
Warrender, Robert, Tindle, John and Naylor, Ian (2004) "UoSLinux – A Linux
LiveCD distribution for use in higher education". In: 2004 Linux Technical
Conference, 5 8 Aug 2004, Leeds, West Yorkshire.

Downloaded from: http://sure.sunderland.ac.uk/id/eprint/5311/

Usage guidelines

Please refer to the usage guidelines at http://sure.sunderland.ac.uk/policies.html or alternatively
contact sure@sunderland.ac.uk.

UoSLinux – A Linux LiveCD distribution for use in Higher Education

Robert L Warrender, John Tindle & Ian Naylor
School of Computing and Technology

University of Sunderland
Sunderland, SR6 0DD

Email:{robert.warrender@sunderland.ac.uk}

{john.tindle@sunderland.ac.uk}
{iank@pitech.plus.com}

ABSTRACT
It is commonplace within most University computing
schools to find different computer platforms
coexisting peacefully with each other. UNIX as well
as Linux workstations, PC’s and Apple Macs all
have their place within an educational curriculum.
Students generally find themselves using at least
two major platforms at different times during a
typical undergraduate programme.
In distance learning, however, such practice would
be considered extravagant with most students only
having access to one platform, more often than not
a PC running a version of the Windows Operating
System. Lack of access to required hardware can
lead to compatibility issues between courses run
on-campus and their equivalent courses run off-
campus. There are also issues relating to illegal use
of software. While every effort is made to ensure the
legality of software used on-campus, even a simple
request that students submit their work in Word
format can be interpreted as condoning software
piracy in countries where legal software is
expensive and where ‘bootleg’ copies are easily
available.
This paper describes a project to help address
these issues. We look in detail at a project
concerned with the building of UoSLinux for use
within certain programmes at the University, both
on-Campus as well as off-Campus. This so-called
LiveCD is based on the Knoppix/Debbian
distribution.

Keywords
Linux, LiveCD, distance learning, software piracy

1. INTRODUCTION
While Linux has been around for some time, in the
context of system installation, it cannot be regarded
as the most user-friendly operating system in the
world. True it generates a great deal of information
to the user during the install process but with most

of the output being of a highly technical nature, its
significance often bypasses all but the most
experienced of users. Most novice users do not
ever have to load an operating system – this is
normally bundled with the machine and pre-setup
for the particular hardware arrangement. In the
event of a major fault, most users would reach for
their ‘recovery CD’ rather than get themselves dirty
trying to install a new operating system.
For those of us who have braved the ordeals of
installing a new version of Windows operating
system, what is particularly striking is the almost
complete lack of detail of what is happening during
the installation process. Indeed for most of the time
your mind is distracted by a series of still screen
images thanking you for your purchase and
highlighting many of the benefits of your new
operating system. Hype you may say, but it does
present a calming distraction and feel-good factor
when you consider that the operating system is able
to take most major decisions (and get them right)
about your installation unaided and with no safety
net.
Of course most operating systems prefer to be the
centre of attraction i.e. the only operating system
loaded on that computer. Decisions and
consequences become of lesser significance when
you can comfortably instruct the installation process
to format your hard drive in the file system of its
choice. However, when you are in a situation where
you need to keep your “normal” operating system
usable but wish to try out other systems, then
clearly there are major concerns experienced during
the installation of a new operating system. It is an
unfortunate fact of life that casual users who would
like to ‘dip’ into an alternative operating system are
the users least equipped to perform such a task.

2. THE NEED FOR UOSLINUX
It was in this context we investigated the use and
distribution of the LiveCD. LiveCDs allow users to
run Linux software on almost any machine without

 2

disrupting or changing any data, partitions etc on
their host machine. Indeed as the name suggests,
the system uses the CD as its hard drive without
needing to store any information on the real hard
drive.
Alternatives to the LiveCD were explored such as
VMWare and Virtual PC. These are very useful
alternatives and ones we also use within a higher
education environment. They allow the concept of
“guest” operating systems to exist on a host system
without destroying the underlying disk file system,
appearing only as a large file to the host system.
Both types of systems have advantages and
disadvantages, however one key difference is that
LiveCDs such as Knoppix are available on free
download, whereas VMWare and Virtual PC are
commercial products with related licensing issues.
One of the major problems we faced with the
LiveCD was that it came with a fixed set list of
programs (many games related, many editors,
alternative browsers, even alternative desktops).
What we lacked was a means of customizing the
product to a point where it could be used within the
curriculum. VMWare and Virtual PC here has a
distinct advantage in that both the guest operating
system and applications can be distributed as files
ready to attach to the Virtual Manager. What was
needed was a way of customizing a LiveCD
distribution to allow us to run whatever application
mix we considered appropriate for its use.
As the overall target for the custom LiveCD
(subsequently to be called UoSLinux) would be for
use by students from the University of Sunderland
(both at home or on Distance Learning courses), it
seemed appropriate that the main work be
undertaken as a final year project. Much of the text
in this paper has therefore been taken from that
project.

