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Optimal network topology for responsive
collective behavior
DavidMateo1*, Nikolaj Horsevad1, VahidHassani1, Mohammadreza Chamanbaz1,2, Roland Bouffanais1

Animals, humans, and multi-robot systems operate in dynamic environments, where the ability to respond to
changing circumstances is paramount. An effective collective response requires suitable information transfer
among agents and thus critically depends on the interaction network. To investigate the influence of the
network topology on collective response, we consider an archetypal model of distributed decision-making and
study the capacity of the system to follow a driving signal for varying topologies and system sizes. Experiments
with a swarm of robots reveal a nontrivial relationship between frequency of the driving signal and optimal
network topology. The emergent collective response to slow-changing perturbations increases with the degree
of the interaction network, but the opposite is true for the response to fast-changing ones. These results have far-
reaching implications for the design and understanding of distributed systems: a dynamic rewiring of the inter-
action network is essential to effective collective operations at different time scales.
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INTRODUCTION
A wide range of complex systems are characterized by relatively simple
dynamical rules while still producing excessively complex emergent col-
lective behaviors. Examples abound in the natural world [e.g., a flock of
birds, a school of fish, a swarm of insects (1–9)], in social systems [e.g.,
social networks (10–12)], and in engineered multi-agent systems [e.g.,
self-organized networks of mobile sensors, multi-vehicle coordination,
and swarm robotics systems (13–16)].

Historically, particular attention has been directed toward in-
vestigating varieties of collective behaviors obtained by testing a wide
range of local agent-to-agent interaction rules (6, 9). Collective beha-
viors have also been investigated from the network-theoretic perspec-
tive (4, 8, 17–21). It is now clear that such rich collective behaviors are
the outcome of a complex interplay between network topology—
characteristic of the group-level organization—and the dynamical laws
at the agent’s level (4, 8, 20–22).

Many collective behaviors can be studied through the lens of distrib-
uted consensus problems, including collective motion in animal groups
and multi-robot systems. Over the past decade, the number of studies
on decentralized consensus and cooperation in networked multi-agent
systems has experienced a spectacular growth, with concomitant devel-
opments in various fields of engineering and science (2, 3, 23–26). Con-
sensus dynamics is the cornerstone of cooperative control strategies for
vehicular formation (13, 16, 23), swarm robotics (14, 15), and synchro-
nization of coupled oscillators (23, 27). Decentralized consensus is also
at the core of collective opinion dynamics and complex contagion pro-
cesses in social networks (10–12), as well as complex collective re-
sponses in biological swarms (3–8).

Previous studies focused on establishing the influence of the interac-
tion network topology on (i) the capacity of the collective to reach con-
sensus in the presence of noise, communication constraints, and time
delays (21, 23); (ii) the speed of consensus (i.e., its convergence rate)
(18, 25, 28); (iii) the stability and stabilization of consensus (23); and
(iv) the ability to steer the system toward a particular consensus value
by means of various control techniques such as pinning control, co-
operative tracking control, or model reference consensus (19, 20).
However, the effects of the network topology on other dynamical
properties of distributed multi-agent systems such as their adaptivity
or responsiveness to external perturbations have received considera-
bly less attention (4).

It is important to emphasize that a capacity for fast consensus is not
necessarily indicative of a responsive collective behavior. For instance,
ferromagnets at low temperature exhibit a global spontaneous magne-
tization—a process that can be described by a distributed consensus
protocol. It is known that both the degree of consensus (i.e., magneti-
zation) and the speed at which it is reached increase with decreasing
temperature, but the capacity of the system to respond to external per-
turbations is maximized at a finite critical temperature.

Similarly, in the context of animal collective motion, it has been
observed that midges exhibit low levels of ordering while maintain-
ing large connected correlations, thus having a high collective re-
sponse (5). With these observations, the authors eloquently argued
that one must be careful in relating collective order (i.e., degree of
consensus) with the collective responsiveness. The collective response
of the animal group was obtained experimentally by measuring the
correlations in the fluctuations of their behavior. While inferring a col-
lective response to external perturbations from these fluctuations is
not formally justified for out-of-equilibrium systems, extensive nu-
merical studies (29) have shown that this equivalence holds in the
context of collective motion based on distributed heading consensus.
Moreover, simulations have shown that this measure of susceptibility
is a good indicator of the group’s performance in biologically relevant
functions such as predator avoidance (8). These facts along with other
empirical evidence have led to the conclusion that responsiveness,
rather than high consensus or order, is the true hallmark of collective
behavior (3).

To study how the responsiveness of a collective is affected by its in-
teraction network topology, we consider an elementary example of dis-
tributed decision-making: a linear time-invariant (LTI) systemof agents
performing consensus over a scalar state variable. The agents—i.e., the
nodes of the interaction network—are all identical, except for one “lead-
er” [also known as “stubborn” agent in some contexts (12, 25)] with
some arbitrary predefined dynamics. From the control-theoretic per-
spective, this leader introduces a time-varying control input signal into
the system. In the biological context, this dynamical leader represents a
member of a swarm with access to privileged information about a food
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source or a threat, i.e., the dynamics of the leader can be considered to be
a reaction to some external perturbation within the environment. For
instance, in a school of fish, a single fish detecting the approach of a
predator swiftly changes its direction of travel, and this rapid signal—
the local external perturbation—propagates through the school, thereby
triggering a large-scale evasive maneuver whose effectiveness is critical
to the survival of the group.

