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Abstract. A major issue in the design of cellular manufacturing systems is the alloca-
tion of machines and parts to cells. This determines the overall structure and perform-
ance of the system in terms of part flow among cells. Several design and operational
constraints such as an upper limit on the cell size, multiple units of the same machine,
allocation of certain machines in the same or different cells and nonconsecutive visits of
a part to the same machine during its processing, can be taken into account. The pres-
ent work deals with the problem of simultaneously allocating parts and machines to
cells in manufacturing systems where replicate machines and several design require-
ments exist. The part allocation section of the probiem, which is trivial under the single
machine type hypothesis, becomes quite complicated, but more realistic, when more
than one unit of each machine type exist. The problem s first defined and formulated
in a mathematical programming form. Subsequently, a heuristic algorithm based on a
version of simulated annealing is used to produce enhanced system configurations.

Keywords: Cellular manufacturing, multiple machines, simulated annealing

1. INTRODUCTION

Group technology (GT) is a manufacturing philosophy which organizes and
uses information for grouping various parts and products with similar machining re-
quirements into families of parts and corresponding machines into machine cells. The
main objective of cellular manufacturing, which is an application of GT, is to construct
machine cells, to identify part families and ultimately to allocate part families to ma-
chine cells so as to minimize interaction among different cells. This way, a number of
manufacturing cells are constructed, taking into account the processing similarities of
the parts. Each part (or product or subassembly), of course, should ideally be processed
entirely within the machine cell to which it is assigned, imitating and taking advantage,
therefore, of the benefits of small job-shops.
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The part and machine partitioning problem, being a central issue of cellular
manufacturing, has been tackled using a number of solution procedures. Most of the
procedures suggested in the literature are based only on the machine-part incidence
matrix, i.e. a zeéro-one matrix denoting whether a part requires processing from a ma-
chine or not. Those include the work of Mc Auley [8], Rajagopalan and Batra [9], King
(4], Kumar et al. [6]. Such procedures are often incapable of accommodating design and
operational constraints such as: an upper limit on the size of the cells formed, routeing
information on each part, the potential for multiple nonconsecutive visits of a part on
the same machine during its processing, the existence of multiple units of the same
machine (replicate machines) in order to facilitate and decongest heavily machine
loaded cells, ete. There exist of course procedures which incorporate some of the above
design constraints. The cell size constraints, for example, are often taken into account
by several techniques as in Ballakur and Steudel [2] or in Logendran and Ramakrishna
[7], while other constraints, such as the machine co-location or machine separation
constraints are less often taken into consideration. Multiple units of the same machine,
maximum (or minimum) cell size and other important features have been taken into
consideration in the work of Viswanathan [12]. Nevertheless, the major input to the
model is still the machine-part incidence matrix, neglecting thus the important feature
of part routeing information.

In this paper, the problem of partitioning parts and machines into cells in a
multiple machine environment is considered. The realistic design and operational con-
straints of cellular manufacturing systems are presented and discussed in detail. A
comprehensive model and a heuristic algorithm based on a version of simulated anneal-
ing, that incorporates four realistic design and operational constraints is employed,
with the objective not only to produce the minimum intercell part-flow assignment of
machines and parts to cells, but at the same time to determine the part routes that
produce this minimum assignment. It should be mentioned here, that in the presence
of several replicates of the same machine in the model, the part route of each part is no
longer an input to the model, but an output to be produced along with the minimum
partitioning. The applicability of the proposed model and heuristic algorithm is il-
lustrated via a numerical example.

2. CELLULAR MANUFACTURING SYSTEM CONSTRAINTS

The most important and realistic constraints that characterize a cellular manu-
facturing system are the following:

2.1. Replicate (multiple) machines

Taking into account the processing times of parts in the analysis of part and
machine partitioning problems, one has to ensure that the required machine capacity is
always available. The number of units of each machine type, therefore, should be one
or more depending on the workload of the system. This number should be treated as an
input to the model. In the presence of replicate machines, i.e. when the number of
units of the same machine is more than one, constraints should be imposed
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to ensure that the replicates of the same machine are assigned to different manufactu-
ring cells (machine separation constraints) so that the main reason for machine repli-
cation is fulfilled, i.e. possible congestion of any cell is alleviated.

