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Development of a small-scale spray-drying approach for amorphous 

solid dispersions (ASDs) screening in early drug development 

The present study details the development of a small-scale spray-drying approach 

for the routine screening of amorphous solid dispersions (ASDs). This strategy 

aims to overcome the limitations of standard screening methodologies like 

solvent casting and quench cooling to predict drug-polymer miscibility of spray-

dried solid dispersions (SDSDs) and therefore to guarantee appropriate carrier 

and drug-loading (DL) selection. A DoE approach was conducted to optimize 

process conditions of ProCept 4M8-TriX spray-drying  to maximize the yield 

from a 100 mg batch of Itraconazole/HPMCAS-LF and Itraconazole/Soluplus 

40:60 (w/w). Optimized process parameters include: inlet temperature, pump 

speed, drying and atomizing airflows. Identified process conditions derived from 

the DoE analysis were further i) tested with Itraconazole, Naproxen and seven 

polymers, ii) adapted for small cyclone use, iii) downscaled to 20 mg batch 

production. Drug-polymer miscibility was systematically characterized using 

modulated differential scanning calorimetry (mDSC). Spray-drying was 

identified as a well-suited screening approach: mean yield of 10.1 to 40.6% and 

51.1 to 81.0% were obtained for 20 and 100 mg ASD productions, respectively. 

Additionally, this work demonstrates the interest to move beyond conventional 

screening approaches and integrate spray-drying during screening phases so that 

a greater prediction accuracy in terms of SDSDs miscibility and performance can 

be obtained.  

Keywords: amorphous solid dispersions; spray-dryer; design of experiments; 

screening; miscibility; solvent casting; quench cooling; polymers  

Introduction 

The increasing number of poorly water soluble compounds within drug pipelines poses 

problems in the drug development strategy of orally administrated formulations 

(Lipinski et al. 2012). The low solubility usually results in a limited dissolution rate and 

reduces the oral bioavailability of the drug. In this regard, amorphous solid dispersions 

(ASDs) can improve aqueous solubility and hence bioavailability of drugs (Vasconcelos 



 

 

et al. 2007). This formulation strategy involves the dispersion of the amorphous drug 

particle within a polymeric matrix, achieved by a melt or a solvent method (Teja et al. 

2013). From an industrial perspective, spray-drying is a well-known process used to 

convert solutions, suspensions and emulsions into powder at laboratory, pilot and 

commercial scale (Paudel et al. 2013).  

In the past decades, laboratory spray-dryers have been routinely used in the 

pharmaceutical industry for the production of ASDs. Typically, this technique enables 

the production of milligram to gram scale batches and thereby is particularly suitable to 

support preclinical to early stage clinical activities (He and Ho 2015). In the current 

study, the ProCept laboratory spray-dryer was used due to its capability to work with a 

large range of feed solution volumes ranging from 0.5 mL to 24 liters/8 hours (ProCept 

2014). Numerous studies have reported the optimization of spray-dried powder 

properties with a predominant focus on yield and particle size distribution (Amaro et al. 

2011; Schmid et al. 2011; Lebrun et al. 2012).  

However, the ability of laboratory spray-drying to provide reliable productions 

of solid dispersions during screening stage remains one major constraint (Ormes et al. 

2013). It is well known that small batch size at the milligram scale results in a 

significant yield reduction of the spray-dried material. Few studies have considered the 

use of spray-drying for the production of solid dispersions at milligram scale (Chen et 

al. 2014; Gu et al. 2015). Nevertheless, the majority of the formulations investigated 

had generally limited drug-loading (DL) and were tested with a restricted number of 

drug and excipients. To the best of our knowledge, little has been published on the 

capability of spray-drying to be downscaled and adapted to the needs of screening 

phases of solid dispersions in early drug development. The use of spray-drying during 

small-scale ASDs screening remains limited in its current form and conventional 



 

 

screening approaches, namely solvent casting and quench cooling are generally 

preferred (Dai et al. 2008; Parikh et al. 2015).  

In a recent study, the authors demonstrated that standard screening methods like 

quench cooling and solvent casting performed at various evaporation rates cannot 

guarantee appropriate carrier and DL selection due to their limited accuracy to predict 

the phase behavior of spray-dried solid dispersions (SDSDs), consistently (Ousset et al. 