Investigating the propagation of a local perturbation with a possi-
bly broad spectrum of time scales is of critical importance to a vast
breadth of decentralized networked systems, e.g., the fast shutdown
at one end of a power grid can cascade into a large-scale blackout, a
snowstorm at one critical node of an airport network generates delays
throughout the entire system, and a fad introduced by an “influencer”
propagates and amplifies through a scale-free social network. For ar-
tificial multi-agent systems, introducing a leader can facilitate a range
of formation control techniques (13, 16) by means of pinning control
or cooperative tracking control (19, 20, 26). In such a scenario, having
a responsive collective behavior is crucial in the case that the target
formation changes with time.

Here, the leader provides a gateway to injecting local perturba-
tions in the emergent collective behavior. This allows us to study
the ensuing collective response as a function of the time scale of the
injected perturbation and the topology of the interaction network.
A similar LTI framework was considered in (4) to study the effect
of the network topology on the consensus. However, the study was
limited to the long-time consensus dynamics arising from a global
perturbation—in the form of white noise injected into the dynam-
ics of all agents.

To quantify the collective responsiveness, several metrics are used
across different communities—susceptibility, gain, or frequency re-
sponse—but the definition is consistent: The response is measured by
the rate of change in the variable of interest (in our case, the state var-
iable participating in the consensus dynamics) with respect to a change
in the external perturbation applied (in our case, the input signal
injected through the leader). For a linear model, this rate of change
can be expressed analytically as Eq. 5 and is a complex N-vector in
the state space of agents (see Materials and Methods). We can quantify
the collective frequency response of the system using the square of the
norm of this vector H2. Because each component hi(w) of H(w)
corresponds to the individual frequency response of a participating
agent i, and given that |hi| ≤ 1, the collective frequency response H2(w)
can be interpreted as the number of agents that are able to respond
or follow the leader, when the dynamics of the latter varieswith frequen-
cy w. From a statistical perspective,H2 measures the size of the fluctua-
tions in the consensus state variable induced by a localized perturbation.
For a connected topology, one expectsH2≃N at low frequency, i.e., for
frequencies below the system’s speed of consensus as determined by the
smallest eigenvalue of the grounded Laplacian (25). In the limit of zero
frequency, the system is at steady state and the consensus is guaranteed;
therefore, H2(w = 0) = N. At higher frequency, the collective response
always decays with increasing w, but the way that it decays is intricately
dependent on the details of the connectivity between agents.

We show that the degree distribution of the interaction network is a
central element in controlling the responsiveness of the collective. Even
a relatively unadorned model, such as the linear consensus protocol,
displays a rich phenomenology that crucially depends on the time scale
of the changes in the input signal. Specifically, when the system is driven
at low frequency, an increase in the number of interagent connections
always improves the collective response. At high frequency, on the con-
Mateo et al., Sci. Adv. 2019;5 : eaau0999 3 April 2019
trary, reducing the agents’ degree benefits the responsiveness. More
generally, in the presence of a dynamic driving signal changing at a giv-
en time scale, it is possible to tune the interaction network to maximize
the collective response. Last, we present experimental validations of our
findings with a swarm of 11 robots performing heading consensus. We
measure the capacity of the robots to align their orientation to a leader
agent as a function of the degree distribution. From low to high frequen-
cy, the variations of the measured collective response with the degree of
the interaction network are in very good agreement with the trend pre-
dicted by the distributed linear consensus theory.

These findings have far-reaching implications for the design of arti-
ficial swarms or interaction networks. They teach us that, to maximize
the collective response, the system requires the ability to dynamically
adjust the degree of the interaction network depending on the time scale
at which it should respond.
RESULTS
Influence of the number of connections on the
frequency response
In (8), it was shown that a breadth of networked systems canmaximize
their performance by tuning the number of connections to a specific
finite value: A self-propelled particle swarm can increase its capacity
to avoid a predator, and a collective performing distributed decision-
making can react to an external influence faster. In the case of distrib-
uted consensus, it was seen that the collective frequency response of the
system to a single leader when the agents are connected by a regular
one-dimensional (1D) grid (a ring) is maximized for a number of
neighbors k* that depends on the frequency of the leader.

Figure 1 shows the collective frequency response of a system
performing distributed linear consensus (Eq. 3) when one leader and
N = 2048 agents are connected to their k-closest neighbors in a ring
topology. When all agents are connected to each other (k = N), the re-
sponse of the system is a first-order low-pass filter with a cutoff frequen-
cy of 1/N. This all-to-all connectivity provides an optimal response for
any frequency below wlow ≃ 2 × 10−3. Above this threshold, a lower
network degree yields a higher response.

