked at the total number of CD8 cells and activated CD8 

(CD8+CD25+) as a proportion of total lymphocytes events as well as the 

number of activated CD8 cells out of the total CD8 population. 

The proportion of CD8 cells was quite evenly distributed throughout the groups 

and there were no significant differences between them. The range of the 

percentage of CD8+ cells of the total lymphocytes was between 3-19 %. 

 

	

Figure	 102	 CD8	 comparison.	 Comparison	 of	 proportions	 of	 CD8+	 cells	 of	 all	 lymphocytes	 under	 different	
immunosuppressive	medications.		
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The number of activated CD8+ T cells of the total population was a small 

fraction ranging between 0.3-2.9%. The sirolimus low dose stop group had the 

largest number of activated T cells of total lymphocytes (p <0.0385). 

 

	

	

Figure	 103	 Activated	 CD8	 comparisons.	 Comparison	 of	 proportions	 of	 activated	 CD8+	 cells	 of	 all	 lymphocytes	
under	 different	 immunosuppressive	medications.	 The	 cells	 populations	with	 significant	 differences	 in	 numbers	
are	shown	in	brown	colour.	Again,	like	Wistar	animals,	the	highest	numbers	of	these	activated	cells	were	seen	in	
sirolimus	low	dose	groups.	
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When we compared the proportion of the activated CD8+ cells of total CD8+ 

cells, we found wide variation among the groups. Again the biggest and highly 

significant difference was between the controls and the sirolimus low dose 

continue group (mean was 1.8% for controls and 45% for the sirolimus group). 

 

 

Treatment	 Control	vs.	Sirolimus	low	
continue	

CsA	Stop	vs.	Sirolimus	low	
continue	

Significance	 0.0006	 0.0460	

	

Figure	 104	 Activated	 CD8	 comparisons.	 Comparison	 of	 proportions	 of	 activated	 CD8+	 cells	 of	 all	 lymphocytes	
under	 different	 immunosuppressive	medications.	 The	 cells	 populations	with	 significant	 differences	 in	 numbers	
are	shown	in	brown	colour.	
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5.6.3.5	 Natural	Killer	cells		
	

There was no difference between the NK cells between the groups with the 

mean percentage ranging from 4.3-16%. There were wide variations even 

within the groups as well.  

	

Figure	105	 NK	 cells	 comparisons.	 Comparison	 of	 proportions	 of	 NK	 cells	 of	 all	 lymphocytes	 under	
different	immunosuppressive	medications.		
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5.7	 DISCUSSION	
 

Development of tumour is a complex and a multistage process in animals and 

humans. These factors could be intrinsic (genetic mutations, oncogenes) and 

extrinsic (radiation and carcinogenic exposure and certain viral infections). 

Whatever the mechanism, the tumours have tumour specific and tumour 

associated antigens that make them unique. These antigens are recognised by 

the immune system, which help in keeping these mutant/tumours cells under 

control. The interaction of the immune system with tumours was shown quite 

eloquently by Macfarlane Burnet. The syngeneic rats were injected with one 

type of irradiated tumour cells and divided into two groups. Then competent 

non-irradiated tumour cells of same type were injected in the first group of rats 

and another type in the other set. The “immunised” animals with same tumour 

type rejected the competent tumour cell load while the other immunised group 

showed tumour propagation(275). This work was one of the earliest proofs of 

the close interaction between the immune system and the tumour cells. 

We now know that almost all the effectors of immune system are actively 

involved in the tumour immunity. Macrophages and dendritic cells have a 

specific role in antigen presentation. CD8+ cell mediated cytotoxicity plays 

perhaps the most important role of them all. Then there are CD4+ cells and 

their various subsets and natural killer cells. Tumour cells are believed either to 

induce immune system thereby making them exposed to immune destruction or 

evade the immune system with various mechanisms. It is this interplay between 
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these two mechanisms that determines the fate of most of the tumours(276). 

More immunogenic tumour are easily attacked by the immune system and carry 

a better prognosis while the immune resistant variant are more difficult to 

control. The resistant variants have various mechanisms that help them evade 

immune system including; selective overgrowth of antigen negative variants of 

tumour cells, down-regulation of expression of MHC antigens and then selective 

selection of these cell lines. Other relatively newly discovered mechanisms 

include lack of costimulation that is required for continued propagation of the 

cytotoxic T cells and important role of regulatory T cells. 

There is a lot of information that we still don’t know fully about the role of 

immune system in tumour development and growth. But specifically the CD4+, 

CD8+, NK and Treg cells play important roles that are being recognised more 

and more.  

Literature regarding the role of cytotoxic CD8+ T cell as having anti-tumour 

properties is very clear. The role of CD4+ cells is becoming clearer in the recent 

years as well. They are known for a long time to be required for the priming, 

initial activation and expansion of CD8+ cells(277)(278)(279). As the direct 

effectors of anti-tumour effects are CD8+ cells, CD4+ cells play a pivotal role by 

making sure there are enough activated, primed and continuous supply of these 

CTLs at the tumour microenvironment. One of the main reasons of incomplete 

or ineffective tumour regression despite initial CTL response is the lack of CD4+ 

T cell help(280)(281). Most tumour cells express MHC class I molecules that 

are recognised by CTLs but there is now emerging evidence that for some class 

II expressing tumour cells, CD4+ cells behave as effectors as they are not 

recognised by the CTLs(282)(283).  
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Apart from the helper subset of CD4+ cells, there are regulatory T cells (CD4+ 

CD25+ FoxP3+). These cells were first characterised as mediators of self-

tolerance by Sakaguchi et al.(284). Along with development of tolerance and 

prevention of autoimmunity both in humans and animals, these cells are 

capable of dampening the tumour cytolytic responses by CD8+ cells. These 

cells are seen in increased numbers in the tumour microenvironment and their 

presence in most of the tumours is generally regarded as a negative prognostic 

sign(285–292). Movement of these cells are regulated either by direct 

chemokine driven mechanisms, local tissue expansion or by conversion of 

FoxP3- to FoxP3+ cells(293,294). Whatever the mechanism of infiltration, in 

majority of the established tumours, the higher the proportion of Treg cells at the 

tumour microenvironment or circulation the worse is the prognosis. 

Furthermore, Treg cells not only are important in tumour microenvironment but 

also in prevention of autoimmunity in normal subjects and may have a potential 

role in development of allograft tolerance in transplant subjects. In purely 

transplant setting, higher numbers of Treg cells is a good prognostic feature but 

the situation becomes a little complicated when these transplant recipients 

develop cancer.  

Role of different immunosuppressive agents have been widely studied on the 

immune phenotyping of the transplant recipients. Generally, CNIs in transplant 

setting either cause reduction in the number of Treg cells or inhibits their 

function. Gao et al. showed that whereas mTOR inhibitors were able to promote 

de novo generation of alloantigen specific Treg cells, CNIs completely inhibited 

this process(295). Several other studies have shown similar effects of CNIs on 

Treg cells(296–298). In contrast to the CNIs, mTOR inhibitors have generally 
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shown a more positive role on the population of Tregs, hence the potential 

promise for help in tolerance. They were first shown to expand Tregs in vitro by 

Battaglia et al.(299). These in vitro effects were seen both in humans and mice. 

Similar results were noticed in in-vivo studies where both the function and 

numbers of Tregs increased by mTORs inhibitors(300,301). In the context of 

transplantation without any tumour growth, these effects are desirable for 

potential tolerance but in cases of tumour development, high percentage of Treg 

population circulating or in the tumour microenvironment is a worse prognostic 

sign. This interplay between tumour development and Treg cells is a two way 

process with both having the potential to promote each other’s(302).  

Another potentially very important observation was made by Hope et al. on 

cancer related immune phenotype in kidney transplant recipients. They showed 

that although the number of Tregs was higher in the KTR with cancers as is 

shown by the previously mentioned studies, there was a decline in the number 

of Treg population after tumour resection(303). This observation could partially 

be due to removal of the positive feedback mechanism of tumour 

microenvironment on the Treg population or due to inevitable reduction of 

immunosuppression after the diagnosis of tumour in most KTRs(304). 

In our analysis, the T lymphocyte counts showed wide variations between the 

groups. It will be difficult and may be artificial to completely infer cause and 

effect relationship on the tumour rejection based on this analysis but there are 

some very interesting trends.  

Firstly, there were marked differences in the distribution of T cells between the 

two strains. Although the number of CD 4+ cells was significantly higher in 



Chapter	5-223	
	

Wistar rats than the Lewis but the proportion of the activated CD4 cells was 

higher in Lewis rats in comparison. Similarly the Treg cells were more abundant 

in Lewis rats. With CD4 cells having more indirect role in activating the immune 

system and Treg having a “controlling” effect of the immune response these 

finding could be important in tumour control. The rest of the cell populations 

(CD8, activated CD8 and NK cells) were similar between both these strains.  

 Due to the above-mentioned differences, it was meaningful to compare the 

effect of different immunosuppressives on various cell populations in each strain 

separately.  

For the Wistar rats, CD 4+ cell population was lower in the sirolimus low dose 

group as compared to the controls and the CsA group. But the activated CD4+ 

cells were highest in the Sirolimus low dose group. There were no apparent 

differences for Treg population.  

The results from activated CD8 cells were more consistent. All of the animals 

had higher proportions of CD8+ cells as compared to the controls. Similar 

results were seen when specifically the activated CD8+ cells’ percentage of the 

total CD8+ population was studied. The highest number of CD8+ cells were 

seen in the animals treated with low dose of sirolimus. These cells are normally 

one of the first effective responses for destroying the tumour cells. The 

preservation of these cells in higher number in the sirolimus treated group may 

point towards the ability of sirolimus treated animals to destroy the tumour cells 

more effectively than the CsA immunosuppression. Interestingly, in the high 

dose sirolimus animas groups these cells were not in much numbers and 
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perhaps it points towards the excessive immunosuppression as a much higher 

immunosuppressive dose was used in this group. 

For the Lewis animals, the Treg population was the lowest in the sirolimus low 

dose group and activated CD8+ cells population was the highest. These results 

again, may explain the reason for the better response against the tumour cells 

in the sirolimus arm of animals. 

The effects on CD8+ cells were most consistent in our flowcytometric data and 

also in line with the clinical observation of better tumour clearance in these 

animals. 

Normally immunosuppression with sirolimus has shown an increase in the 

number of Treg cells, but in our model the population of Treg reduced along with 

an increase in the number of CTLs.  Although this result may seem against 

most of the literature but one important difference in our model was that it was 

not simply a transplant model but the transplanted cells were malignant as well. 

As shown by Hope et al.(303), when the SCC were excised in KTRs, the Treg 

cells population also went down. The reason we might be seeing decline in the 

number of Treg cells might be due to the strong anti-neoplastic effects leading to 

reducing tumour load and thereby eliminating the stimulus to keep the numbers 

high of Treg cells by the tumour microenvironment. Not a lot is known as to why 

the Treg numbers reduce after tumour excision and further research is needed in 

this area.  

For the natural killer cells we did not find any meaningful differences for any of 

the treatment regime. 



Chapter	5-225	
	

There are a few limitations with our flow cytometric analysis. First of all, the 

results of the CsA may not be the true reflection of the actual lymphocyte count 

at the end of the study period. This is because of technical failure of the FACS 

machine at the beginning of the experiments and loss of a few samples from the 

Wistar animals with no immunosuppression. This also meant that by the time 

we were able to confidently do the flow cytometric analysis, the CsA treated 

animals had already finished four weeks of the experiments for a few weeks. 