3. DEVELOPMENT ENVIRONMENT
Knoppix uses on-the-fly compression to allow up to
2 gigabytes of useable software to be installed into
a 700-megabyte image. This image is stored in the
‘KNOPPIX’ directory of the CD and is itself called
simply KNOPPIX with no file extension.
In an interview with Knopper, Alexander Antoniades
[1], discovered that the Knoppix OS itself is
compressed using the gzip algorithms. From tests
he had carried out, Knopper noted that there were
higher compression ratios available but gzip was a
good trade off between speed and compression.
The KNOPPIX file system is created using a
compressed loop back (cloop) driver, which is
mounted at boot.
It was expected that the UoSLinux development
would need to take place on a hard drive (rather
than on the fly). To ensure sufficient space was
available for development purposes, it was felt that

at least 4 gigabytes of hard drive space would be
needed. This would allow for the CD image to be
replicated locally, decompressed and then
recompressed ready to be written back to CD for
testing, with ample leeway for adding and removing
programmes as needed. As Knoppix offers
approximately 2 gigabytes of uncompressed
programmes and the CD itself is 700 megabytes in
size, 4 gigabytes of hard drive space was
considered ample. Development was undertaken on
an 80-gigabyte hard drive with a fresh install of
Mandrake 9.2 Download Edition complete with all
Mandrake bug fixes and patches installed. This left
enough space to create a partition of a suitable size
to be used purely for development purposes.
As Knoppix runs from a ram disk, memory was a
concern. The official Knoppix home page suggested
that the minimum requirements were:
“20 MB of RAM for text mode, at least 96 MB for
graphics mode with KDE (at least 128 MB of RAM is
recommended to use the various office products)”
[2].
It was expected that development would be much
more memory intensive than using the ‘normal’
office tools available. The PC used for development
had 512 megabytes of ram installed, and this was
considered to be sufficient. No development was
attempted on computers with less installed memory.
Linux and Unix both offer the user a number of
shells to work in. A shell is a command line interface
for Unix or Linux. While a number of shells are
available to the user, the Bourne Again Shell (bash)
is the most widely used in Linux [3].
The Korn Shell (ksh) was developed by David G.
Korn at AT&T Bell laboratories, primarily to take the
features of bash and another common Unix shell,
the C shell, and build on both with additional
features. Ksh is a complete high level programming
language aimed at application developers and is
considered ideal for prototyping work.
Approximately 80% of the respondents to an AT&T
Bell survey of Unix users regularly use ksh. The
Korn Shell builds on the functionality of the Bourne
Shell and almost any script written for the Bourne
Shell will work in ksh [4].
On campus, the University makes use of a number
of Sun workstations running Sun Solaris OS. As
well as running applications such as Java and
Oracle, these Unix facilities are also used on one
specific module (COM264), for which ksh scripting
is a major component. Indeed this was one of the
major motivations for developing the UoSLinux
project.
As ksh is a proprietary programme, owned by AT&T
Bell labs, Linux users have to search for free
alternatives. One such offering is known as the
Public Domain Korn Shell (pdksh). This clone of the
original Korn Shell deviates from the original, as

 3

noted by the current developer, Michael Rendell [5]
Debian make a pre-packaged version of pdksh
available and was chosen as the version to be used
in the production of UoSLinux. As noted by Robert
Luberda, the person responsible for the Debian
version of pdksh, this is a mostly complete clone of
the original ksh [6].
The directory structure created consisted of a main
directory and two sub-directories. The main
directory was named KNOPPIX and, within this
directory, a master and source directory were
created. A KNOPPIX directory was then created in
both subdirectories. This gave a directory structure
as shown below:
Root - Root partition

KNOPPIX - Main development directory
Master - Local copy of CD contents

KNOPPIX - Directory copied from CD
Source - Directory for uncompressed data

KNOPPIX - Uncompressed files from
ram disk

This layout was designed to create a central
repository for all work connected with the
development of UoSLinux. Roberts et al [7] point
out the value of centralized repositories for
managing and sharing information in a common
format that can be more easily managed and
queried. Wolin and Lauer discussed the use of a
central repository for code management, describing
the concept of centralized storage as “essential” [8].
While their work can be considered informal, it is no
less relevant.

4. BUILDING THE DISTRIBUTION
The preparation for and initial development of
UoSLinux was undertaken using a CLI. This allowed
some experimenting and work towards a final
system, developing the system alone without the
overhead of a GUI. A shell script can often be more
easily and quickly modified than a GUI program.
The ability to quickly modify the program, as well as
allowing for more control, fit well with the RAD ideal
of incremental changes implemented quickly.
The use of switches should be common place to
anyone who has used the CLI to perform tasks,
regardless of the OS. Even GUI based programs
can make use of switches to enhance or manage
their functionality. The Microsoft Windows Explorer
file management tool is typical of this, with a set of
switches available to enhance or control the
commands’ functionality.
Unlike Windows, Unix and Linux switches and
commands are both context sensitive. This is an
important distinction as, for example, the command
to list directory contents (ls) can be used with a
number of different switches. The command ‘man ls’