The higher the frequency, the better lowdegrees (small k) respond as
compared to high (large k) ones. For instance, k = 30 yields a higher
response than k = N for w ≥ 2.24 × 10−3. In turn, the response of the
systemwith k=10 exceeds that of k=30 for frequenciesw≥ 1.38× 10−2.
A minimal, closest-neighbor connectivity (k = 2) provides the optimal
response for any frequency above whigh ≃ 2.78 × 10−1.

The optimal degree k* corresponding to the highest response at a
given frequency w is displayed in Fig. 1 for several system sizes N.
For large enough systems, the optimal degree follows a scaling law of
the form

k*ðwÞ ¼ K0w
�g ð1Þ

with K0 = 1.56 and g = 0.56. The optimal degree does not scale with the
size of the system N in any observable way. The finite-size effects man-
ifest at low frequency, where k* “jumps” from its bulk value given by
Eq. 1 to k* = N.

The frequency at which this jump occurs does depend on the size
of the system and corresponds approximately tok* ¼ ffiffiffiffi

N
p

. In the limit
N → ∞, a finite connectivity is always preferable over the all-to-all
topology for any finite frequency.
2 of 10
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In general, the optimal degree for a given frequency depends on the
network model considered. Figure 2 presents a comparison of the k*
values obtained for different kinds of networks. All networks considered
display a k* that decreases monotonically with frequency, transitioning
from an all-to-all connectivity at low frequency to aminimal connectivity
at high ones. Note that the minimum possible degree is k = 2 for all
models except for the 2D mesh that requires a minimum of k = 4. This
transition from all-to-all to minimal connectivity may be abrupt (2D
mesh, random), continuous (cavemanmodel, where k*≃ 1/w), or a com-
bination of both (1D ring).

Network optimization: Weights and structure
The results in the previous section present a clear phenomenology for
several types of networks that hint toward a possible universal behavior.
To explore how general this phenomenology is, we consider two cases
forwhichwe relax some of the assumptionsmade previously. In the first
case, we consider weighted networks, for which the connection between
agents is not binary. In the second case, we consider a general network
optimization problem for a small system where no particular structure
is imposed.

Optimal weights
Unweighted graphs, i.e., networks where aij = {0, 1}, represent only a
small subset of the possible connectivities between agents, and there
is a priori no reason to assume that the optimal connectivity can be re-
presented by an unweighted graph. Thus, expanding the study to
weighted graphs opens the possibility of finding networkswith arbitrary
distribution of weights that have a higher frequency response.

Using a linear parametrization of W (see Materials and Methods)
for a regular ring, where wij depends only on the topological distance
between agents dij = |i − j|, the numerical optimization of Eq. 13 yields
the connectivity profiles shown in Fig. 2. For a ring of N = 4096 agents,
the optimal responsiveness at frequenciesw < 5 × 10−3 corresponds to a
simple all-to-all connectivity (all wij = 1/N). At higher frequencies, one
obtains a smooth profile where the optimal connectivity decreases with
distance. Still, most nodes are either connected (wij ≃ 1/k*) or
disconnected (wij ≃ 0), with only a few near the transition having
intermediate weights. This profile is very similar to the unweighted case,
and the effective number of neighbors inferred from the profile (see
inset of Fig. 2) is identical to the values presented in the previous section.
Mateo et al., Sci. Adv. 2019;5 : eaau0999 3 April 2019
This numerical optimization corroborates that allowing weighted
connections does not sensibly change the phenomenology observed,
where limiting the number of connections to a certain frequency-
dependent value optimizes the response of the system.

Optimal structure
So far, we have considered particular networkmodels for which the de-
gree k can be controlled. All these models exhibit an optimal frequency
response when the degree is set to a certain k* that decreases with
increasing frequency. However, the particular value of k* depends on
the model. The results do not guarantee that, in general, any network
with a given fixed degree k* will yield a higher collective response than
any other network with a different degree.

Does the relationship between the number of neighbors and fre-
quency response still hold when considering arbitrary network
structures? Preliminary results of numerical discrete optimization for
small systems suggest that it is the case. The bottom row of Fig. 2 shows
examples of the networks obtained by performing simulated annealing
optimization for the frequency response of a systemofN+ 1= 11 agents
for six frequencies w.

At frequencies w ≤ 0.1, the optimization procedure consistently
yields an all-to-all connectivity. For higher frequencies w = 0.2 and
0.3, the stochastic nature of the optimization procedure generates
slightly different configurations, but all of them contain a clique of
seven agents atw = 0.2 (5 to 6 atw = 0.3), with the rest of the agents in
the periphery of the clique. These configurations have an average de-
gree 〈k〉 = 4.7 for w = 0.2 and 〈k〉 = 3.6 for 0.3. Further increasing the
frequency yields disconnected graphs, where the agents are distrib-
uted in clusters of either four, three, or two agents for w = 0.4, 0.6,
and 1, respectively.