The ideal time to look at the effects of tumour and immunosuppression with flow 

cytometry is immediately after the completion of four weeks of treatment 

according to the study protocol. Due to above mentioned reason CsA treated 

animals had a few weeks, without any treatment before they were euthanased 

for the flow cytometric analysis. This time might have caused the reversion of 

the lymphocyte count to baseline, which will not be the true reflection of the 

exact influence of tumour on the lymphocyte count. The results of the sirolimus 

and leflunomide are more reliable from this respect.  

The other possible limitation of the flow analysis could be the small number of 

animals in each arm. Some of the trends seen in our experiments as described 

above might have become clinically significant if we had big enough numbers. 

This may especially be true as the bioluminescent differences described in the 

previous chapter were far more drastic among different treatment arms and 

subtle but important changes in the various subpopulations of lymphocytes 

might need significantly bigger number to increase the power of our analysis.  

Finally, the ideal place to look for the immune effectors would have been the 

tumour microenvironment. This as we know has the most reflective population 

of lymphocytes. Such an analysis would be easily possible for the animals were 
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the tumour growth was good and by the end of experiment there were either 

palpable tumour or at least bioluminescent signals to enable accurate selection 

of tissue containing tumour microenvironment. But as all of the sirolimus treated 

and most leflunomide treated animals completely eliminated the tumour load 

such analysis could have become very subjective with lot of variations. Second 

best place to look for the lymphocytes would have been the regional lymph 

nodes but again they were only detectable in a very small proportion of rats. 

Hence to keep the analysis more objective and to minimise variability Wechose 

the splenic tissue as the source of these effectors of immune system. 
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Chapter 6  
CLINICAL CASES 
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6.1	 	 CLINICAL	CASES	
	

Previously mentioned case series/reports already pointed towards the feasibility 

of transplanting kidneys after ex vivo resection of tumours. With these results 

there was an indication to perhaps the best matching and immunosuppressive 

strategy.  

Based on the above-mentioned observations, we undertook transplantation of 

such restored organs in a controlled environment in Freeman Hospital, 

Newcastle upon Tyne.  

The clinical cases are divided into the benign and malignant.		

6.1.1	 	 Transplantation	with	kidney	removed	for	benign	
pathology	
	

The indications of nephrectomy due to benign causes are few. Most common 

causes include intractable haematuria, loin pain, refractory proteinuria to 

maximum medical therapy and iatrogenic kidney injury. Our case is presented 

below(305) 

6.1.1.1	 Case	report	
	

A 59-year-old male underwent a resection of a large retroperitoneal ‘tumour’, 

which involved the left colon for a pre-operatively diagnosed sarcoma. Final 

histology confirmed ‘‘Benign Fibromatosis’’ which is associated with an 

optimistic prognosis. The patients subsequently underwent a reversal of 

colostomy and intraoperatively sustained an iatrogenic injury to the left mid 

ureteric injury, which presented on the 10th post-operative day as loin pain and 
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sepsis. An initial nephrostomy and drainage of urinoma was performed followed 

by an unsuccessful attempt at antegrade and retrograde stent insertion. A 

defect measuring >4 cm was identified in the mid-ureter. A renogram confirmed 

a differential function of 41% on the left side and the patient’s glomerular 

filtration rate (GFR) was calculated at 68-ml/min/1.73 m2. 

The patient was counselled regarding the options of either nephrectomy 

followed by auto-transplantation (AT) or nephrectomy alone. The risks of both 

these options were discussed with patient in detail. The patient was not keen to 

pursue any reconstructive surgery and opted for a nephrectomy. We then 

discussed the possibility of ‘Altruistic domino donation’ with the patient. 

Permission for using the left kidney for potential transplantation was approved 

by UK Transplant (UKT) under the category of ‘‘domino donation’’ according to 

the Human Tissue Act(93) . 

A 70-year-old recipient on thrice weekly haemodialysis for 6-years was 

identified. The patient had ESRF secondary to hypertension and had 

concomitant ischemic heart disease. His mismatch was 1:1:1. This recipient had 

waited for 6 years for a cadaveric renal transplant and had no prospect of a live 

donor transplant. It would have been unlikely for him to receive a cadaveric 

transplant during his lifetime based on his performance status and co-

morbidities making him completely dialysis dependent for life. Both donor and 

recipient were scheduled for surgery on the same day and did not meet each 

other. An open nephrectomy was performed in view of the patient’s previous 

extensive open surgery and adhesions via a loin incision and the kidney flushed 

with cold preservation solution. The kidney was prepared for transplantation 

after a thorough examination by the transplant team (Figs. 1 and 2). 
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The donor organ was implanted into the right iliac fossa and the ureter was 

successfully anastomosed into the bladder over a stent. Post-operative 

recovery was unremarkable for both the donor and the recipient. Donor was 

discharged on 2nd post-operative day with creatinine of 1.25 mg/dl. Recipient 

had immediate graft function and creatinine on discharge was 1.53 mg/dl. The 

donor and the recipient have subsequently communicated anonymously with 

each other by letter and are doing well at 8-month follow-up. 

	

Figure	106	Left	kidney	after	back	benching.	Artery,	vein	and	ureter	demonstrated.	
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Figure	107	Left	kidney	after	reperfusion.		Ureter	being	anastomosed	over	the	JJ	stent.	

	

6.1.1.2	 Discussion	
	

Kidneys removed for small renal tumours have been successfully transplanted 

after ex vivo tumour resection with extremely low recurrence rates (55)(29). 

Kidneys removed for benign aetiologies are however not associated with any 

risk of tumour transmission. Transplantation with renal grafts from benign 

aetiologies can be potentially linked to the established concept of altruistic 

donation. With the ‘‘donor’’ being treated for their primary pathology with 

nephrectomy, such donations are regarded as Altruistic domino donation in the 

United Kingdom (UK) under Human Tissue Act (HTA). 

In current clinical practice the commonest indications for simple nephrectomy 

(SN) include intractable loin pain, renal artery aneurysm (58), ureteric injury 

(306) and refractory nephrotic syndrome (58). Auto transplantation (AT) can be 
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an option for these patients (excluding nephrotic syndrome) but on occasions 

this may not be the appropriate treatment in clinical situations such as extensive 

previous surgery, increasing risk of unsuccessful ureteric repair leading to post-

operative complications, medical co-morbidities or patient choice. Counselling 

of patients undergoing SN and recipients of these kidneys is extremely 

important. The recipient should be fully aware of the origin and quality of the 

organ. This technique has the advantage of favourable ischaemic times. Using 

this approach we successfully used the renal graft from our donor for 

transplantation. In normal clinical circumstances the graft would have ended up 

as a nephrectomy specimen and this recipient would have been continued to be 

on thrice weekly haemodialysis. Our approach was psychologically very 

rewarding for the donor who viewed this as a positive outcome from a surgical 

complication. Furthermore these organs should be transplanted locally as they 

may pose specific technical problems (short vessels, ureter, etc.) and 

transplanting them into local recipients may minimise the discard rates and 

potential risk of complications, a concept endorsed by NHS Blood and 

Transplant (NHSBT). We aim to highlight the importance of this new concept to 

urologists in the UK and worldwide as this could be a very important source of 

precious renal allografts worldwide. 

After the successful transplantation of this restored kidney and in the light of the 

available literature as mentioned earlier and promising results from our 

experiments we carefully selected suitable kidneys for transplantation after ex-

vivo resection of malignant tumours. 
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	6.1.2	Transplantation	with	kidney	removed	for	malignant	
pathology	
	

For transplantation of these restored organs we selected our recipients 

carefully, the information given to the patients was robust making sure that they 

understood the quality of the organs and the possibility of potential 

complications. 

The patients selected were elderly and high-risk from the transplant waiting list. 

These patients would not tolerate delayed graft function from normal cadaveric 

kidneys and were more likely to die from cardiovascular complication while on 

waiting list than the risks associated transplantation with these organs. 

Three patients with small renal cell carcinoma were identified. These patients 

were independently assessed by the urology teams and a decision to undergo 

radical nephrectomy was made totally independent of the possibility of 

transplantation. Once this decision was made these patients were approached 

for the possibility of donating these organs after ex vivo excision to which they 

readily agreed. The possibility of using the organs for transplantation had no 

bearing on the original decision of the type of cancer surgery. All these patients 

underwent staging CTs and baseline investigations. 
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Figure	108	CT	scan	of	a	donor	with	the	Left	exophytic	renal	tumour.	

	

Recipients were aged between 69-78 years with mean age of 72 years and had 

multiple comorbidities. They were explained in detail about the risks and 

benefits of such transplantation in detail before any decision to perform the 

surgery. We devised an information leaflet (see below), which was used as an 

additional tool to help these patients in understanding the procedure.  

 

	

	

Left	renal	tumour	
identified	on	CT	
abdomen	
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6.1.2.1	 	 Technique	
	

After the nephrectomy, the tumours were excised under direct vision +/- 

ultrasound guidance by an experienced urologist. The calyces were over sewn 

with 5/0 PDS and Surgicell and Tachosil was sewn into the defects as well. The 

implantation was as standard with particular attention at haemostasis.  

	

	

	

Figure	109	Excised	tumour	
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Figure	110	Back	benching	and	USS	to	assess	the	completion	of	resection	
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Figure	111	Kidney	following	repair	and	at	reperfusion	

	

	

The mean age of the three recipients was 72 years. One was taken off the 

deceased donor transplant list while other two were high risk as well and were 

unlikely to receive a kidney allograft from the deceased donor pool. The 

histology was clear cell in two while chromophobe carcinoma in the other with 

clear resection margins. One of the recipients had early post-operative renal 

vein thrombosis requiring graft nephrectomy at day 10. While the other two 

were dialysis independent with 18 month serum creatinine of 133 and 205 

µmol/L. One of the recipients had a urine leak, which was treated 

conservatively.  
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Both these patients were converted to sirolimus immunosuppression after the 

initial period on tacrolimus. The reason for not starting sirolimus earlier was the 

higher incidence of wound complications associated with it.  

There has been no evidence of tumour recurrence in these patients on the strict 

follow up. Both these patients remain off dialysis with good renal function, while 

in the absence of these kidneys they would have most likely had been still on 

dialysis.  
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Chapter 7  
FINAL DISCUSSION 
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7.1	 OVERVIEW	
	

Kidney transplantation still remains the best treatment for end stage renal 

failure; which is one of the most common chronic diseases. With the aging 

population and the increasing incidence of diabetes and obesity, the incidence 

of chronic renal failure is increasing as well, putting more pressure on the 

already stretched waiting lists for transplants. This situation is further 

compounded by the very success of transplantation, as it is becoming a much 

safer procedure meaning more elderly dialysis patients are now being 

considered for transplantation than ever before. This disparity has necessitated 

the need to look for new sources of organs for transplantation. 

In the past decade, the gold standard treatment for small renal tumours has 

changed from radical to partial nephrectomy. This is due to comparable 

oncological outcomes(85) and better long term eGFRs(45)(46). Despite this, a 

large number of patients still undergo radical nephrectomy for T1a tumours. 

These kidneys have been used in small limited series for transplantation after 

ex-vivo resection of the tumours. One of the first series looking at these 

transplants with restored organs was from Cincinnati, where Penn(55) reported 

on their data retrospectively. A perspective series by Nicol et al. (56) had 31 

cases of transplantation with kidneys with renal cell carcinomas after ex vivo 

resection. Since then there has been another 24 transplants again from 

Australia with no evidence of recurrence and good allograft function(307). Apart 

from these case series there have been multiple case reports with good results. 

So far there are close to 100 cases reported in the literature of such transplants 

from restored organs.  



Chapter	7-242	
	

Despite the fact that there has been only one potential recurrence(56), the risk 

of malignancy is real as these patients are immunosuppressed. There is no 

single postoperative immunosuppressive strategy evident from literature. The 

immunosuppression was not modified in a majority, while CsA / tacrolimus was 

substituted with sirolimus after 3 months. This was not due to any direct 

experiments showing its efficacy in preventing recurrence or tumour destruction 

in such restored organs, but due to its previously known antiproliferative 

properties.  