2018). Despite conventional screening methodologies being the commonly used 

approach in the pharmaceutical industry, the influence of the preparation method on the 

properties and performance of ASDs generated during screening phase, and 

consequently on the carrier selection, should not be neglected. Given the importance to 

select appropriate polymer and DL in the early phase of drug development, there is an 

interest to move beyond traditional screening approaches in order to better anticipate 

SDSDs properties and performance. The novelty of this work consists of reconsidering 

the use of spray-drying in a small-scale approach and improving the prediction accuracy 

to determine the drug-polymer miscibility of SDSDs.  

This work describes for the first time the development of a small-scale spray-

drying approach for the screening of binary ASDs at preclinical stage and aims to define 

a generic method that can be used routinely in the pharmaceutical industry. In this 

regard, a particular attention has been given to develop a method in line with the 

screening requirements that: i) allows the testing of a large range of excipients and high 

DL, ii) can be applied on a large range of active drugs including low glass transition 

temperature (Tg) compounds, iii) produces solid dispersions at the milligram scale with 

optimized yield, short development time and limited amount of raw material, iv) 

respects the needs for subsequent analytical characterization of the screened 



 

 

formulations, v) is representative and scalable with regard to formulation attributes and 

characteristics as well as process parameters and conditions.  

First, a design of experiments (DoE) approach was conducted to identify robust 

processing conditions of drying airflow, inlet temperature, atomizing airflow and pump 

speed in order to optimize the yield of 100 mg productions of Itraconazole ASDs. The 

use of DoE is a well-established statistical method in compliance with quality by design 

(QbD) principles, and encouraged by the authorities (Q8(R2)-ICH) to provide a better 

understanding of the influence of formulation and process parameters on the quality 

attributes of the final product (Lebrun et al. 2012; Kauppinen et al. 2017). Second, the 

identified process conditions derived from the DoE approach were validated and tested 

with more polymers (listed in Table 1), an additional drug (Naproxen) and different DL. 

The process conditions were further adapted to the use of small cyclone, re-tested and 

downscaled to assess the spray-drying capability. The phase behavior of solid 

dispersions produced at small-scale ( �  100 mg) was analyzed using modulated DSC 

(mDSC) and X-ray powder diffraction (XRPD), and compared to samples prepared by 

spray-drying at larger scale (2.5 g), and by standard screening methodologies, namely 

solvent casting and quench cooling. Finally, the performance of screened SDSDs of 

Itraconazole and Naproxen in terms of solubility enhancement and physical 

stability was also investigated.  

Materials and methods 

Materials 

Naproxen and Itraconazole were purchased from SRIS Pharmaceuticals (Hyderabad, 

India). Hydroxypropylmethylcellulose phthalate (HPMCP HP50) and 

hydroxypropylmethylcellulose acetate succinate fine grade (HPMCAS-LF) were 



 

 

obtained from Shin-Etsu (Tokyo, Japan). Copolymer of N-vinyl-2-pyrrolidone and vinyl 

acetate (PVPVA) was obtained from Ashland (Covington, KY, USA) and 

polyvinylpyrrolidone (PVPK30) was purchased from VWR (Heverlee, Belgium). 

Copolymer of polyvinyl caprolactam-polyvinyl acetate-polyethylene glycol graft co-

polymer (Soluplus) was donated by BASF (Ludwigshafen am Rhein, Germany). 

Copolymer of methacrylic acid and methyl methacrylate 1:1 (Eudragit L100) and 

copolymer of methacrylic acid and ethyl acrylate copolymer 1:1 (Eudragit L100-55) 

were donated by Evonik (Essen, Germany). The solvents used were of analytical or 

HPLC grade. 

Methods 

2.1 Generic method development 

2.1.1 SDSD production 

Spray-dried binary solid dispersions were prepared using the laboratory scale ProCept 

4M8-TriX spray-dryer (Zelzate, Belgium). The feed solution was pumped to the nozzle 

via a peristaltic pump Watson Marlow 530S (Falmouth, Cornwall, UK). The process 

was operating with a length of two chambers and in the open loop configuration. 