While the current results are limited to small systems, they show that
the existence of an optimal mean degree that decreases with increasing
frequency is not a particular feature of the network models considered
here, but a general phenomenology of systems performing linear dis-
tributed consensus.

Application to swarm robotics
To showcase the application of these results to the design of inter-
action networks in the nascent field of swarm robotics, we perform
a series of experiments on heading consensus with a swarm of land
Fig. 1. Collective frequency response for a ring network. (Left) Response of N = 2048 agents performing distributed linear consensus over a regular periodic 1D grid with
fixeddegree k. Larger degrees yield a higher response at low frequency (w <2×10−3), while the opposite is true at high frequency (w >whigh= 0.278). (Right) Optimal degree k* for
maximum collective response as a function of the frequency w for a system of N agents distributed on a ring. For low frequency, the optimal k* corresponds to an all-to-all
connectivity. At higher frequencies, k*(w) follows the “bulk” behavior from Eq. 1 (fit, black line) up to its lowest possible value, k* = 2, at w = whigh.
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robots where each one aligns its direction of motion with that of
their neighbors. This form of consensus, inspired by Vicsek’s model
of collective motion in natural swarms (30), is closely related to the
first-order distributed linear consensus discussed previously. How-
ever, an empirical implementation involves significant deviations
from the ideal scenario.

For instance, while the dynamics of the robots are ultimately
governed by physical processes that are continuous in time, the robots
sense each other’s state using asynchronous, discrete communications
with stochastic delays. The consensus protocol itself, like in the Vicsek
model, is nonlinear due to the state variable being an angular quantity as
opposed to a scalar one.

The swarm is composed of 11 robots (see Materials and Methods)
equipped with a custom “swarm-enabling” unit—providing data-
processing power and distributed communications—that allows the ro-
bots to perform complex, decentralized cooperative control algorithms
(14). Each robot periodically sends its heading to its k neighbors. One of
the robots, the leader, is set to continuously rotate at a fixed frequencyw
in the range 0.01 Hz < w < 0.1 Hz. The rest of N = 10 robots are set to
perform the heading consensus algorithm of Eq. 16. The experiments
are run for at least four periods of leader rotation on an open space of
around 20 m2. The experimental setup does not impose any significant
restriction on the location, other than a relatively flat and regular ground
and enough space for the robots to move freely.

The effect of connectivity on responsiveness is investigated by re-
peating the experiment for different values of the number of neighbors
k and different rotation frequenciesw for the leader. See the Supplemen-
tary Materials for videos of this experiment performed at low and high
Mateo et al., Sci. Adv. 2019;5 : eaau0999 3 April 2019
frequencies. A characteristic selection of the results obtained is
presented in Fig. 3. When the robots are connected by means of a ring
topology (k = 2, left column), the qualitative behavior of the swarm is
not critically affected by the frequency: both atw = 0.04Hz and 0.06Hz,
the four or five robots topologically closest to the leader are able to rea-
sonably follow it, with the rest lagging behind.

However, the picture changes when an all-to-all connectivity un-
derpins the operations of the swarm (k = 10, right column). Because
each robot has access to the same information, they all behave iden-
tically. This not only allows the whole swarm to follow closely the
leader at frequencies below a threshold of wc ≃ 0.05 Hz but also causes
the response of the system to drop drastically above this threshold. In
the context of the Vicsek model, the swarm has a low polarization
when k = 2 (0.62 to 0.77) and a high one when k = 10 (0.91 to
0.95). Here, we see that a high polarization not only allows the system
to have a large coordinated response at low frequency but also tends to
“ossify” the collective, thus drastically reducing its response at high
frequency.

This phenomenology is reminiscent of what has been observed in
natural systems. Specifically, it is known that while flocks of starlings
have high levels of ordering or polarization (31), swarms of midges
display low levels of polarization but a large connected correlation
(5), and thus high responsiveness to biologically relevant environmental
perturbations (8).

The measured capacity of the swarm to align to the time-dependent
orientation of a leader is presented in Fig. 4 as a function of the number
of neighbors for a selected number of frequencies. These results confirm
the predictions from the distributed linear consensus model applied to
Fig. 2. Optimal networks for collective response. (Top left) Optimal degree k* for maximum collective response as a function of the frequency w for a system of N =
1024 arranged in different network topologies (N = 840 for the caveman topology). Note that some networks display a sudden transition from all-to-all to minimal
connectivity, while others have an intermediate range of frequencies where k* follows a scaling law of the form Eq. 1. (Top right) Optimal connection weights wij as a
function of topological distance for a system of N = 4096 agents at a given frequency w. The inset shows the optimal number of connections k* obtained by fitting a
Heaviside function to the weight distributions. (Bottom) Optimal network topologies for a system of N + 1 = 11 agents obtained by stochastic numerical discrete
optimization over the space of unweighted, undirected graphs. Instead of fixing the leader to be a particular agent, the optimization maximizes the collective frequency
response averaged over all the possible leaders (allowing disconnected graphs to be optimal). Note that the mean degree of these networks is consistently reduced
with increased frequency w.
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complex, realistic cases of collectivemotion. Specifically, the robots ben-
efit from having more connections at low frequency but it hinders their
responsiveness at high ones.