The main aim of our work was to test different immunosuppressive agents to 

answer this question directly and find the best agent for immunosuppression for 

these organs. There have been no direct experiments to look at the effects of 

different immunosuppressive agents on tumour growth in vivo in a transplant 

model.  

	

7.2	 	 SUMMARY	OF	FINDINGS		
	

7.2.1	 	 Overview	
	

An experimental model of rat tumour transplantation was developed. One of the 

most important reasons for using the rodent model was the fact that there was 

already a large body of literature on transplantation, immunosuppression and 

tumour behaviour in these animals. These animals are big enough to consider 

kidney transplantation as part of future work of my project, yet small enough to 
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study enough numbers to give sufficiently powered analysis for the multiple 

groups. 

The rat kidney tumour cells were transfected with luciferase to enable real time 

in vivo monitoring of the tumour growth. Once successful transfection was 

confirmed by in vitro and pilot experiments, two different strains of rats (Wistar 

and Lewis) were selected for per protocol experiment. Two different strains of 

rats behaved as well matched and poorly match transplants groups after 

injection of tumour cells. These differences were important as they helped us 

study the effects of matching and role of rejection on transplanted tumour cells.  

Any success with transplanting restored organs in immunosuppressed hosts will 

rely very heavily on the choice of immunosuppression. We looked at the CNIs 

as the standard immunosuppression (majority of the patients these days are on 

Tacrolimus- a calcineurin inhibitor). This was compared directly with sirolimus 

and leflunomide as the agents having anti neoplastic properties as well as 

immunosuppression. 

7.2.2	 	 Role	of	matching	and	rejection	
 

The immune system plays a central role in the success and failure of the 

transplant. One of the biggest barriers in human organ transplant was to 

suppress immune system fully to enable longevity of the transplanted organs. 

This was achieved years ago and immunosuppression has come a long way 

from the days of total body irradiation and cyclophosphamide, but still remains a 

rapidly evolving science. Where on one hand the immune system is a big hurdle 

for the successful transplantation, on the other hand it plays a pivotal role in 
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preventing tumour development and progression. In transplant recipients a fine 

balance between these two mechanisms is very important for the patients as a 

whole. 

As already discussed, the organs are “primed” to trigger a strong immune 

response after the trauma of retrieval(141). On transplantation of these organs, 

the first line of attack is from the non-specific innate immune cells – NK cells, 

macrophages and complement system. The adaptive immune response is 

stronger, more important and lasting in damaging these organs after the initial 

attack from the innate system. These cells recognise both MHC class I and II 

molecules and both of them play a complementary role in transplant 

rejection(193–195,197). The more the differences between the donor and the 

recipient, the stronger the immune response and stronger the rejection. Hence 

generally we aim for less mismatching for better long-term outcomes.  

Tumour cells are also immunogenic to a varying extent. For tumours to develop 

and flourish, one of the prerequisites is to evade the host immune response. If 

the tumour associated and tumour specific antigens are recognised by the 

innate and adaptive immune system, the tumour cells expressing them are 

more likely to be destroyed. Tumours have various pathways of 

“immunoediting” to prevent elimination by strong immune response(199,200). 

Renal cell carcinoma cells are classified as regressors as they are strongly 

immunogenic(202,203) and hence can be suitable targets by the immune 

system.  

This interplay between the immune system, allograft and transplanted tumour 

cells was the basis of our hypothesis of using immune system to clear the 
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tumour load should a recurrence occurs in transplanted organs after ex vivo 

resection of tumours. 

7.2.2.1	 Rejection	in	controls	with	no	immunosuppression	
	

First of all, the tumour cells were injected into both Wistar and Lewis animals 

without any immunosuppression. Although such a scenario is not likely to be 

replicated in human transplant setting, these groups gave a lot of insight into the 

role of rejection. In the absence of any immunosuppression both the well-

matched and poorly-matched animals rejected the tumour load. This rejection 

was very effective and strong when compared to the later experiments on the 

animals receiving immunosuppression. Again when both these groups were 

compared with each other the rejection was significantly stronger in the Lewis 

(poorly-matched) rats than the well-matched Wistars. These difference were in 

line with the hypothesis that more the mismatch on MHC loci, the stronger the 

immunological response. All the Wistar rats rejected all tumour cells with two 

weeks of study period while Lewis rats only took one week to achieve this. 

7.2.2.2	 Rejection	in	immunosuppression	groups	
	

Rejection was found to play an important role in the rats receiving CsA 

immunosuppression. When the immunosuppression was stopped after two 

weeks of continued treatment, the transplanted tumour cells were exposed to 

the host immune response.  As opposed to the behaviour of these transplanted 

tumours under CsA immunosuppression, where these cells continued to 

flourish, when the treatment was withdrawn there was a sharp reduction in the 

bioluminescent signals in both the well-matched and poorly-matched groups. 
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Theoretically this was a direct proof of our hypothesis again. When the 

immunosuppression was withdrawn the host immune response was quite 

effective in causing the destruction of the foreign tumour cells.  

These effects of rejection were not seen in the other immunosuppression 

groups. The reason was effective elimination of the tumour load to a great 

extent (or completely) by the anti-neoplastic properties of these newer agents 

(sirolimus and leflunomide). 

 

7.2.2.3	 Role	of	matching	in	rejection	of	tumours	
 

The role of donor recipient matching was best seen in the CsA group again, 

both in the treatment continue and treatment withdrawal groups. In the 

treatment continue group under the influence of CsA, towards the end of the 

study period there was exponential growth of the transplanted tumour cells. This 

growth although very strong in both the strains, was significantly more in the 

Wistar animals towards the end of the study period. With no statistical 

differences in the initial tumour load this could be explained due to wider MHC 

differences in Lewis rats to the injected tumour cells. 

Similarly, after the withdrawal of the immunosuppression, half of the Wistar 

animals were able to reject the tumour cells. This was in contrast to all the 

animals completely eliminating the tumour load in Lewis rats. With all the other 

experimental variables being same, this effect is due to poor matching. 

Considering these finding, from a clinical point of view, when restored kidneys 

after ex vivo resection of tumour are transplanted we can potentially employ 
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hosts immune system in cases of any future recurrence of tumour. Unlike the 

normal situation of trying to look for the best possible MHC match between the 

donor and recipient, in these transplants we might want to transplant across 

less than ideal tissue match. Thus, if there were any tumour recurrence or de 

novo tumour development, then withdrawal of immunosuppression would be 

helpful in the elimination of any possible distant (lymph node) spread via 

recipient’s immune system. 

7.2.3		Role	of	immunosuppression	
	

There have been significant advances in the past decade in the treatment of 

renal tumours. These days the proffered treatment for the T1a (<4cm) tumours 

is partial nephrectomy. This is because of similar oncological outcomes(308–

310) and preservation of the renal function by preserving the nephron mass. In 

urological patients partial nephrectomy can be the treatment of choice but the 

stakes will be very high if the kidneys removed for small renal cell tumours were 

to be transplanted after ex vivo resection in hosts that are immunosuppressed. 

Hence, establishing the role of immunosuppression in a tumour transplant 

model was our other main objective. 

With standard CsA immunosuppression Wefound that the tumour has continued 

to grow and such growth was very rapid towards the end of study period most 

probably due to neo-angiogenesis. This effect was seen in both well-matched 

and poorly matched groups. This is in line with the current available evidence 

on the effects of standard immunosuppression on cancer development. Not only 

does any immunosuppression takes out the protection provided by the immune 

system but also there is evidence that CsA can lead directly to cancer 



Chapter	7-248	
	

development due to aberrant production of cytokines regulating tumour growth, 

metastasis and angiogenesis(210). 

The effects of standard immunosuppression by CsA were directly compared 

with the newer antineoplastic medication. Sirolimus is licenced for use in renal 

transplantation and has antineoplastic effects. Wetested a low and a high dose 

of this agent. With both doses, in both strains (Wistar and Lewis) there were 

complete elimination of cancer cells within the study period. The effects were 

slightly stronger with higher dose but still very equally effective in the low dose 

regimens.  

Similar effects, although relatively less dramatic were seen with leflunomide. 

These animals showed continued reduction in tumour load and by the end of 

study period more than half of the animals had rejected their tumour load fully, 

in contrast to the CsA immunosuppression where there was an exponential 

increase in the tumour growth.  

These results point favourably towards sirolimus as quite possibly the drug of 

choice after transplantation with these restored organs. 

7.2.4	Flow	cytometry	
	

The flow cytometry was performed to look at the direct effect of tumour cells 

transplantation and role of different immunosuppressive agents at immune 

effectors level. Welooked at non-specific effectors of immune system that have 

a direct role in tumour recognition and elimination-Natural killer (NK) cells(246–

249). These cells recognise the tumour cells or virus infected cells which under 

express the MHC class I molecules (missing self)(250,251). The other cells 
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looked at were the effectors from the adaptive immune system. These cells are 

important both in a transplant situation and also have an important role in cases 

of tumour development. CD4+ helper T cells exert their role by producing 

number of cytokines that initiate graft rejection by stimulating more direct 

effectors(234–236). CD8+ T cells are normally found in small numbers in non-

rejecting graft but their number increase in cases of acute rejection and also in 

the tumour microenvironment, highlighting their significance. Lastly, Welooked 

at Treg cells. There is a lot of literature pointing towards their role in tolerance 

and tumour behaviour.  

Before analysing the response of immune system Welooked at the control 

animals with no tumour or immunosuppression to establish a baseline. The 

analysis of both Wistar and Lewis strains revealed that there were marked 

differences in the distribution of T cells among them. The absolute number of 

CD4 cells was significantly higher in Wistar rats but the number of activated 

CD4 cells was more in the Lewis rats. Although, the reason for this is not very 

clear it might explain more powerful rejection by the Lewis rats. Similarly the Treg 

cells were more abundant in Lewis rats. With CD4 cells having a more indirect 

role in activating the immune system and Treg having a “controlling” effect of the 

immune response these finding could be important in tumour control. The rest 

of the cell populations (CD8, activated CD8 and NK cells) were similar between 

both these strains.  

In the immunosuppressed animals, there were subtle differences in the cell 

populations among different agents as well. For Wistar rats, the number of 

CD4+ cells were the lowest in sirolimus low dose treatment arm as compared to 

the CsA group while the activated CD4 cells population was the highest in the 
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sirolimus low dose group. For these animals there were no apparent differences 

in the populations of NK and Treg cells. 

Activated CD8+ results were more consistent. All the animals had higher 

proportion of CD8 cells when compared to the controls. This will be due to their 

primary role in the acute rejection and tumour immunology. Similar results were 

seen when specifically the activated CD8+ cells’ percentage of the total CD8+ 

population was studied. The highest number of CD8+ cells were seen in the 

animals treated with low dose of sirolimus. These cells are normally one of the 

first effective responses for destroying the tumour cells. The preservation of 

these cells in higher numbers in the sirolimus treated group may point towards 

the ability of sirolimus treated animals to destroy the tumour cells more 

effectively than the CsA immunosuppression. Interestingly, in the high dose 

sirolimus animals groups these cells had reduced numbers and perhaps this 

points towards the excessive immunosuppression, as a much higher 

immunosuppressive dose was used in this group. 

For the Lewis animals, the Treg population was the lowest in the sirolimus low 

dose group and activated CD8+ cells population was the highest. These results 

again, may explain the reason for the better response against the tumour cells 

in the sirolimus arm of animals. 

The effects on CD8+ cells were most consistent in our flowcytometric data and 

also in line with the clinical observation of better tumour clearance in these 

animals. 