Cyclone was systematically used to separate solid particles from drying gas airflow via 

centrifugal forces (Wang et al. 2006). Regarding this equipment, the supplier proposes 

cyclone in four different sizes (small, medium, large, extra-large) for optimal product 

recovery (ProCept 2014). Cyclone efficiency is directly impacted by the product 

characteristics e.g. particle size and density (Miller and Gil 2012). In this study, medium 

cyclone was initially used as it represents the best compromise approach to separate 

particles with a wide range of size and operates with a wide range of processing 



 

 

conditions. In this regard, medium cyclone is particularly adapted to the DoE approach 

where variable process conditions are tested and therefore particles with different 

properties are generated. Subsequently, identified process conditions derived from the 

DoE approach were tested with small cyclone. Powder was collected into a 2 mL glass 

vial for the 100 mg productions and into a standard aluminium pan (TA Instruments, 

Leatherhead, UK) in the case of the 20 mg batch production. Powder collection was 

done via a customized 3D printed funnel ensuring sealing of the system and reducing 

material loss during powder handling. The collected powders were stored in a vacuum 

oven for 48 hours. Output process parameters such as the chamber outlet temperature 

and the pressure drop (� P) over the cyclone were monitored via the acquisition system 

interface.  

2.1.2 DoE approach 

Based on literature review and prior knowledge, a risk assessment was conducted 

regarding yield impact and the following process parameters and material attributes 

were identified: four process parameters (drying airflow, inlet temperature, atomizing 

airflow and pump speed) and one material attribute (polymer type) (Patel BB et al. 

2015; Singh and Van den Mooter 2016). As seen in Table 2, each process factor was 

studied at three levels while the polymer type was included in the DoE as categorical 

factor (two levels). Intrinsic properties of polymers such as Tg and viscosity were 

covered via the polymer type factor. Additional key experimental factors such as nozzle 

orifice diameter, cooling airflow, cyclone size, solid content, DL, model drug and 

solvent were kept constant. The predefined values of each process and material input 

are listed on Table 3. 



 

 

In this DoE, the batch size and the DL were fixed at 100 mg and 40% (w/w), 

respectively, which is assumed to be representative of the operating conditions during 

screening at preclinical stage (Ayad et al. 2013; Lohani et al. 2014). Itraconazole, a 

BCS class II compound known for its extremely low solubility in water (estimated at 

approximately 1 ng/mL) was selected as model drug (Engers et al. 2010). Preliminary 

tests (data not shown) prior to the DoE study were performed to evaluate the physico-

chemical properties of seven polymers (cellulose, PVP, acrylate and miscellaneous 

polymers). This selection of seven polymers is a typical range of carriers tested 

during screening phases. The use of enteric polymers during preclinical drug 

development is of particular interest so that the limited hydration of such polymers 

in acidic pH conditions is preventing the release of amorphous drug substance and 

is limiting the risk of recrystallization into the stomach. The absorption can be 

therefore maximized in intestinal fluids where polymer hydration occurs (Ueda et 

al. 2014).  

Analyses regarding Tg measurement and viscosity of polymer solution at various 

concentrations were conducted due to their potential impact on the yield of spray-dried 

material (Paudel et al. 2013). Based on this preliminary evaluation, Soluplus, a non-

ionic and amphiphilic polymer with relatively low Tg (approximately 70°C) (Djuris et 

al. 2013) and HPMCAS-LF an enteric (pH 5.5) cellulosic derivative polymer known for 

its relatively high Tg (approximately 122°C) and viscosifying properties at high 

concentration (Ueda et al. 2014) were selected as they represented extreme properties 

among excipients of the studied domain. 

A response surface methodology (RSM) design including four continuous 

factors (three levels) and one categorical factor (two levels) was developed using JMP 

11 software (SAS, Cary, NC, USA). A total of 33 experiments including two repeated 



 

 

experiments and three center points were performed (Appendix). The analysis of 

variance (ANOVA) was computed to determine the statistical significance of each input 

variable on the selected response (yield). The non-significant terms were removed from 

the statistical model to optimize it. Then, the desirability of the response was evaluated 

and factor values were identified at maximized yield desirability. Finally, two 

dimensional contour plots were represented to visualize the influence of input variables 

on the response (yield). 