Unfortunately, our experimental system is too small to observe
an optimal connectivity k* different than two or N, or to be able to
meaningfully study different network models. However, with the
advent of large swarm robotics systems (32), it is likely that differ-
ent values of k* can be experimentally measured for various net-
work topologies.
DISCUSSION
This paper presents a detailed study on the relation between the col-
lective frequency response to a time-dependent, localized signal (a
leader) in a multi-agent system performing distributed consensus
and the connectivity between the agents. The study shows that the re-
sponse to the driving signal arising from different connectivities de-
pends critically on the time scale of the signal: The smaller the time
scale, the better low-degree connectivities perform as compared with
high-degree ones.

In particular, we observe that when the agents are connected by
means of a static k-nearest neighbor ring configuration, the collective
response of the system—excluding finite-size effects at low frequency—
is maximized for a particular frequency-dependent number of
neighbors that follows a scaling law of the form k*º w−0.56. This func-
tional form for k*(w) is not universal, but all the network models
considered here consistently display a k*monotonically decreasingwith
the signal frequencyw. For instance, a caveman network has a k*ºw−1,
Mateo et al., Sci. Adv. 2019;5 : eaau0999 3 April 2019
and other networks such as a bidimensional grid or a regular random
network have a bimodal k* that corresponds to an all-to-all connectivity
for w < wc and to a minimal connectivity for w > wc.

We posit that the existence of this optimal connectivity k*, de-
pendent on the time scale t = 1/w of the local perturbation, has eluded
prior investigations on distributed consensus because those did not con-
sider either the localized nature of perturbations (4, 6, 16, 18, 21, 23, 29, 30)
or the short-time transient component of the response (4, 7, 13, 16, 26).
On the one hand, the local injection of the perturbation into the collec-
tive dynamics is key to the uncovered phenomenology because it leads
to a complex propagation of the input signal through a host of feedback
and feedforward loops associated with the topology of the network. On
the other hand, the short-time (high frequency) transient responsive be-
havior is not captured if only steady-state deviations from consensus,
integrated metrics, such as consensus speed, or similar proxies are used
to characterize the response.

This phenomenology stands in stark contrast with that of the well-
studied consensus-reaching process: The prescription for a fast con-
sensus is not necessarily compatible with the one for a responsive
consensus. The speed of consensus—also known as convergence rate—
can readily be obtained from the second-smallest eigenvalue l2 of the
Laplacian matrix in the absence of a leader (24), or from the smallest
eigenvalue lg1 of the grounded Laplacian matrix in the presence of a
leader (25). In general, l2 and l

g
1 tend to increase with increasing mean

degree (18, 25, 28). In particular, the extreme case of an all-to-all
connectivity (k = N) maximizes the speed of consensus. This speed de-
fines the response’s cutoff frequency, and thus, an increase in it im-
proves the collective response to slow-changing environmental
Fig. 3. Distributed heading consensus experiment with a swarm of 11 robots. Evolution of the robots’ heading in an experiment with one leader (black line)
rotating at frequency w = 0.04 Hz (top) or w = 0.06 Hz (bottom) when each robot has either k = 2 neighbors (left column) or k = 10 (right column). The degree by which
each agent is following the leader at a given instant is Hi(t) (Eq. 18), and the square of the mean value (displayed in the lateral bar) is its frequency response.
5 of 10
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perturbations.However, the short time-scale response of a decentralized
system (i.e., subjected to higher frequency components) cannot be
inferred solely from the large time scale one corresponding to the con-
sensus speed. In that regime, the response is found to have a nontrivial
relationship with the degree of the interaction network. All the network
models presented here show an intrinsic trade-off in this respect: Any
change that increases the low-frequency response decreases the high-
frequency one, and vice versa.

The linear distributed consensus is a general model with appli-
cations in a wide range of social and artificial systems. In general,
these systems will have different design constraints in connectivity
(arising, for example, from a spatial embedding of the nodes), which
make certain network models more relevant than others. We per-
formed two exploratory analyses that indicate that these results
are relatively general. On the one hand, when the ring network is
allowed to have weighted links, the optimal distribution of weights is
comparable to the distribution in the unweighted case. On the other
hand, when no structure is imposed, discrete optimization on small
systems shows that the optimal degree distribution is still such that
〈k〉 * decreases with w.

In practice, many multi-agent applications—such as artificial
swarms—require an explicit or implicit design of the interaction net-
work or interaction model. This process usually involves numerous
trade-offs due to numerous design constraints (2), and thus, the net-
work is designed to facilitate certain desired qualities of the system—
such as robustness, scalability, and responsiveness. What the find-
ings presented here teach us is that, for multi-agent systems to be
Mateo et al., Sci. Adv. 2019;5 : eaau0999 3 April 2019
responsive, there is not one optimal interaction network that can
guarantee responsiveness in general. Instead, the connectivity can
only be optimized to yield maximal responsiveness at a particular
time scale. For all the cases considered here, an increase in responsive-
ness to low-frequency signals implies a decrease in the response to high
frequencies, and vice versa.