Normally immunosuppression with sirolimus has shown an increase in the 

number of Treg cells, but in our model the population of Treg reduced along with 
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an increase in the number of CTLs.  Although this result may seem against 

most of the literature but one important difference in our model was that it was 

not simply a transplant model but the transplanted cells were malignant as well. 

As shown by Hope et al. (303), when the SCC were excised in KTRs, the Treg 

cells population also went down. The reason we might be seeing a decline in 

the number of Treg cells might be due to the strong anti-neoplastic effects 

leading to reducing tumour load and thereby eliminating the stimulus to keep 

the numbers high of Treg cells by the tumour microenvironment. Not a lot is 

known as to why the Treg numbers reduce after tumour excision and further 

research is needed in this area.  

7.3	 Clinical	implications		
	

Chronic renal failure is one of the most common chronic diseases and for the 

majority of the patients renal transplant is the optimal treatment. Not only does it 

improve the quality of life but it also has survival benefits(15–17). Unfortunately, 

the prevalence of disease is such that we still do not have enough organs 

available for transplantation. This is despite recent increase in the numbers of 

available organs, via the use of more and more marginal organs, increasing 

DCD donation and a general increase in live donors. Thus there is still a need to 

look at new sources to increase the number of available organs for 

transplantation.  

Use of kidneys for transplantation after ex vivo resection of small renal cell 

tumours may not seem practical but there have been a few cases where this 

type of transplantation has either happened deliberately or inadvertently. The 

first report was by Penn(55) in 1995 from Cincinnati where he looked at their 
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database for types of transplantation and reported 14 such transplants with no 

recurrence. Longer follow up by Buell et al. (54) also did not report any tumour 

recurrence in 2005. Subsequently, Nicol et al. reported a series where a total of 

41 such organs were transplanted after ex vivo resection. Off these 10 were 

benign tumours and the rest were malignant. They also reported excellent 

results with only one recurrence 9 years after the original transplant. Notably 

this recurrence was away from the site of original resection. All these reports, 

although very encouraging, were done at a small and well controlled 

environment. There was no mention of any specific immunosuppressive 

strategies post operatively.  

With around 5000 RCC diagnosed every year in the UK and the majority of 

them being T1a tumours, potentially there is a large source that can be tapped 

for precious organs. Although, partial nephrectomy is now considered the 

treatment of choice for these small cancers, there is clear evidence both 

nationally and also from our local regional urology referral centre (section 

1.4.4.1) that a large proportion of patients with small renal tumours still undergo 

radical nephrectomy(53). This means these radically resected kidneys can 

potentially be transplanted in selected patients. The biggest hurdle of course is 

the fact that the transplant recipients are immunosuppressed thus high risk of 

developing recurrence with standard immunosuppression. Our study was aimed 

at looking at the role of using newer agents to better tailor the 

immunosuppression after such transplantations.  

We have shown quite clearly in the animal model that sirolimus was best at 

destroying the transplanted tumour load. This effect was independent of the 

level of matching between the donor and the recipients. Sirolimus is already 
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licenced for use in transplant and there is evidence to support its use beyond 

the initial few months in special situations if not in all cases(121,225–227) in 

order to reduce CNI induced nephrotoxicity or due to sirolimus’ role in 

preventing skin cancers. Thus, clinically if these kidneys are transplanted then 

the patients should be electively converted to sirolimus immunosuppression. 

The other finding from our study was the role that host’s immune system played 

in rejecting the tumour load once the immunosuppression was stopped. 

Clinically, this can be potentially important in rare situations of recurrence after 

transplantation of such organs. In cases of recurrence, the patients can undergo 

transplant nephrectomy and simply stopping the immunosuppression can be 

enough to stop any microscopic spread of the donor-derived tumour. For this to 

happen effectively, extrapolating from our experiments, the matching between 

the donors and recipients should be less than ideal. This will make any donor 

derived malignancy more immunogenic and thus prone to be acutely rejected.  

With initial encouraging results from the literature and using sirolimus with a 

degree of mismatch between the donor and recipient, transplanting these 

organs can become a very real possibility at a larger scale.  

Of course the most important factors to consider before any of these organs can 

be transplanted are patient selection and consenting. 

Although it might seem a big ethical dilemma to offer an organ removed for 

cancer from one patient and then offer it for transplantation to another. But 

when we consider that some of the elderly and high risk patients on the waiting 

list have very little chance of getting an organ for transplantation and the risk of 

dying while waiting is quite high, the situation becomes quite clear. According to 
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many reports the risk of dying while being wait listed is between 6-10% per 

year(228–230). This is also dependent on the age of the patients listed, with 

worsening survival with an advancing age. Patients becoming unfit and inactive 

on the waiting list complicates the situation as the risk of dying increases even 

further. According to an analysis about 30% of deaths on waiting list occur in 

patients who had inactive status(231). Thus an elderly patient who has to wait 

for longer (blood group O and B) the risk of dying can be 50% over five 

years(232). This is far more than any risk associated with transplanting these 

restored organs. Thus elderly high-risk patients who would otherwise be unlikely 

to get a transplant from the normal waiting list will benefit the most from such 

restored organs. 

It is of paramount importance to consent both the donors and recipients without 

any bias. The decision to do partial or radical nephrectomy should be purely 

clinical and must be made in discussion with the patient after discussing the 

pros and cons of each procedure. Potential of transplanting the organ after ex 

vivo resection should have no bearing on what type of treatment is offered to 

the RCC patients. If for some reason either clinically or due to patient’s choice 

the radical nephrectomy is being performed only then should the “donors” be 

asked for their consent using these organs for transplantation. 

For recipients as well the consenting process must be very vigorous and it must 

be ensured by the senior clinicians that the recipients fully understand the 

source of these organs, the small nephron mass to start with and the potential 

for recurrence and metastasis of tumour. Only when everyone is fully satisfied 

can these transplants go ahead.  
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After transplantation, perhaps these patients would need routine US monitoring 

of the allografts to pick up any early signs of recurrence, all in order to reduce 

any potential morbidity associated with a recurrence. 

7.4	 Limitations	to	the	study	
	

Perhaps the central limitation to our study would be the use of rat kidney tumour 

cells in a rodent transplant model. To extrapolate the results from animal 

studies onto human scenario, always has its inherent risks of not being a true 

representation of real life situation. But with a large body of work done on rats 

and mice both on immunology, transplantation and tumour behaviour this was 

the closest model to test our hypothesis.  

With sirolimus immunosuppression in the treatment withdrawal arm, the effect 

on tumours was so strong that there were hardly any tumour cells left by the 

time Westopped immunosuppression to look at the role of rejection. Perhaps a 

higher initial tumour load would have meant that there were still significant 

number of cells present at the time of withdrawal to study the effects of rejection 

better. But this would mean that Wewould have to increase the tumour load 

across all arms of the study period for the results to be comparable. Plus there 

was no way of us predicting such a strong response with sirolimus before the 

start of experiments. 

With flow cytometry, the results of the CsA may not be the true reflection of the 

actual lymphocyte count at the end of the study period. This is because of 

technical failure of the FACS machine at the beginning of the experiments and 

loss of a few samples from the Wistar animals with no immunosuppression. 

This also meant that by the time we were able to confidently do the flow 
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cytometric analysis, the CsA treated animals had already finished four weeks of 

the experiments for a few weeks. This time might have caused the reversion of 

the lymphocyte count to baseline, which would not be the true reflection of the 

exact influence of tumour on the lymphocyte count. The results of the sirolimus 

and leflunomide are more reliable from this respect.  

The other possible limitation of the flow analysis could be the small number of 

animals in each arm. There were very clear differences in bioluminescent 

signals under different treatment conditions but only subtle changes in the 

various subpopulations of lymphocytes. Perhaps with bigger numbers these 

differences would be more pronounced. This however would have come at the 

cost of using significantly larger number of rats with no guarantee that there will 

be any clear answer.  

Finally, the ideal place to look for the immune effectors would have been the 

tumour microenvironment or regional lymph nodes. The reason for choosing 

splenic tissue was to ensure consistency as not all the animals were left with 

any residual tumour and regional lymph nodes were only found in a very small 

proportion of the subjects. Hence to keep the analysis more objective and 

minimise variability Wechose the splenic tissue as the source to study the 

immune system. 

	

7.5	 Future	work	
 

The main role of this project was to prove the concept of using acute rejection to 

eliminate the tumour load and the role of level of matching on the strength of 
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rejection. The other aim was to determine the best immunosuppressive 

medication in tumour transplant scenario.  

The future work can take this project forward by injection the tumours into the 

renal subscapular regions followed by kidney transplantation.  This will be 

followed by using Sirolimus as the agent with antineoplastic properties at low 

dose (the best immunosuppressive agent with most effective dose based on our 

work). The biggest benefit of this project will be not only to look at the effect of 

sirolimus on the tumour but it will also determine the acute rejection episodes in 

the renal parenchyma as it is a known weakness of sirolimus. This will mimic 

the transplantation situation more closely as opposed to the subcutaneous 

injection. 

A further step proposed is to use nude or humanised mice with human kidney 

tumour cells. This will resemble the human transplant scenario even further. 
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Renal transplantation confers improvement in quality of life and survival when compared to patients on dialysis. There is a
universal shortage of organs, and efforts have been made to overcome this shortage by exploring new sources. One such area
is the use of kidneys containing small tumours after resection of the neoplasm. This paper looks at the current evidence in the
literature and reviews the feasibility of utilizing such a source.

1. Introduction

Renal transplantation is the optimal mode of treatment for
the patients with end stage renal failure. One of the major
problems for transplantation is the discrepancy between
the donor and recipient numbers with far less donor than
recipients. As a consequence, patients with renal failure have
to wait for a long time before they can be offered an allograft.
This situation is especially worse in some countries like
Japan, with small cadaver programme where the average
waiting time is 16 years [1].

A significant number of patients die from the compli-
cations of chronic renal insufficiency on long-term dialysis
before they get a transplant. This situation is more important
especially in cases where chronic kidney disease has lead
to other medical problems and patient either die of the
complications or become too unwell for a transplant [2].
Various measures including the use of marginal donors
and use of kidneys from Maastricht category II non-heart-
beating donors (NHBD) [2] have been utilized to increase
the donor pool along with measures to improve and prolong
graft function and survival. In addition, increasingly elderly
donors are used, therefore increasing the risk of renal
malignancy.

One potential area, first described by Penn [3] has been to
transplant kidneys after ex vivo resection of small tumours.

This was a very radical idea, because firstly, there has
been evidence of transmission of donor-derived malignancy
into recipient from the very early days of transplantation
[4]. Secondly as a general rule, organs from donors with
malignancies have not been used for the same fear with
some exceptions such as central nervous system tumours [5].
Surprisingly-outcomes of the patients described in Penn’s
series were not as bad as could have been anticipated.

The contemporary experience with partial nephrectomy
and its success for the treatment of small renal cell cancers
has lead to extrapolation of similar technique for the
management of allograft malignancy [6] albeit sporadically.

The purpose of this paper is to summarise the current
evidence with regards to the utilization of kidneys with
tumours for transplant and the use of conservative surgery
for allografts where possible.

2. Material and Methods/Review Criteria

Pubmed, medline, EMBASE and CINHAL were linked
searched for “renal tumour/tumor,” “kidney tumour/tumor,”
“allograft tumour/tumor,” “nephron sparing surgery,” “par-
tial nephrectomy,” and “transplant” to indentify potentially
relevant articles. Articles concerning the use of kidneys
after resection of renal tumour for transplant and partial
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nephrectomy of allograft for renal tumours were selected.
References of the selected article were also searched to
identify further articles of interest.

3. Results

From the above-mentioned criteria of the literature search
the following different types of case reports/case series were
identified which are discussed separately.