2.2. Cell size

A trivial solution to the part and machine partitioning problem would be to
cluster the entire set of parts and machines into a single cell. This of course would
eliminate any intercell movements among parts. However, this is far beyond what is
desired. Reasonable upper bounds on the size of the cells are usually assumed, in terms
of machines. This limit on the number of machines per cell is often imposed in practice
based on previous experience. A lower bound on the number of machines per cell is
sometimes incorporated in some of the models presented in the literature (Askin and
Chiu [1], Viswanathan [12]), but in our model the nature of the objective function itself
inherently prevents the generation of small-sized cells and thus the inclusion of a
lower bound on cell size has not been considered.

2.3. Machine co-location and separation constraints

As already mentioned above, it is sometimes necessary to impose constraints
on the co-location of some machines. For example, in the case of replicate machines,
care should be taken not to allow multiple units of the same machine to be assigned to
the same cell. Apart from the case of machine replication (where machine separation
constraints are required) other reasons may dictate the placement of certain machines
in different cells. Heragu [3], for example, reports that for safety reasons sometimes
two or more machines have to be assigned to different cells. Other reasons may dictate
the opposite, i.e. placing two or more machines in the same cell (machine co-location
constraints).

2.4. Part routeing information

In order to describe real intercell traffic among parts in a cellular manufactur-
ing system part operation sequences are considered. When part routeing sheets are
taken into account, one can easily calculate the total number of consecutive operations,
i.e. total intermachine flow, based on all parts, between any two machines for all ma-
chines. Thus, the total intermachine flow which forms the objective function to be
minimized in our model, describes the exact total number of intermachine movements
of all parts. This objective function is sought to be minimized under the constraints of
operation sequences, taking also into account the possibility for a part to undergo two
or more nonconsecutive operations on the same machine, regardless of the direction of
move. For example, if the routeing of a part is from machine M1 to machine M2 and
back to machine M1 again, then this particular part would contribute with two intracell
or two intercell movements, depending on whether machines M1 and M2 are located in
the same or different cells respectively.
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3. THE MODEL
3.1. Notation

Before we present and discuss our model we introduce the notation employed.

tJ = 1,.,M machines

p=1..P parts

r=1,.,R, alternative routeings (due to the presence of replicate machines) for part p
g it

g = 1.....bp operation sequence number for part p

N = maximum number of machines allowed in any cell

cprsi= a 0-1 coefficient indicating whether the s” operation of part’s p r** alternative

routeing requires processing from machine i (¢;i=1) or not (¢, ,;=0).

It should be mentioned at this point that although there is a single process
plan for each part, alternative routeings are generated for a part if this requires proc-
essing from one or more types of machines with multiple units (given that the number
of units of each machine type is known a priori). For example, if the routeing of a part
is M1, M2, M4, M5 and machine M2 has one replicate, say machine M3, then a second
(alternative) routeing is generated for this part which is M1, M3, M4, M5.

3.2. Mathematical model

Given an allocation of machines into cells and noting that for each part p there
are R, alternative routeings, one wishes to choose the routeing which generates the
minimum amount of intercell movements during the processing of a particular part.
Therefore, let

Sr M-1 M
=1 =1 j=1+4l

where X;; 15 a 0-1 decision variable indicating whether machines : and j are located in
the same cell or not. Thus, given a solution X,;,- for all : and j, c;._ represents the mini-

mum amount of traffic generated during the processing of part p when this follows a
particular routeing (over all alternative routeings). In the presence, therefore, of mul-
tiple (replicate) machines, the cell formation problem is formulated as follows:

P
min ) Cp 1

p=1

k-1 N
E'Yli+ Exhbﬂ;-l kil,-...M

)
1=] Jztvl {2
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le-i-Xl-k—Xjk <1
i=1,...,.M-2

Xij— X+ X <1 (3)
j=itl, . M-1, k=j+1,...,M

-XU+XI-* "'Xﬁ. <1

XU.:O,I 1=1.M-1, j=i+l.. .M (4)

In the above formulation, constraints (2) require that the maximum size of
each cell is N. Constraints (3) are imposed to preserve the connectivity of the above
formulation, i.e. they ensure that machines j and & are grouped together (X;, = 1) if
machines ¢ and j as well as machines i and % are both allocated to the same cell (XQ-=1
and X, =1 respectively).

The above model can also be applied for the case of separation constraints, i.e.
constraints which prevent two or more machines from being allocated to the same cell as
happens in the case of replicate machines. This is a distinct feature of the particular cell
formation problem we are dealing with. In the context of the above formulation, these
constraints are of the form:

Xe#1 k<l (5)

which indicate that machines k& and [/ cannot be allocated to the same cell. Similarly,
when operational or other reasons require that machines g and ¢ be placed in the same
cell, the following constraints

Xa=1 g<t (6)
have to be considered.

Once the best machine-to-cell allocation has been produced via the solution of
model (1)-(6), one has to consider the corresponding assignment of parts to ceils. This
can be achieved by solving a simple linear assignment problem [11].

4. HEURISTIC ALGORITHM

The cell formation problem itself is a NP-complete problem. This rules out the
possibility of finding the optimum solution using an exact algorithm. The heuristic
proposed in this work is based on a version of simulated annealing proposed by
Kirkpatrick et al. [5]. The algorithm can be applied to the case of machine replicates as
well as to problems with machine separation and co-location requirements. It starts
with a random initial feasible assignment of machines to cells. Each time the assign-
ment is changed by accepting solutions which not only improve but also worsen
the objective function. The latter assignments are accepted in order to prevent
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problem from the beirg trapped in local optima. Any implementation of the simulated
annealing heuristic requires the setting of the following features (Sofianopoulou [10],

[11}):

1. A perturbation scheme to generate new neighbouring solutions.

2. An annealing schedule which includes a) an initial (7;) and a final {Tf}
value for the temperature parameter T, both empirically set by a number of
pilot runs, b) a rate of cooling «, set equal to 0.90 and c¢) a rate of change €
in the number of solutions attempted at each temperature value which was
set equal to 0.10.

The heuristic consists of the following modules.
4.1. Initial assignment

The initial assignment of machines to cells is random. Machines are randomly
chosen and if they do not violate any separation or co-location constraints, are grouped
together until the cell size constraint is violated, and a new cell starts forming. The
objective function value corresponding to this initial assignment is also calculated.

4.2. Change of machine assignment

A machine is randomly chosen and its (cell) assignment is again randomly
changed. If the machine violates any of the constraints in its new position, another
assignment is randomly chosen until no constraint is violated. If this reassignment
procedure repeatedly fails, the machine that has been picked starts the formation of a
new cell. Then the change in the objective function Af is calculated. In particular, for
each new candidate solution, the change in the amount of intercellular moves is calcu-
lated for all alternative routéings of each part, and the most advantageous one is de-
termined. The sum of all those partial differences forms the total change Af in the

objective function. If Af <0, then the new solution is accepted, otherwise the case is

treated probabilistically. The candidate solution is accepted only if e = Yy, a ran-
dom variable y ~ U(0,1). The probability of accepting such a solution, which augments
the objective function value, is reduced as the value of T - the simulated annealing
control parameter- decreases (by a rate a« = 0.90) and the change Af in the objective
function increases. The algorithm continues with a certain number of iterations
(reduced by €) at each temperature level until the total prescribed number of iterations
has been reached or when no solution has been obtained.