To showcase the applicability of our findings to the practical arena,
we have performed a series of experiments with a set of 11 swarming
robots that seek to emulate the behavior of a leader by performing a
classical example of collective motion. These robots communicate their
state to a given set of neighbors and align their direction ofmotion to the
average of said neighbors. The experiments confirm that, when the
leader changes its direction slowly, the agents are better at following
the leader themore connected they are and that the opposite is true for
fast changes.

In this work, we have considered how the degree of the network
affects the responsiveness ofmulti-agent systems performing distrib-
uted consensus. However, it is not possible to change the degree
distribution of a network without also changing its other properties
such as clustering or shortest path. While it is known that at high
enough frequency the response is determined only by the mean degree
(8), the question of which structural properties of the network are good
predictors of a system’s response at different regimes remains open.
MATERIALS AND METHODS
Distributed linear consensus
Let us consider a group ofN+ 1 identical agents performing a distributed
consensus protocol on their scalar state-variable xi(t). The dynamics of
the system is determined by the state vector X(t) = {xi(t); i = 0, …, N}
and the adjacency matrix of the underlying graph A = {aij; i, j = 0,…, N},
where aij = 1 if agent i is connected to j and 0 otherwise. Given a certain
connectivity graph, the system evolves according to

dxi
dt

¼ w0

ki
∑N

j¼0aijðxjðtÞ � xiðtÞÞ ¼ ∑N

j¼0wijxjðtÞ ð2Þ
A

B C

Fig. 4. Collective response in leader-follower heading consensus for a systemof
N+1=11 agents. (A) Experimental collective frequency response (Eq. 19, normal-
ized) obtained with 10 robots performing distributed heading consensus plus one
leader rotating at a fixed frequency w. (B) Response for the equivalent LTI distrib-
uted linear consensus (Eq. 5, normalized) with the same N. (C) Response obtained
with simulations of the heading consensus algorithm (Eq. 16).
Fig. 5. Robotic platform used in the experiments. The SBC and XBee module
attached to the robot provides autonomy and distributed communications to the unit,
making it able to swarm and perform decentralized collective motion such as heading
consensus. (Photo credit: DavidMateo, Singapore University of Technology and Design.)
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wherew0 is the natural response frequency of our identical agents, and
ki ¼ ∑N

j¼0aij is the degree (or number of neighbors) of agent i. The
quantitywij = w0(aij/ki − dij)—where dij is a Kronecker delta—is intro-
duced for the sake of a compact notation.Note that, by definition,wii=
−w0 and ∑jwij = 0 for all i.

To model the response of the system, we consider a leader-follower
consensus scenario where one agent—for example, agent i = 0, the
leader—does not abide by the dynamics of Eq. 2 but instead follows
an arbitrary trajectory x0(t) = u(t). In the presence of this single leader,
Eq. 2 can be recast as

dxi
dt

¼ ∑
N

j¼1
wijxjðtÞ þ wi0uðtÞ ð3Þ

for i = 1,…,N. The solution of Eq. 3 (up to an integration constant)
can be written compactly in matrix notation on the frequency
domain as

XðwÞ ¼ ðiwI�WFÞ�1WLuðwÞ ð4Þ

where I is the identity matrix of dimension N,WF = {wij} is the N × N
consensus protocol matrix between the follower agents (also known as
state matrix A in LTI systems), andWL = {wi0} is the N × 1 consensus
protocol matrix between the followers and the leader (also known as
input matrix B).

The response function or susceptibility measures the capacity of the
multi-agent system to follow the leader’s trajectory, u(t), and can be
expressed in the frequency domain (33) as

HðwÞ ¼ dX
du

� �
ðwÞ ¼ ðiwI�WFÞ�1WL ð5Þ

The entries of the vector H = {hi}i = 1,…,N correspond to the fre-
quency response of each individual agent, with |hi(w)| ≤ 1 for all
i and w (33). As is clear from Eq. 5, the response functions have a
nontrivial dependency on the topology of the agents’ connectivity
through the entries of WF and WL. The collective response of the
system can be characterized by performing a singular value de-
composition of H, giving a single singular value s2 = ∑i|hi|

2 = H2.
Throughout this work, we will use H2(w) (or its normalized form,
H2/N) as a measure of the collective frequency response of multi-
agent systems. From Eq. 4, one can see that if u(t) is taken to be a
white-noise stochastic perturbation, the fluctuations in the collec-
tive will be correlated as 〈X†X〉 º H2.

Models of interaction network
To study the effect of the number of neighbors on the collective
frequency response, we have considered a set of network topologies
including 1D and 2D regular periodic lattices (i.e., a ring and a
mesh), connected caveman model graphs (34), and regular random
graphs.