3.1. Use of Kidneys after Resection of Tumours. Normal
practice when confronted with a tumour of kidney on
procurement is to return it to the donor and not use any
other organs [7]. In cases of deceased donors it meant that
the contralateral kidney cannot be used as well because of
the concerns of micro metastasis and bilaterality of some of
the renal cell carcinomas (RCC).

Penn [3], reviewing the Cincinnati transplant tumour
registry (CTTR), described a total of 14 cases of ex vivo
resection of small renal cell cancers detected incidentally
followed by transplantation. Frozen section was employed,
and where margins were clear, kidneys were used although
it is not clear whether all of the tumour bearing kidneys
underwent frozen section. Of the cadaveric donors, the
contralateral kidneys, all of which appeared healthy, were
transplanted as well. Apart from these cases of renal carci-
nomas, there was one case of oncocytoma within the kidney
which was transplanted after resection. Of all the cases where
the tumour was adequately resected before transplantation
there was no recurrence in a followup ranging up to 210
months.

Buell et al. [7] presented 14 cases of transplantation after
renal tumour resection from the same database as used by
Penn. No recurrence has been noted up to a followup of
200 months. Median tumour size was 2.0 cm (range 0.5–
4.0 cm) and all were of low histological grade. They have
described two further cases since the initial data review with
no recurrence and good graft function.

A similar case series from Australia [8] only included
elderly recipients or those with significant co morbidities and
high chance of death without transplantation. Furthermore
the recipients had high levels of HLA mismatching with the
donors and were selected on the basis that if there was a
recurrence to occur, stopping immunosuppression may help
in tumour lysis by recipient’s immune response. 41 patients
received kidneys after ex vivo resection of tumour of which
10 were reported as benign lesion on histopathology. One
patient returned to dialysis after 30 months. 4 patients died
of unrelated causes. There was only one recurrence noted 9
years after transplantation out of the remaining 30 patients.
Notably this tumour recurrence was at a distance from the
initial resection site, this therefore may not be a tumour
recurrence but another primary within a “field” change renal
tissue. The patient refused any further treatment, and the
lesion has grown 0.2 cm in 18 months since diagnosis. In
a followup study on these patients this group has recently
published long-term outcomes which are significantly better

than wait-listed patients on dialysis and are comparable to
the live unrelated transplants [9].

Mannami et al. [10] from Japan published a series
of 42 “restored” kidneys from live donors. Eight donors
with small renal cell carcinoma (<3.5 cm) underwent donor
nephrectomy and ex vivo resection of the tumour followed by
transplantation of the kidney. Five patients were alive, three
with functioning grafts, two died with functioning grafts
from unrelated caused, and one was lost to followup. No
tumour recurrence has been noted in any of these patients.
Another 8 patients had donor nephrectomies which had
benign diseases of which 5 had partial resection and kidney
used for transplantation. Three recipients are alive with
functioning grafts, while four have gone back to dialysis
(after 3,18,51,73 months). One recipient died of unrelated
pathology.

There have also been 6 case reports [11–16] of live related
kidney donation when a tumour was detected incidentally in
or ex vivo and the kidney was transplanted after resection.
No recurrence has been noted in any of these cases with a
followup of up to more than 10 years.

3.2. Partial Nephrectomy for Tumours Diagnosed after Trans-
plantation. Renal cell carcinoma represents around 4.6% of
all the tumours in allograft recipients with only 10% of these
occurring in the allograft itself [3].

The other main subgroup is when a tumour was detected
after transplant. Again the standard practice here has been
to perform transplant nephrectomy [17] with the patient
invariably returning to dialysis and normally being put on
a waiting list for another transplant if feasible.

Until now, more than 50 cases of allograft renal cell
tumours have been described in the literature of which at
least 35 cases have had nephron sparing surgery (NSS) for
their allograft tumour [6, 11, 18–36]. Tumour sizes have
range, from 0.5 to 4.0 cm although there have been two
case reports of larger (6–8 cm) tumours all being successfully
treated with NSS [18, 19]. Postoperative followup is from
one month to more than 10 years with one recurrence 5
years after NSS in renal allograft [37]. This was in a 74 year
old recipient five years after initial transplant. A 2.4 cm RCC
was incidentally detected without any evidence of distant
metastasis. It was treated with radical nephrectomy and
patient has been disease free on hemodialysis.

3.3. Contralateral Transplanted Kidney with a Renal Tumour
in Cadaveric Donor. These kidneys again are normally not
used as RCC can be bilateral especially the papillary subtype
[38]. Penn [3] has described 14 cases in which the con-
tralateral kidney was transplanted from patients with renal
tumour. One patient had recurrence in the allograft which
was removed for rejection. This patient died 75 months after
transplantation from a de novo cancer of one of his own
kidneys. The remaining patients did not have any recurrence
with a followup ranging from 0.5 to 153 months.

Nicol et al. [8] described 2 similar cases with no
recurrence. Barrou et al. [38] has described a case of two
allograft recipients from a single donor with tubulopapillary
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tumour (17 mm) in the right kidney; only the left kidney was
utilized for transplantation. Shortly after transplantation, the
recipient underwent an ultrasound (US) examination of the
allograft which did not reveal any tumour. 3 months later
a biopsy was done for rejection which revealed a poorly
differentiated tumour and the patient underwent radical
allograft nephrectomy. No additional chemotherapy was
given apart from discontinuation of immunosuppression
(prednisolone and azathioprine). Lymph nodes that had
been noted to be enlarged on CT scan disappeared two
month after nephrectomy. The patient underwent re trans-
plantation two years later and was disease free and dialysis
independent at 3 year followup. Another patient received the
heart transplant from the same donor but died from bony
metastasis from the renal cell carcinoma.

3.4. Accidental Transplantation. In at least 4 cases [3, 13,
20, 39] there have been accidental transplantation of RCC
mistaken as a benign pathology on procurement. Partial
nephrectomy/enucleation in all these cases was performed
before transplantation with adequate resection margins.
Routine histopathology revealed the resected tumour to be
malignant. All recipients retained the allograft because of
complete excision of the tumour and were kept under close
follow-up with no recurrence so far.

The cases where there have been transplantation of
tumour, either partially resected or unrecognized at the time
of transplant have resulted in disastrous outcomes [3, 38].

3.5. Miscellaneous. Manammi et al. [10] reported a series
of 8 patients who underwent nephrectomy for a distal
ureteric transitional cell carcinoma (TCC). One patient had
a recurrence of TCC after 15 months and was offered graft
nephrectomy but opted for partial resection of ureteric
tumour to prevent returning to dialysis. He died three years
after partial resection from a squamous cell carcinoma of
lung with liver metastasis. His TCC also had squamous
metaplasia and a DNA study to determine exact origin
of primary tumour could not be established because of
inadequate tissue samples. The remaining patients were
either alive with functioning grafts or died of unrelated
causes.

3.6. Opinion of Patients and Transplant Specialists. Trans-
plantation of kidneys with cancers is a novel idea not only
among patients but also among the transplant community.
To be able to exploit this potential donor pool it is of utmost
importance that both the health care specalists; transplants
surgeons and nephrologists and the patients both donors
and recipients are comfortable with the idea of using such
kidneys. To determine this, structured questionnaires were
sent to focus group of patients on the North East renal
transplant waiting list, postnephrectomy patients for small
renal cancer, nephrologists and transplant surgeons in the
UK [40].

Results are shown in Table 1 and have a generally high
response rate. Those respondents that had lost their kidney,
removed for tumour, had the highest consent rate and

Table 1

Respondents Response rate
Support use of
kidneys

Potential recipients on
waiting list

97% (113/116) 59% (67/113)

Previous nephrectomy
(potential donors)

100% (15/15) 93% (14/15)

Nephrologists 58% (94/161) 78% (73/94)

Transplant surgeons 66% (43/65) 72% (31/43)

patients potentially receiving such kidney the lowest. The
transplant surgeon and nephrologists had views somewhere
in between.

This survey was done in UK from where there have been
no case reports of using organs after removal of tumour and
but still the response was largely favourable. Given that since
this survey there has been an increase in total number of such
organs being utilized, one can extrapolate that current belief
may be more favourable.

3.7. Role of Immunosuppression. One of the worries about
transplantation of tumour affected kidneys is the potential
of tumour recurrence and growth in state of potential
immune inattention due the immunosuppressive therapy.
Renal cell carcinoma is known to be an immunogenic
tumour [21] but in the presence of immunosuppression, if
there was any transplantation of tumour cells in the host,
then the potential of continued growth will be higher in
a host with a compromised immune system. Furthermore,
immunosuppression in itself has been known to increase the
incidence of de novo malignancy [41, 42]. Because of these
concerns, an immunosuppressive agent with no potential
to increase de novo malignancy and better still to have
antitumour activities would probably be ideal. Rapamycin
has shown some promise as being a protective agent against
RCC progression [21, 43, 44].

4. Discussion

Incidence of RCC has increased in Western countries in
the last few years owing to the widespread use of US and
CT scanning [45, 46]. Most RCC are now picked up at an
early stage on investigations done for other reasons [47].
Furthermore the incidence of RCC in allografts will continue
to increase as older people donate organs and graft survival
is improved by better immunosuppression. Longitudinal
studies have shown that many small tumours have a slow
growth pattern with low metastatic spread in tumours of
<3 cm [48, 49]. Autopsy studies have shown that RCC are
present in 1%–20% of patients dying from unrelated cases,
meaning that many of the tumours will not prove to be
clinically significant in the course of patient’s life [50, 51].

The gold standard treatment of resectable renal cell
carcinoma has been radical nephrectomy. Recent evidence
has changed this practice dramatically as survival after
radical nephrectomy (RN) and partial nephrectomy (PN)
has shown to be comparable [52]. Favourable outcomes
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have been observed after NSS for <4 cm RCCs and RN has
been described as “surgical overkill” [53] for these tumours.
Furthermore, local recurrence after NSS has been reported
to be <5% with recurrences mostly associated with large and
multifocal tumours.

A significant risk of dying in patients on dialysis partic-
ularly in older patient has been one of the driving forces to
increase the number of kidney donors. Renal transplantation
seems to confer a substantial survival advantage over dialysis
in patients with end-stage renal failure [2]. A significant
number of patient accepted for dialysis are older patients,
who have a mortality risk of 25%. With longer waiting times
for a transplant, it is inevitable that many of the patients will
die before they can receive a transplant which would have
improved their quality of life and longevity [2]. Furthermore
16% to 23% of suspicious lesion resected from kidneys are
either benign or of low malignant potential [53–55] and
not using these kidneys with small tumours after partial
nephrectomy for transplantation seems wastage of precious
organs when one considers the benefits of transplantation
over dialysis.

A suspicious lesion found at multiorgan retrieval should
have an excision biopsy and histological confirmation of
clear margins before any of the organs can be transplanted.
A malignant lesion in the kidney when unrecognized and
transplanted continues to grow under the immunosup-
pression carries high risk of metastasis and can result in
fatal outcome. If the biopsy confirms clear margins with
favourable histology then these organs could be used for
transplantation as risk of recurrence is very low. Situation is
more complex when it comes to using restored organs from
live (related/unrelated) renal cell carcinoma patients. Major
difference being that these are live cancer patients first and
therefore must never be treated primarily as potential organ
donors to prevent any bias in treating their primary problem
which may lead to provision of less than optimal treatment
and ultimately harm to these patients [8, ed]. This is shown
by Takahara et al. [56] in their review of Mannami et al. series
concerning ureteric carcinoma patient, where adherence to
standard practice for treating these tumours was not prac-
ticed with disastrous consequences. With changing trends,
radical nephrectomy is now regarded as an alternate standard
of care to partial nephrectomy for T1a tumours when partial
nephrectomy is not technically feasible. This is due to the
comparable oncological outcomes after partial nephrectomy
and evidence that radical nephrectomy is an independent
predictor of low GFR. A positive outcome for a recipient
can never justify harm to a live donor; on the contrary, for
a transplant with a live donor to be regarded as a success
means that both the recipient and the donor have done well
[57]. Live related donors in Nicol et al. series were given
the options of observation, radical or partial nephrectomy
without any mention of the possibility of use of organs for
transplantation. Only after the patients had decided to opt
for radical nephrectomy possibility of domino donation was
discussed. This approach has the benefit of making sure that
patients make their own decisions without any pressure from
clinicians. Other important factor is to make sure that beliefs
of the clinician do not affect patient’s treatment choices.