5. ILLUSTRATIVE EXAMPLE

The present implementation of the simulated annealing algorithm was coded in
Fortran 77 and run on a RISC technology DEC 5810 computer. In order to demonstrate
the applicability of the algorithm to this class of the cell formation problem, an instance of
the problem with 13 machines and 30 parts is considered. The particular data set that
was used to run this application was randomly generated. Data input to the model
include the number of machines (M=13), the number of parts (P=30), the maximum cell
size (N=17), the number of groups of replicate machines and the number of multiple units,
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replicates, in each group. Random sequences of machines were produced to construct
the part routes for each part, which are presented in Table 1. In this example, two
groups of replicate machines are present. The first one is comprised of machines M2
and M3 and the second one of machines M8, M9 and M10. In the data set of Table 1 it
can be seen that some parts visit the same machine (or one of its replicates) noncon-
secutively, more than once, e.g. part P3 visits machine M8 at the second stage of its
processing and again visits the same machine (or one of its replicates) at the sixth
stage,

Table 1. Random data set.

MACHINES
3 4 5 6 7 8 9 10 11 12 13 14 15 16
2 3 1 4 5
7 2 6 1 3 4 5
5 4 6 2 Jimslllomy 8
3 .2 1 4
12
3 1 4
3 4 5 2
1 2 3
2 1
4 1 3 5 2
4 5 g | 3
2 1 4 3 5
g 8 4 5 1
3 4 5 2
3 5 1 2 4
2 1 3
2 3 &5 4 1
2 5 1 g 4
5 1 4 2
4 5 3 1
3 2 1
3 1 4 2
1 4 3 2
1 3 2
IS 3 4 6 5
3 1 2
272 3 1
28 2 5 1 3 4
297 4 5 3 2 1 6
30 4 7 1 3 285 6

Table 2 presents the solution of this part and machine partitioning problem.
The algorithm was run for 2000 iterations (attempted but not necessarily accepted
solutions). Three cells were produced. Two of the cells are loaded up to their size limit
while the rest of the machines are placed in a third cell. The best total number of inter-
cellular moves among all parts is 30.
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Table 2. Parts and machines partitioning.

Machines | Parts

1,3,5,8,11,14,16 5,6,9-11,14-16,21,25,27

2,4,6,7,10,12,13 1-4,7,8,12,13,17,18,20, 22-24,26,28-30

Part routeings

12-4-6-13-14

7-4-8-11-12-6-2 or 7-4-10-11-12-6-2
12-8-14-7-6-10-13 or 12-10-14-7-6-10-13
7-9-4-10

11-12

8-1-5-15

3-11-6-7-10

6-10-12

16-6-2

5-13-10-2-11 or 5-13-8-3-11 or 5-13-10-3-11
2-13-14-8-11

7-6-8-8-11 or 7-6-10-8-11 or 7-6-10-10-11
15-2-4-7-12

3-16-8-11-14

8-11-5-16-8

11-8-16-3

14-2-6-10-7 or 14-3-6-10-7
10-2-13-14-4

9-15-1-13-10

12-2-10-4-5

16-8-2-2 or 16-10-2-2 or 16-8-3-2
7-13-6-8-1 or 7-13-6-10-1

2-13-12-10

6-15-9

4-5-8-8-16-14

6-10-2

11-1-3

10-6-11-13-10

10-4-6-2-7-13-1

10-13-10-4-14-16-6
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6. CONCLUSIONS

In the present work the part and machine allocation problem was examined

with the aim of minimizing the amount of intercellular moves. Four important design
and operational constraints were discussed. A mathematical model that incorporates
these constraints was developed. The model applies to the case where multiple units
of the same machine are present. Care was taken to allocate them to different manufac-
turing cells. Machine co-location and/or machine separation constraints were also in-
cluded in order to prevent and/or to impose machine co-location. Finally, part routeing
information was taken into account in order to determine the exact amount of intercel-
lular moves. A heuristic based on simulated annealing was employed to solve the
problem. Results for a test-case problem were also included.
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