We have chosen these models because they feature a fairly regular
structure—minimizing the effect of the leader’s location—and they al-
low a fine control of the degree of the agents from k = 2 or 4 up to an
all-to-all connectivity (k = N). They are also guaranteed to be connected
and thus have H2(w = 0) = N for any k, with the exception of the
Mateo et al., Sci. Adv. 2019;5 : eaau0999 3 April 2019
random regular graph at low degrees (k ≲ log N) (35). All these
models provide unweighted, undirected interaction networks with-
out self-loops.
Regular lattice
These networks are constructed by placing the agents in a regular square
grid embedded in an Euclidean d-dimensional periodic space (a ring for
d = 1 and a torus for d = 2) and connecting each node to its k nearest
neighbors on the grid. This structure guarantees that all nodes have the
same centrality and degree, and we can set the leader arbitrarily as the
first agent without loss of generality.

For the 1D ring, the degree can be any even value between 2 and N.
For the 2D mesh, only multiples of 4 are valid degrees.
Caveman model
The connected caveman graph is composed of n complete subgraphs
with k + 1 nodes, where one edge from each cluster is modified so
that it connects neighboring clusters (34). Note that the number of
nodes is N = (k + 1)n and the average degree is k (there are n nodes
with a degree of k + 1 and another k with k – 1; the rest have a
degree of k).

We choose the number of agents N to be a highly composite num-
ber (such as 720, 840, or 1260) to have a high resolution on the pos-
sible values of the degree k while keeping N constant.
Regular random networks
Last, we consider the case of regular random graphs, i.e., graphs ran-
domly sampled from all the possible k-regular graphs with N nodes.
The graphs sampled are expected to be less structured than the lat-
tices or caveman graphs, typically having significantly lower diam-
eter and clustering coefficient. The frequency response of random
networks presented in Fig. 2 is obtained by averaging over 100 samples
for each frequency.

Weight optimization
The optimal distribution of weights A (or equivalently W) for col-
lective frequency response can be obtained by solving

dH2

dW
¼ 0 ð6Þ

with the conditions that ∑Nj¼0wij ¼ 0 for all j. This gradient can be
written as

∂H2

∂wij
¼ W†

Lðiw�WFÞ�1†ðiw�WFÞ�2� �
iðWLÞj þ h:c:

∂H2

∂wi0
¼ W†

Lðiw�WFÞ�1†ðiw�WFÞ�1� �
i þ h:c:

∂H2

∂w0j
¼ 0

ð7Þ

where h.c. stands for the Hermitian conjugate of the preceding
expression.

If no constraints are imposed on the weights, a trivial solution is
obtained in which the response is maximized by having all the agents
connected only to the leader. For this study to be applicable to cases
where the leader is not known in advance and where it may even
change with time, one needs to impose some additional symmetries
either in H2 or in W directly.

One option to introduce the symmetry in H2 is to compute the fre-
quency response not by fixing the leader to be a particular agent but to
7 of 10

http://advances.sciencemag.org/


SC I ENCE ADVANCES | R E S EARCH ART I C L E

 on A
pril 4, 2019

http://advances.sciencem
ag.org/

D
ow

nloaded from
 

average over all the possible leaders instead. This option is appropriate
for small systems, but for relatively large systems, it is more suitable to
impose symmetries on W instead to reduce the number of variables
(which otherwise grows as N2).

To impose arbitrary symmetries in the system, one can constrain the
weights with a given parametrization

wij ¼ Fði; j; fckgÞ ð8Þ

where {ck} is a set of free parameters. The gradient ofH2 with respect to
these parameters is

∂H2

∂ck
¼ ∑ij

∂H2

∂wij

∂wij

∂ck
W†

Lðiw�WFÞ�1†ðiw�WFÞ�2 ∂WF

∂ck
WLþ

þW†
Lðiw�WFÞ�1†ðiw�WFÞ�1 ∂WL

∂ck
þ h:c:

ð9Þ

We consider the case where the connection between agents depends
only on the topological distance between them. Given a measure of
topological distance d(i, j), this condition can be written as a linear pa-
rametrization of the form

wij ¼ ∑
k
ckm

k
ij ð10Þ

where

mk
ij ¼

1 if dði; jÞ ¼ k
0 otherwise

�
ð11Þ

With a linear parametrization, we obtain a close form for the
gradient as

∂H2

∂ck
¼ W†

Lðiw�WFÞ�1†ðiw�WFÞ�2MkWLþ
þW†

Lðiw�WFÞ�1†ðiw�WFÞ�1Mk
Lþh:c:

ð12Þ

where Mk ¼ mk
ij

n o
and Mk

L ¼ mk
i0

� 	
.