Importance of detailed informed consenting cannot be over
emphasised for the recipients of such restored organs. All the
relevant information especially of the origin of the organ and
potential of recurrence and associated risk must be discussed
fully and patients understanding checked.

Routine followup of the patients with annual US have
been suggested to make sure any recurrence is diagnosed as
early as possible. Tumours have been detected at early stage
with better outcomes because of regular followups. If one
kidney is found to have a tumour it is important that the
other kidney is closely followed up. It is easier in the live
donor setting when the donor can be carefully followed up
but in cadaveric donation there has to be a central database
for tracking the contralateral kidney [22] which might be
transplanted into a recipient in a different unit.

Immunosuppression is essential after transplant and
unfortunately this has been associated with the higher
incidence of cancers in recipients as opposed to the general
population [42]. Certain newer immunosuppressive agents
have anti tumour [58] activity and their use can, in theory
not only reduce the chances of recurrence but they can also
be used to treat patient should a recurrence occur.

Furthermore Human Tissue Act 2004 [59] that covers
the use of organs for transplant in the UK allows anyone
to be a donor including live related and unrelated (altruistic
donor) provided there is adequate consenting. This means
that donation can also occur from patients suffering from
small renal cell carcinoma who have radical nephrectomy as
primary treatment provided measures are taken to ensure
that these patients are treated appropriately in the first place
and both donor and recipients had given informed consent.

5. Conclusion

To increase the donor pool new sources have to be exploited.
Use of kidneys after tumour resection seems a feasible source.
There are several important issues in using such marginal
and potentially dangerous organs; patients should have com-
plete understanding of the implications of the type of organ
they are donating and receiving, good surgical technique and
rigorous pathological testing of the resected tissue to make
sure there is no tumour left behind, regular followup with
adequate investigations, and a reliable organ tracking system
to investigate the recipient of contralateral organ should
one organ develop a recurrence. On top of this, transplant
surgeons and nephrologists should be comfortable in using
such organs. Usage of such organs is still in its infancy, and
for a much wider acceptance of this source to occur, there
is need for more research. One interesting area will be to
explore the new immunosuppressive agents with antiprolif-
erative properties on such recipients with the potential to
reduce recurrence rate or better still to prevent it altogether
while either replacing standard immunosuppressive agents
or reducing their required dose thereby reducing side effects.
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   Renal transplantation confers improvement 
in quality of life and survival when 
compared with patients on dialysis. There is 
a universal shortage of organs, and efforts 
have been made to overcome this shortage 
by exploring new sources. One such area is 
the use of kidneys with benign pathologies 
or containing small tumours after resection 
of the neoplasm. Our comment investigates 
the possibility of using either of these two 
potential valuable sources. 

 There is still a large gap between the 
number of renal grafts available for 
transplantation and the number of patients 
on waiting lists. A signifi cant number of 
patients awaiting renal transplantation 
either die or become too unwell from 
complications of chronic renal insuffi ciency 
on long-term dialysis before they can get a 
transplant   [ 1 ]  . Over the years many different 
sources of renal allografts have been 
exploited with variable success but the 
fundamental problem of low donor numbers 
persists. One potential source of renal 
allografts could be transplantation with 
kidneys by urologist for benign and 
malignant pathologies at the time of 
nephrectomy. 

 Recent evidence suggests that small renal 
cell tumours (T1a) could be safely treated by 
nephron-sparing surgery (NSS), such as 
partial nephrectomy (PN), with comparable 
outcomes to radical nephrectomy (RN)   [ 2 ]  . 
Current guidelines recommend a PN for 
small renal tumours, but the procedure itself 
has a steep learning curve and many centres 
continue to perform RN for small RCCs   [ 3 ]  . 
Despite the recommendation from European 
Association of Urology guidelines   [ 4 ]  , many 
patients with localised RCC still undergo RN 

  [ 5 ]  . In view of the above, there is a potential 
to use these organs as renal grafts for 
transplantation once the tumour has been 
resected  ex vivo  and confi rmation with 
frozen section of clear margins followed by 
transplantation in selected groups of 
patients. 

 In 1995 Israel Penn   [ 6 ]   published the results 
from Cincinnati transplant tumour registry 
with 14 patients receiving restored organs 
after  ex vivo  resection of small tumours with 
no recurrence in a follow up period ranging 
up to 210 months. A further series by Buell 
 et   al .   [ 7 ]  , again from Cincinnati in 2004 
reported similar results. Nicol  et   al .   [ 8 ]  , from 
Brisbane published their experience over an 
11-year period from 1996 – 2007, where 31 
patients received RCC affected kidneys after 
tumour resection with only one possible 
recurrence 9 years after transplantation 
(away from the location of primary tumour 
resection). There has been another case 
series from Japan   [ 9 ]   with eight such 
patients and at least seven published case 
reports   [ 10 ]  . The possibilities of using benign 
kidneys continues to be enormous. At our 
institution we have recently transplanted a 
kidney from a patient with a ureteric injury 
into a recipient successfully, with the 
donor being aware of the possibility of 
auto-transplantation. 

 Despite these published cases, before such a 
source could be widely popularised there are 
a few important practical issues that will 
need addressing. Patients with small RCCs 
must be informed of the option of NSS and 
RN clearly with associated risks involved 
with both techniques. Once the patients 
have made the decision to undergo RN, only 
then the potential of transplantation should 

be discussed. This approach avoids the 
potential bias towards RN and use of kidney 
for transplantation from clinicians and this 
was the approach employed by Nicol  et   al . 
  [ 8 ]   in their series. The consenting of the 
potential recipients must be very thorough 
as well to ensure that they understand the 
origin of these kidneys and the potential 
risks involved. There has to be general 
acceptance of the idea especially among the 
potential recipients before the wide spread 
use of such organs could occur. 

 In our centre we have completed a regional 
questionnaire to potential recipients 
(patients on transplant waiting list) in North 
East of England, to see if they will accept 
such organs and 59% responded positively 
  [ 10 ]  . With current guidelines recommending 
NSS and new evidence suggesting better 
long-term GFR with NSS, the biggest 
criticism of this approach is subjecting 
patients to RN for small RCCs. But despite 
clear recommendations and current evidence 
favouring NSS, still a large proportion of 
patients undergo RN for various reasons. In 
an ideal world the number of RN should be 
very small meaning that exploring such a 
new source will not be feasible as the 
number of potential organs generated will 
be very small. But the reality is quite the 
opposite. Data from the USA and UK suggest 
that more patients undergo RN than PN for 
these small tumours. Whether it is due to 
patients ’  wishes, technically diffi cult cases, 
lack of facilities or expertise, is irrelevant as 
these precious organs are potentially wasted 
when they could have been transplanted. The 
other big question is who should receive 
these potentially  ‘ dangerous ’  organs. Most of 
the modern practice of medicine is a balance 
between the risks and benefi ts to the 
patients and this area should not be any 
different. These organs should be 
transplanted to patients who are at the 
highest risk of dying on long-term dialysis 
without a renal transplant. After 
transplantation there should be strict 
follow-up of these patients to detect any 
new growth at a very early stage. 

 Under the Human Tissue Act 2004 anyone 
could be a donor (live related or unrelated), 
so these kidneys after resection of tumour 
can be used for transplantation under the 
umbrella of domino donation. With  ≈ 7000 
new cases of RCCs diagnosed each year in 
the UK, more than half of which are T1a and 
with still most of these undergoing RN, 
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there is a huge potential to increase the 
organ-donor pool with these marginal 
organs, if the ethical issues involved could 
be addressed appropriately.   
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Abstract  The  number  of  patients  awaiting  a  renal  transplant  considerably  exceeds
the number  of  organ  grafts  available.  A  successful  kidney  transplant  is  the  most
clinically and  cost  effective  treatment  for  patients  with  end  stage  renal  disease.  A
proportion  of  patients  currently  die  awaiting  a renal  transplant  as  their  continues
to be  a  global  deficiency  of  renal  allografts.  Efforts  continue  to  be  made  in  order
to improve  the  current  situation  of  waiting  lists  and  there  is  now  an  urgent  clinical
need to  explore  potential  new  sources  to  increase  the  number  of  renal  allografts
for transplantation.  We  describe  a  successful  case  of  a  renal  transplant  with  a  kid-
ney removed  for  benign  aetiology  and  transplanted  into  a  patient  who  was  on  the
cadaveric renal  transplant  waiting  list  for  6  years.  We  predict  that  this  of  ‘Altruistic
domino donation’  concept  could  potentially  reduce  the  waiting  list  for  cadaveric
renal transplantation  and  more  importantly  become  a  valuable  source  for  new  renal
allografts.
©  2012  British  Association  of  Urological  Surgeons.  Published  by  Elsevier  Ltd.  All  rights
reserved.

Case report

A  59-year-old  male  underwent  a  resection  of  a
large retroperitoneal  ‘tumour’  which  involved  the
left colon  for  a  pre-operatively  diagnosed  sarcoma.
Final histology  confirmed  ‘‘Benign  Fibromatosis’’

∗ Corresponding author at: Department of Urology, Freeman
Hospital, Newcastle upon Tyne NE7 7DN, UK.
Tel.: +44 01912336161; fax: +44 01912137127.

E-mail address: nikhilvasdev@doctors.org.uk (N. Vasdev).

which  is  associated  with  an  optimistic  prognosis.
The patients  subsequently  underwent  a  reversal
of colostomy  and  intraoperatively  sustained  an
iatrogenic injury  to  the  left  mid  ureteric  injury
which presented  on  the  10th  post-operative  day  as
loin pain  and  sepsis.  An  initial  nephrostomy  and
drainage of  urinoma  was  performed  followed  by
an unsuccessful  attempt  at  antergrade  and  retero-
grade stent  insertion.  A  defect  measuring  >4  cm  was
identified in  the  mid-ureter.  A Renogram  confirmed
a differential  function  of  41%  on  left  side  and  the

1875-9742/$ — see front matter © 2012 British Association of Urological Surgeons. Published by Elsevier Ltd. All rights reserved.
http://dx.doi.org/10.1016/j.bjmsu.2012.04.003
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patients  glomerular  filtration  rate  (GFR)  was  calcu-
lated at  68  ml/min/1.73  m2.

The  patient  was  counselled  with  the  options
of either  a  ureteric  repair  (Uretero-ureterostomy,
Transuretero-ureterostomy plus  Boari-flap  and
reimplantation) or  auto-transplantation  (AT).  The
risks of  all  options  were  discussed  with  patient
including the  potential  of  an  on  table  nephrec-
tomy and  unsuccessful  repair.  The  patient  was
not keen  to  pursue  reconstructive  surgery  and
opted for  a  nephrectomy.  We  then  discussed  the
possibility of  ‘Altruistic  domino  donation’  with
the patient.  Permission  for  using  the  left  kid-
ney for  potential  transplantation  was  approved
by UK  Transplant  (UKT)  under  the  category  of
‘‘domino donation’’  according  to  the  Human  Tissue
Act [1].