displays a typical example of this. There are a total
of 54 switches available to the command. If the user
were to type ‘ls –x’, they would be given a listing of
files and directories sorted by rows instead of the
default of columns. If they were to use a capital x as
in ‘ls –X’, files would be sorted alphabetically by file
extension. Both show the same data, it is the sorting
order that changes. This ability to customize can, as
mentioned earlier, allow for fine control of the output
from the majority of Linux commands, but must be
managed carefully.
In common with Unix, the majority of Linux
commands have manual (man) pages. At the
simplest level, the syntax for accessing these is
‘man <function>’, where function is the command
for which you need help. For example typing ‘man
man’ at the command line gives a brief synopsis of
the man command itself and the available switches
for customizing output.
The initial copying of the Knoppix CD had to be
made in two stages. As well as copying the contents
of the CD itself, the decompressed data also had to
be copied from the ram disk. The 700 megabytes off
the CD plus the 2 gigabytes approximately of
uncompressed data could take a while to copy. As
an example of this, on the computer used for
development, copying the files needed for
remastering took approximately 21 minutes. The
command to copy data in Linux is cp. The man
page for cp offers a number of switches to be used.
The most relevant for UoSLinux were –p, -R and –v.
Respectively, these preserve file attributes, copy
data recursively and do so verbosely. The use of
these switches ensured not only that all data was
copied exactly ‘as was’ but that the user was kept
informed in line with the tenet ‘Visibility of system
status’.

5. FINE TUNING THE RESULTS
The system makes it fairly easy to remaster
UoSLinux and add/remove software as needed.
That said, it could always be easier and the addition
of a comprehensive menu to the doUoSLinux.sh
script would be fairly easy. In a similar way,
breaking the doCustom.sh script down into a menu
driven structure or at least a modular set of
components would also be fairly easy to do.
Particular attention needs to be paid to the process
of removing installed programs as the process can
be made more ‘friendly’ to the user, with string
handling being handled through the script so as to
minimize the work for the user.
All editing is done through the vi text editor. While
this can be a valuable learning experience for
students (vi is part of the module COM264), it can
also be intimidating to be forced into using it and
other options such as ‘pico’ or ‘joe’ need to be
explored for a more friendly user environment.

 4

Another one of the design requirements for the
project was to include a version of the network
simulation software ‘ns’. Unfortunately there is a tool
already installed in Knoppix called ns and this
creates conflicts. That said, ns installs and validates
itself well enough and seems to be perfectly
useable once the various path scripts are setup.
However this has not been fully tested at this stage.
Internationalization still needs to be addressed,
UoSLinux currently defaults to American English.
This is fine when using a GUI but needs to be
addressed for shell scripting. It is to make this
change at boot but it would be preferable if users
never even had to contend with changing system
settings before they even used the OS.
None of these problems alone are major but, added
together become an irritating array of problems.
These will be addressed in the near future.

6. CONCLUSIONS
The overall project demonstrates the feasibility of
the distribution although some difficulties do remain.
Knoppix (and thus UoSLinux as a derivative work)
seems to struggle to recognize and work with USB
devices reliably. This problem is not unique to
LiveCD versions of Linux but is one that, in general,
needs to be addressed within the Linux community
if the OS is to achieve the levels of acceptance
aspired to. From experience both Mandrake 9.1 and
9.2 struggle to achieve reliable USB support as well.
While not yet tested, the newer Linux kernel 2.6 is
rumoured to address a lot of the problems with USB
devices.
In terms of its acceptance into Higher Education, we
plan to trial its use in the “on-Campus” version of
COM264 next academic year. Depending on the
lessons learned from that experience and further
development of UoSLinux as a distribution, we will
trial this at some of our Distance Learning groups

where we see the major advantage and useful
student experience.
In the meantime, we plan to post the current version
of UoSLinux onto its own distribution site at the
following URL:
 www.UoSLinux.sunderland.ac.uk
Both students and other institutions will be invited to
get involved with the project and hopefully take this
to a much more advanced and useful stage.

7. REFERENCES
[1] Antoniades, Alexander (2002), Interview with

Klaus Knopper of Knoppix,
www.osnews.com/story.php?news_id=2305&
accessed July 2004.

[2] Knopper, Klaus (2004), Minimum System
Requirements, http://www.knopper.net/knoppix-
info/index-en.html accessed July 2004.

[3] Schenk, Thomas et al (2000), “Red Hat Linux
System Administration Unleashed”, Sams
Publishing, ISBN 0 672 31755 9

[4] Korn, David (2000), “Korn Shell Overview”,
www.kornshell.com/info/ accessed July 2004.

[5] Rendell, Michael, Pdksh – The Public Domain
Korn Shell, www.cs.mun.ca/~michael /pdksh/

[6] Luberda, Robert, pdksk, Debian Website,
http://packages.debian.org/stable/shells/pdksh
accessed July 2004.

[7] Roberts, Richard J et al, (2001), “Information
Access: Building a “GenBank” of the Published
Literature”, Science, Vol 291 p 2318-2319

[8] Wolin, Elliot and Lauer, Rochelle (1992),
“Thoughts on Code Management”, Yale
University