The normalization of the weights during optimization can be
imposed through a Lagrange multiplier. Thus, instead of maximiz-
ing H2, we define a cost function of the form

L¼H2 � l
2
∑
N

i¼0
∑
N

j¼0
wij













2

ð13Þ

Using this cost function, the optimization problem over wij with
i ≠ j (the diagonal terms are fixed to wii = −1) can be written as

∂L
∂wij

¼ ∂H2

∂wij
� l∑N

l¼0wil ¼ 0

∂L
∂l

¼ 1
2
�∑ijðW†WÞij ¼ 0

ð14Þ
Mateo et al., Sci. Adv. 2019;5 : eaau0999 3 April 2019
For the linear parametrization of Eq. 10, the gradient of the cost
function with respect to ck can be written as

∂L
∂ck

¼ ∂H2

∂ck
� l∑

ij
ðWTMkÞij ð15Þ

Robotic platform
For the experimental validation, we have used a differential-drive ro-
bot developed in-house as a low-cost tool for robotics research (36).
The platform is equipped with six infrared rangefinders, an inertial
measurement unit (IMU), two wheel encoders, and two light sensors.

The robots are granted collective autonomy and distributed
communication by attaching a “swarm-enabling” unit (14) com-
posed of a single-board computer (SBC) and an XBee module (see
Fig. 5) (37). This unit interfaces with the robot via Bluetooth and
is responsible for implementing the cooperative control algorithms,
communicating with other robots, and controlling the motion of
the robot.

The units communicate via radio signals sent over the distributed,
dynamic mesh established by the XBee modules. Because physical lim-
itations impose amaximum range at which these signals can be sent, the
swarm has a natural “metric” interaction model, meaning that each
agent is able to communicate with any other agents within a given
distance. Field experiments with aquatic autonomous surface vehi-
cles using a similar setup for communication (15) have shown that,
when the number of agents is large, the interaction model is also
weakly density-dependent, deviating from a pure metric model. How-
ever, for the current experimental setup, there is no practical spatial
limitation on communication between the agents, and instead, the dif-
ferent interaction networks are explored by tuning the cooperative
control rule.

To control the robot, the SBC processes the data from the IMU and
encoders through a Kálmán filter to have an accurate estimation of the
platform’s location. Then, a proportional integral derivative (PID)
controller allows it to adjust the trajectory of the robot. The PID coef-
ficients are tuned using the Ziegler-Nichols frequency response
method (33).

The behavior of the robot, defined by the cooperative control
algorithm, is implemented in the swarm-enabling unit using the in-
house marabunta package (14). The software is designed prioritizing
platform-agnostic development of cooperative control rules, portability,
and a simple workflow to facilitate fast prototyping. In the study of col-
lective motion, these behavior rules typically take the form of simple,
local, iterative algorithms, where the velocity of an agent is defined in
terms of its own state, the local environment, and the state of the agents
in a certain neighborhood.

Heading consensus experiments
To measure empirically the collective frequency response of a robotic
swarm, we have performed leader-follower heading consensus (38)
experiments using 11 robots. One of them is designated as the leader
and its behavior is a simple rotational motion at constant frequencyw.
We label it as leader because its behavior does not depend on the rest
of the swarm, but the agents have no way of distinguishing the leader
from any other agent. The other 10 “follower” robots perform a head-
ing consensus algorithm using the information received from a given
set of neighboring agents, irrespective of whether a neighbor is a leader
or a follower.
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The heading consensus algorithm determines a target heading �q
for each robot of the form

�qi ¼ 〈qj〉je i ¼ arctan
∑je i sinqj

∑je i cosqj

 !
ð16Þ

where j ~ i denotes the neighbors of i and 〈⋅〉 an angular average.
Each follower robot updates its target heading asynchronously ev-
ery DT = 0.1 s. The information of each neighbor’s state is also up-
dated every 0.1 s, but not necessarily concurrently with each other
or with the update of Eq. 16. The robots are interconnected with a
ring network topology such that each individual unit can only com-
municate with k other robots.

This heading consensus algorithm used in the experiments is a
discrete-time equivalent to a linear consensus algorithm where the
modulus of the state variable is fixed, i.e., it is equivalent to

dqi
dt

¼ w0 qj
� �

je i � qi

� �
ð17Þ

if w0DT ≫ 1 and for times t ≫ DT.
Because the consensus algorithm is nonlinear, we cannot use the LTI

framework to define the frequency response as Eq. 5. Instead, we use an
equivalent response metric by defining the state of an agent as xiðtÞ ¼
e–iqiðtÞ, where qi is its heading. The capacity of an agent i to follow the
leader L is then measured by

Hi ¼ Re
1
T
∫
T

0

xiðtÞ
xLðtÞ dt


 �
¼ 1

T
∫
T

0 cosðqi � qLÞdt ð18Þ

where T is the duration of the experiment and |Hi| ≤ 1. The collective
frequency response of the system is then measured by

H2 ¼ ∑
N

i¼1
jHij2 ð19Þ

with 0 ≤ H2 ≤ N.
SUPPLEMENTARY MATERIALS
Supplementary material for this article is available at http://advances.sciencemag.org/cgi/
content/full/5/4/eaau0999/DC1
Movie S1. Experiment to measure the collective response in leader-follower heading
consensus of a swarm of N + 1 = 11 land robots with a low-frequency input signal.
Movie S2. Experiment to measure the collective response in leader-follower heading
consensus of a swarm of N + 1 = 11 land robots with a high-frequency input signal.
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