A 70-year-old  recipient  on  thrice  weekly
haemodialysis for  6-years  was  identified.  The
patient had  ESRF  secondary  to  hypertension  and
had concomitant  ischemic-heart-disease.  His  mis-
match was  1:1:1.  This  recipient  had  waited  for  6
years for  a  cadaveric  renal  transplant  and  had  no
prospect of  a  live  donor  transplant.  It  would  have
been unlikely  for  him  to  receive  a  cadaveric  trans-
plant during  his  lifetime  based  on  his  performance
status and  co-morbidities  making  him  completely
dialysis dependent  for  life.

Both donor  and  recipient  were  scheduled  for
surgery on  the  same  day  and  did  not  meet  each
other. An  open  nephrectomy  was  performed  in
view of  the  patient’s  previous  extensive  open
surgery and  adhesions  via  a  loin  incision  and
the kidney  flushed  with  cold  preservation  solu-
tion. The  kidney  was  prepared  for  transplantation
after a  thorough  examination  by  the  transplant
team (Figs.  1  and  2).

The donor  organ  was  implanted  into  the  right
iliac fossa  and  the  ureter  was  successfully  anasto-
mosed into  the  bladder  over  a  stent.  Post-operative
recovery was  unremarkable  for  both  the  donor
and the  recipient.  Donor  was  discharged  on  2nd
post-operative day  with  creatinine  of  1.25  mg/dl.
Recipient had  immediate  graft  function  and  cre-
atinine on  discharge  was  1.53  mg/dl.  Donor  and
recipient have  subsequently  communicated  anony-
mously with  each  other  by  letter  and  are  doing  well
at 8-month  follow-up.

Discussion

Kidneys  removed  for  small  renal  tumours  have
been successfully  transplanted  after  ex  vivo  tumour
resection with  extremely  low  recurrence  rates

Figure  1  Left  kidney  after  back  benching.  Artery,  vein
and  ureter  demonstrated.

[2,3,7].  Kidneys  removed  for  benign  aetiologies
are however  not  associated  with  any  risk  of
tumour transmission.  Transplantation  with  renal
grafts from  benign  aetiologies  can  be  potentially
linked to  the  established  concept  of  altruistic  dona-
tion. With  the  ‘‘donor’’  being  treated  for  their
primary pathology  with  nephrectomy,  such  dona-
tions are  regarded  as  Altruistic  domino  donation  in
the United  Kingdom  (UK)  under  Human  Tissue  Act
(HTA) [4].

In current  clinical  practice  the  commonest
indications for  simple  nephrectomy  (SN)  include
intractable loin  pain,  renal  artery  aneurysm
[5], ureteric  injury  [6]  and  refractory  nephrotic

Figure  2  Implantation  in  right  iliac  fossa.  The  ureter
being  anastomosed  to  bladder  over  a  stent.
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syndrome  [5].  Auto  transplantation  (AT)  can  be
an option  for  these  patients  (excluding  nephrotic
syndrome) but  on  occasions  this  may  not  be  the
appropriate treatment  in  clinical  situations  such  as
extensive previous  surgery,  increasing  risk  of  unsuc-
cessful ureteric  repair  leading  to  post-operative
complications, medical  co-morbidities  or  patient
choice.

Counselling of  patients  undergoing  SN  and  recip-
ients of  these  kidneys  is  extremely  important.
The recipient  should  be  fully  aware  of  the  ori-
gin and  quality  of  the  organ.  This  technique  has
the advantage  of  favourable  ischaemic  times.  Using
this approach  we  successfully  used  the  renal  graft
from our  donor  for  transplantation.  In  normal  clin-
ical circumstances  the  graft  would  have  ended
up as  a  nephrectomy  specimen  and  the  donor
would have  been  continued  to  be  on  thrice  weekly
haemodialysis. Our  approach  was  psychologically
very rewarding  for  the  donor  who  viewed  this
as a  positive  outcome  from  a  complex  surgical
scenario and  the  recipient  who  is  now  dialysis
free.

Furthermore these  organs  should  be  trans-
planted locally  as  they  may  pose  specific  technical
problems (short  vessels,  ureter,  etc.)  and  trans-
planting them  into  local  recipients  may  minimise
the discard  rates  and  potential  risk  of  compli-
cations, a  concept  endorsed  by  NHS  Blood  and
Transplant (NHSBT).  We  aim  to  highlight  the
importance of  this  new  concept  to  urologists
in the  UK  and  worldwide  as  this  could  be  a

very important  source  of  precious  renal  allografts
worldwide.
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Background: Tumour transfer/development is one of the more serious risks associated with transplantation. The
behaviour of a tumour can be unpredictable in immunosuppressed recipients. We report a highly sensitive
method tomonitor tumour behaviour in real time in a rodent tumour transplantmodel. This paper also explores
the effect of MHC matching on tumour growth among control and immunosuppressed hosts.
Methods: Luciferase expressing Wistar rat kidney tumour cells were transplanted into either Wistar or Lewis
recipients which mimic a well and poorly matched combination to assess the effects of MHC matching on
transplanted tumour cells. Experimental groups included controls with no immunosuppression and animals
immunosuppressed with cyclosporine. The latter group was further divided into a continuous treatment group
which received four weeks of immunosuppression and a treatment withdrawal group where immunosuppres-
sion was stopped after two weeks to assess the effects of rejection on tumour growth.
Results: All the tumour cells were rejected in the control animals that received no immunosuppression, within
2 weeks among well-matched combination and within one week in the poorly matched combination
(p 0.001). The transplanted tumour cells continued to grow in both well-matched and poorly matched groups
who were treated with cyclosporine, but growth was significantly faster in the well-matched combination
(p 0.033). After treatment withdrawal the tumour cells were rejected in all the animals of the poorly matched
group compared to 50% in well matched animals within the four-week study period (p 0.039).
Conclusion: In the absence of immunosuppression the hosts reject the transplanted tumour cells, and the anti-
tumour response is stronger when there is a greater mismatch in MHC with the recipient. In the presence of
cyclosporine immunosuppression the tumour continues to grow, however, after withdrawal of the immunosup-
pression, tumour clearance is quicker in the poorly matched background. This data supports the idea of
expansion of the donor pool by using kidneys after ex vivo resection of small renal tumours and that these organs
should be transplanted into a less well-matched HLA recipient. We hypothesise that should a tumour recurrence
occur a poorly matched recipient could clear the tumour through withdrawal of immunosuppression.

© 2015 Elsevier B.V. All rights reserved.

1. Background

Transplantation has revolutionised the treatment of patients with
renal failure. It not only improves quality of life but also has a significant
survival advantage compared with dialysis [1]. Although graft survival
and the absolute number of allografts have increased over the past cou-
ple of decades, there remains a large gap between the number of organs
available and potential recipients [2]. Over the years new sources of or-
gans have been explored but the problem persists and there is still a
need to increase donor numbers.

There is a large body of evidence that patients with small renal cell
carcinomas (RCC) can be treated with nephron sparing surgery (NSS)
with comparable outcomes to the previous gold standard of radical ne-
phrectomy [3,4]. Consequently for a patient electing to have their whole
kidney removed for a small RCC there is a potential for the removal of
the tumour and then allotransplantation of the remaining kidney. This
approach has been utilised by a few groups with good results [5–9].
One of the most important and perhaps potentially dangerous differ-
ences between a urology patient that has undergone NSS for a small
RCC and a potential allograft recipient of an NSS kidney is that trans-
plant recipients are on lifelong immunosuppression. Immunosuppres-
sive agents inhibit the natural checks on cancer cells by the immune
system. It is not known how tumour cells will behave in a HLA incom-
patible immunosuppressed host, if there is any inadvertent transplanta-
tion along with such restored kidneys.
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In the absence of any immunosuppression the allograft is rejected.
Theoretically any tumour cells transplanted along with the allograft
should be rejected as they both originate from the same donor. Howev-
er, cancerous cells have the ability to make themselves less immuno-
genic thereby evading the donor immune system in the first instance
and it is not clear how they will behave in a new host [10].

2. Objectives

The aim of this study was to establish a rodent tumour transplant
model and study the effects of immunosuppression on tumour growth.
The other main aim was to study the effects of acute rejection on
tumour cells in a transplantation setting.

3. Study design and methods

3.1. Cell culture

The tumour cell line, BP36b was acquired from Riken Bio
Resource Centre (BRC) Cell Bank© Japan. This is a rat kidney tumour
cell line derived from male Wistar rats that received N-ethyl-N-
hydroxyethylnitrosamine (NHEN) in drinking water to induce tumour
growth. The cell line is stable and maintained its characteristics after
100 passages over a 3 year period [11]. Cells were grown in RPMI
1640 supplemented with glutamine and antibiotics (penicillin
10,000 units ml−1, streptomycin 10 mg ml−1, gentamicin 50 μg ml−1

and amphotericin B 25 μg ml−1). The doubling time of the cell line
was consistent with the reported time in the literature (17 h) [11].

3.2. Transfection

For real time in vivo imaging of the tumour cells, the cell line was
transfected with a commercial lentiviral construct that is stably inte-
grated and constitutively expresses the enzyme luciferase for biolumi-
nescence and green fluorescent protein (GFP) for florescence [12,13].
Puromycin (10 μg ml−1) was used for selection of stable transfectants.

Puromycin supplemented media was replaced every 48–72 h to
select for single colonies of stable transfectants. Transfectants were
initially assessed by the expression of GFP by florescence microscopy.
Bioluminescence was determined initially by a luminometer and then
by direct visualisation using the IVIS® spectrum imaging system
(Caliper Inc.) (Fig. 1).

3.3. Tumour transplantation

Animals were injected with a fixed number of cells (1.8 × 107) into
the right flank under Isoflurane anaesthesia after shaving the fur. The
animals were anaesthetised in the induction chamber of the IVIS spec-
trum imaging system and then transferred into the dark chamber
where they were scanned for varying lengths of time (60–300 s). Ani-
mals were kept anaesthetised in the imaging chamber to enable long
exposure times required to detect even very faint bioluminescent sig-
nals. Luciferin was injected intraperitoneally at the dose of 150 mg/kg
10–15min before scanning to allow circulatory distribution throughout
the animal before detection. Timing of luciferin injection was calculated
by plotting the kinetic curve prior to the experiments. To compensate
for variations in luciferin distribution, 2–3 images were taken of each
animal at different time points and the only image with the strongest
signal used for further analysis. Regions of interest (ROIs) were the
areas of cell injection and any other areas with positive signals. The
background luminescence was calculated for each animal and signal
intensity was calculated by subtracting this from the ROI value to get
the accurate value of signals from the transplanted tumour cells (Fig. 2).

3.4. Experimental groups

To study the effects ofmatching on transplanted tumour growth two
different strains of rats, Wistar and Lewis were used. Since tumour cells
were ofWistar origin,when injected intoWistar rats (outbred) [14] this
combination served as a well-matched group as both the animals were
of the same strain. Despite the similarities between the tumour cell line
and the recipients, these animalswere not true syngeneic to the tumour
cells due to being outbred [15]. The other groupwas of inbred Lewis an-
imals that served as a poorly matched group due to transplantation
across the strain, leading to more marked immunological differences.

Fig. 1. IVIS spectrum image of non-transfected cells (left) and transfected cells (right). The
system produces a heat map image that can be compared to the scale seen to the right of
the image and the intensity of the luminescence calculated (P/s/cm2/sr).

Fig. 2. Day 0 IVIS spectrum image of Wistar rat after injection of transfected tumour cells
into the right flank. Imagingwas performed 15min after intra-peritoneal injection of lucif-
erin for maximum signal intensity. Region of interest (ROI, solid red circle) is the area of
positive signals from the injection site while the background bioluminescence (dotted
red circle) is calculated for each image to calculate bioluminescence.