2.1.3 Yield calculation and specification 

Yield was identified as the main quality attribute and was integrated as response in the 

model for optimization purpose. Yield is calculated as the ratio between the amount of 

particles collected and the total amount of solid dissolved in the feed solution. The yield 

value is expressed in percentage (%).  

Yield specifications were defined depending on the production size: more than 

50% for 100 mg productions and more than 10% for 20 mg productions. The 

specification limits would result in sufficient spray-dried material for subsequent 

analytical characterization typically required during ASDs screening.  

2.1.4 Model validation 

In order to assess the robustness of the model, production of a 100 mg ASD batch of 

Itraconazole/HPMCAS-LF and Itraconazole/Soluplus 40:60 (w/w) was performed in 

triplicate using identified operating conditions and medium cyclone. The average yield 

value was computed and compared to the 95% prediction interval provided by the 

model. 

2.1.5 Model verification and adaptation to the small cyclone use 



 

 

Subsequently, the identified operating conditions were further: i) tested with the 

production of solid dispersions of Itraconazole and Naproxen mixed with a set of seven 

polymers at a fixed DL of 40% (w/w) (the listed parameters detailed in Table 3 were 

kept constant), ii) adapted to the use of the small cyclone, iii) re-tested with the 

productions of solid dispersions of Itraconazole and Naproxen at 40% and 20% (w/w) 

DL using small cyclone. Naproxen was selected due to its challenging properties 

regarding the manufacturing of low Tg compounds (approximately 6 °C). As 

amorphous forms exist in a rubbery state above their T g, the stickiness of 

amorphous material to the wall of the column would reduce tremendously the 

yield value of the spray-dried material (Paterson et al. 2005). 

2.1.6 Downscaling 

Optimized process conditions using small cyclone were further downscaled to ASD 

production of 20 mg. Production of solid dispersions of Itraconazole and Naproxen 

mixed with a set of seven polymers was performed. Each formulation was evaluated at a 

DL of 20% and 40% (w/w), respectively.  

2.2 Alternative ASD screening methodologies  

2.2.1 Solvent casting 

Stock solutions of drug and polymer with a solid content of 50 mg/mL were prepared 

using a binary solvent mixture of DCM/EtOH 2:1 (v/v). The stock solutions were mixed 

in the appropriate volumetric ratio and a final volume of 5 mL was spread on a teflon 

plate (21 cm × 15 cm). A 15 cm diameter funnel (VWR, Heverlee, Belgium) was put on 

top of the casting solution and the solvent evaporation was performed at room 

temperature for 1 week. The film casted solid dispersions were then removed from the 



 

 

teflon plate and were stored in a vacuum oven for 48 hours to remove residual solvent. 

2.2.2 Quench cooling 

Quench cooling screening was performed using a TA Instruments Q1000 DSC (TA 

Instruments, Leatherhead, UK). Casted samples were heated at a temperature of up to 

20 °C higher than the last thermal event e.g. melting of the drug or the Tg of polymer to 

obtain a molten mixture. A fast cooling temperature of down to -50 °C was applied to 

prevent the drug recrystallization from the molten state. Lastly, the quench cooled 

samples were analyzed in mDSC.  

2.3. Analytical methods 

2.3.1 Modulated DSC 

mDSC analyses were performed using TA Instruments Q1000 calorimeter (TA 

Instruments, Leatherhead, UK). The chamber was purged with a 50 mL/min flow rate of 

dry nitrogen. Indium was used for temperature and enthalpy calibration. The heat 

capacity calibration was performed at 96.9 °C using sapphire disks. About 2 – 4 mg of 

powder was analyzed in closed standard aluminium pans (TA Instruments, Leatherhead, 

UK). Samples were heated from 0 °C to 210 °C at 2 °C/min combined with a 

modulation of ± 1 °C and a period of 40 sec. The thermograms were collected and Tg 

was evaluated in the reverse heat flow signal using Universal Analysis 2000 software 

(TA Instruments, Leatherhead, UK). 