122 M.A. Khurram et al. / Transplant Immunology 32 (2015) 121–125
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To keep the variables to a minimum, only male Wistar or Lewis rats
were used for experiments as follows:

Controls; not receiving any immunosuppression and cyclosporine
(Cyc) group; receiving 25 mg/kg of Cyc daily via oral gavage. The
cyclosporine group was further divided into treatment continue
group receiving four weeks of continuous immunosuppression and
the treatment withdrawal group where immunosuppression was
stopped after 2 weeks to study the effects of rejection on the
transplanted tumour cells. All the animals were kept in a clean air
conditioned rodent area with 12 hour dark/light cycle and were
fed standard rodent blocks and with free access to tap water.
Animals were weighed weekly to adjust the doses of cyclosporine
and luciferin.

3.5. Statistical analysis

To detect a five-fold difference in tumour size with a standard
deviation of 0.2 with a 90% certainty and alpha of 0.05 we calculated a
sample size of 6 rats per group. Statistical analysis was performed
with the PASW 18.0.0 (IBM Inc. 2009) and GraphPad Prism (Version
5.04 GraphPad Inc.) softwares. The normality of the data was tested
prior to performing either ANOVA or the non-parametric Mann–
Whitney tests accordingly.

4. Results

4.1. Controls

The kinetics of tumour rejection was first studied in the absence of immunosuppres-
sion. With well-matched animals there were still good signals at week one, but all the an-
imals subsequently rejected the tumour cells and lost signal, even after long exposure, at
week two. All poorly matched animals rejected the tumour cells and lost signal within
the first week (p b 0.001 at week 1) (Fig. 3).

4.2. Cyclosporine treatment

The effect of Cyclosporine on the rate of rejection was then studied in well-matched
and poorly matched groups. These groups were further sub-divided into the animals
receiving the immunosuppression for a full four weeks and the animals receiving the
treatment for 2 weeks followed by treatment withdrawal. The rats in the treatment

withdrawal group were scanned as normal for the study period of four weeks before
euthanasia.

The tumour continued to grow in both the well and poorly matched animals when
immunosuppressive treatment was continuous. There was no significant difference in the
growth of the transplanted tumour cells in the initial three weeks of the study, however
growthwas significantly faster in thewellmatchedWistar animals compared to the poor-
ly matched Lewis rats (p 0.033) by week 4 (Fig. 4).

In 4 of 8 animals of the well-matched Wistar rats after treatment withdrawal tumour
signal could still be detected at 2weeks post-treatmentwithdrawal. However, in thepoor-
ly matched Lewis animals the whole group had rejected the tumour by the end of the
study period (two weeks post-treatment withdrawal) (p 0.039) (Figs. 5 & 6).

5. Discussion

Better immunosuppressive therapies have resulted in long allograft
survival with reduced side effects. The risk of cancer development,
however, even from standard allografts without any obvious donor
malignancy still persists. The initial results of function and recurrence
rates from transplanting restored organs after ex vivo resection of
tumour remain favourable [16] from the limited data available so far.
However, there remain some serious questions regarding the safety of
such an approach in immunocompromised hosts. The behaviour of a
tumour in a transplant setting can be unpredictable since all patients
will be immunocompromised to some degree in order to prevent graft
rejection. Consequently any study, which investigates the effect of
tumour cell growth in a transplant model to investigate whether the
immunosuppressive treatment, or MHC mismatch has any bearing on
tumour growth is worthwhile.

The stability of the tumour cells (BP36B) used for our study has been
demonstrated by the observation that the cells retained their properties
after multiple passages [11]. The cells being of Wistar origin made it
possible for us to study the effects of tissue matching on the tumour be-
haviour by using outbredWistar and inbred Lewis strains for implanta-
tion.When these cells were injected in the Lewis animals, they behaved
as a poorly matched group as the transplantation was between two
different strains with marked immunological differences. When these
cells were injected into the Wistar rats, they behaved as relatively
well-matched combination when compared to the Lewis animals but
strictly speaking they could not be classified as syngeneic transplanta-
tion. This is because of inter-individual variations in RT1 (rat major
histocompatibility complex) among any outbred strain of the rats [15,
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17,18]. This slight variationmade our tumourmodel closely reflective of
scenarios in human transplantation; as even the very well matched in-
dividuals (excluding identical twins-syngeneic transplantation) would
have subtle differences in histocompatibility loci due to the very wide
variations in the HLA haplotype [19].

Tumour cells injected into hosts normally take a long time to become
palpable. Even cells with short doubling times often take a long time to
become clinically significant and enable accurate measurements. The
BP36B cells, used in our study took two months to establish when
transplanted in immunocompromised nude mice [11]. Consequently
we decided to transfect the tumour cells with luciferase in order to de-
tect and monitor tumour growth by sensitive bioluminescent imaging
techniques. Furthermore, the quantitative measurements made by this
method were objective and less susceptible to human error and bias
since tumour load was calculated computationally by signal intensity
from the injected tumour cells rather than the more subjective method
of visually grading the tumour size.

The behaviour ofwell and poorlymatched transplanted tumour cells
under conditions of immunosuppression and rejection (treatment
withdrawal) has potential important clinical implications. The tumour
cells were, as expected, rejected in the absence of any immunosuppres-
sion in both groups of animals since there are likely to be some differ-
ences between the donor and recipient even in the well-matched
combination. However, the time taken for the poorly matched animals

to reject the tumour was significantly shorter (p 0.001), and it is likely
that this was due in part to the stronger allogeneic response having an
anti-tumour effect. Similar results were noted when the immunosup-
pression waswithdrawnmidway in the study period to monitor the ef-
fects of rejection (p 0.039). All the Lewis animals rejected the tumour
two weeks after withdrawal while only half in the well-matched
group did so. The clinical significance of this finding is that if we were
to transplant kidneys after ex vivo resection of T1a tumours, then per-
haps choosing a less well-matched donor recipient combination
would be preferable. This would mean, should a recurrence occur in
the recipient, simplywithdrawing the immunosuppression (with trans-
plant nephrectomy)may aid “rejection” of extra renal tumour cells [20].
This was the approach utilised by Nicol et al. in their series, although
theywere not able to test this hypothesis as the only patient developing
recurrence in their series declined any further treatment [7].

The other clinically significant implication is the fact that under stan-
dard immunosuppression the tumour continued to grow. There were
subtle but statistically significant (p 0.033) differences in the rate of
growth, with higher rate of tumour growth in well-matched animals.
However, in both strains by the end of study period the signal intensity
was high and in the majority of immunosuppressed rats the tumours
were palpable. Therefore, the risk of unchecked tumour growth and
perhaps metastasis would be a real concern should a tumour be
transplanted inadvertently with a restored organ. The behaviour of
tumours with immunosuppression usingmore contemporary immuno-
suppressants that have reported anti-neoplastic activity, such as
rapamycin and leflunomide, needs to be investigated. Such immuno-
suppressive agents may prove to be effective in preventing recurrence
or eliminate the cancer cells should they be transplanted inadvertently.
A strategy to transplant these kidneys into less well-matched recipients
and to use non-calcineurin inhibitor immunosuppression may provide
the best outcomes.

6. Conclusions

Subtle variations in the growth of the tumour cells based on MHC-
dependent differences in various experimental conditions were detect-
ed with great accuracy using the IVIS spectrum imaging system. There
are two clinically relevant deductions of our experiments. Firstly,
transplanted tumour cells continue to grow unchecked in immunosup-
pressed hosts. This finding makes it of paramount importance that any
kidney transplanted after ex vivo resection must be devoid of any
tumour load. Secondly, poorly matched combination of donor and
hosts were significantly better in rejecting any donor-derived tumour
if immunosuppression was withdrawn in this animal model. Should a
recurrence occur in a clinical situation after such transplants, it might be
better to have less well matched donor recipient combination so that host's
own immune system can be used at least in part to reject the transplanted
tumour by withdrawal of immunosuppression.
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Fig. 6. Serial IVIS scans of Lewis rats: At the end of 2 weeks of immunosuppression (left), 1 and 2 week post-treatment withdrawal (middle and right). Tumour continued to growwhen
animals were kept on cyclosporine immunosuppression.With treatmentwithdrawal there has been steady rejection of tumour cells till all the injected cells were destroyed (significantly
stronger rejection than well matched combination of Wistar animals).
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List of abbreviations
RCC renal cell carcinomas
NSS nephron sparing surgery
NHEN N-ethyl-N-hydroxyethylnitrosamine
HLA human leukocyte antigen
GFP green fluorescent protein
ROIs regions of interest
Cyc cyclosporine
MHC major histocompatibility complex
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Chapter 9 Box charts – Comparative 
analysis 
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Figure	112	 Cyclosporine	 immunosuppression:	 Direct	 comparison	 between	 treatment	
continue/withdrawal	well	matched	animals	

	

	

	

Figure	113	 Comparison	 between	 treatment	 continue	 and	 withdrawal	 groups	 in	 CsA	 treated-Lewis	
animals.		

As	opposed	to	continued	treatment,	there	was	complete	elimination	of	tumour	load	after	treatment	withdrawal.	
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Figure	114	 CsA	treatment	withdrawal:	Wistar	and	Lewis	animals	
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Figure	115	 Sirolimus	 low	 dose.	 Comparison	 between	 treatment	 withdrawal	 and	 treatment	 continue	
groups	in	both	strains	and	also	direct	comparison	between	Wistar	and	Lewis	treatment	withdrawal	arm.	

	

	

	

	

	

	

Figure	116	 CsA	vs.	 Sirolimus	high	dose	Wistar	animals.	Direct	 comparison.	Complete	 removal	of	all	 the	
tumour	load	in	Sirolimus	arm.	
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Figure	117	 CsA	 vs.	 Sirolimus	 high	 dose	 Lewis	 animals.	 Direct	 comparison.	 Complete	 removal	 of	 all	 the	
tumour	load	in	Sirolimus	arm.	
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Figure	118	 CsA	 vs.	 Sirolimus	 low	dose	Wistar	 animals.	 Direct	 comparison.	 Complete	 removal	 of	 all	 the	
tumour	load	in	Sirolimus	arm.	

	

	

	

Figure	119	 CsA	 vs.	 Sirolimus	 low	 dose	 Lewis	 animals.	 Direct	 comparison.	 Complete	 removal	 of	 all	 the	
tumour	load	in	Sirolimus	arm.	
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Figure	120	 CsA	 vs.	 Leflunomide	 Wistar	 animals.	 Direct	 comparison.	 Continued	 growth	 with	 CsA	
immunosuppression	while	with	leflunomide	three	out	of	four	animals	have	complete	elimination	of	the	tumour	
load.	
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Figure	121	 CD4+	cells.	Q1	&	Q2	are	the	total	CD4	cells.	The	events	in	the	Q2	are	both	CD4	(FITC)	and	CD25	
(PE)	positive.	
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Figure	122	 Estimation	of	regulatory	T	cells.	The	cells	in	the	Q2	in	the	top	right	hand	histogram	are	CD4	25	
(PE	 flurochrome)	positive	while	 the	 cells	 in	 the	Q2-2	 (bottom	 right)	 are	 the	CD4,	 FoxP3	 (PE	Cy	 5	 flurochrome)	
positive.		
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Figure	123	 CD8+	T	cells.	FITC	anti	rat	CD8	staining	for	estimation	of	CD8+	cells	(Q1+Q2)	
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Figure	124	 Activated	CD8	T	cells.	Cells	in	Q2	are	positive	for	both	CD8	and	CD25.	The	cells	in	Q1-1	are	only	
positive	for	CD25.		
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Figure	125	 Natural	killer	cells	(CD161+).	FITC	+ve	in	Q1.	
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