2.3.2 X-ray powder diffraction 

XRPD experiments were conducted on X Bruker AXS D8 Advance (Bruker, Karlsruhe, 

Germany). A few milligrams of powder were dropped on the center of a silicium 



 

 

monocrystal holder. Samples were analyzed over the range 4.5 - 30° at a scan speed of 

2.5 sec/step and a step size of 0.02°. The diffractograms were collected and processed 

using Eva DIFFRAC-SUITE software (Bruker, Karlsruhe, Germany). The integrated 

patterns represented the intensity as a function of 2� .  

2.3.3 Scanning electron microscopy  

Scanning electron microscopy (SEM) observations were performed using the 

JEOL JSM-IT300 SEM (JEOL, Tokyo, Japan) to characterize the shape and 

morphology of the spray-dried particles. Powder was attached to conductive 

double-sided carbon adhesive tape mounted on an aluminium stud and coated with 

gold. The SEM instrument was operated in high vacuum mode at an accelerating 

voltage of 5 kV and at a working distance of 20.9 mm. The data treatment was 

carried out using JEOL IT300 Operation software (JEOL, Tokyo, Japan). 

2.3.4 Dissolution tests  

Dissolution profiles of screened SDSDs of Itraconazole were obtained at a target 

drug concentration of 1 mg/mL from a dissolution medium of 50 mM phosphate 

buffer (pH 6.5) containing 2% Vitamin E TPGS as surfactant. Dissolutions tests of 

screened SDSDs of Naproxen were performed in dissolution mediums consisting of 

i) simulated gastric fluid without pepsin (pH 1.2) containing 0.5% SDS and 2% 

HPMC at a drug concentration of 1 mg/mL, and of ii) 50 mM phosphate buffer 

(pH 6.5) containing 0.5% SDS and 2% HPMC at 5mg/mL. Dissolution tests were 

performed under non-sink conditions with respect to the crystalline drug. This 

would allow discriminating screened SDSDs on their potential to generate and 

maintain supersaturation (Sun et al. 2016). In this regard, target drug 

concentration was selected greater than the solubility of crystalline drug in the 



 

 

chosen dissolution mediums. Accurate weight of 2.5 mg and 12.5 mg of SDSD 

(equivalent to 1 mg and 5 mg of drug, respectively) was distributed in 10 mL glass 

tube (VWR, Heverlee, Belgium). 1 mL of cited above dissolution medium was 

added to each tube. Temperature and magnetic stirring were maintained at 37°C 

and 350 rpm, respectively, using Thermo Mixer C unit (Eppendorf, Hamburg, 

Germany). During dissolution tests, samplings of 80 � L were withdrawn after 1, 5, 

10, 15, 30, 60, 120 and 150 minutes. Samples were filtered on 0.45 µm ultrafree 

centrifugal filter units (Merck Millipore, Burlingt on, MA, USA) and centrifugated 

at 14000 rpm during 2 minutes. The filtrate was pipetted and then properly diluted 

in H2O/ACN 1:1 (v/v). Itraconazole and Naproxen content was determined in 

HPLC coupled by UV detection at 260 and 272 nm, respectively. Similar protocol 

was applied to generate the dissolution profiles of crystalline Itraconazole and 

Naproxen in the tested dissolution mediums. All experiments were performed in 

triplicate.  

2.3.5 Physical stability studies  

Screened SDSDs of Itraconazole and Naproxen were stored at 40°C/75% RH and 

25°C/60% RH for 5 weeks. Powder was analysed in XRPD at t0, t2weeks and t5weeks in 

order to assess the potential of screened carriers to generate physically stable 

SDSDs under both stress and ambient conditions.  

Results and discussion 

DoE approach   

The results obtained for the DoE are detailed in Appendix. Yield values ranging from 

19.2% to 70.7% were obtained for the 100 mg batch production of 



 

 

Itraconazole/HPMCAS-LF and Itraconazole/Soluplus 40:60 (w/w). The model obtained 

for the yield response was fitted using multiple linear regression. The statistical 

significance of the factors was evaluated based on the confidence level of 95%. The 

fitted model was adjusted by removing the non-significant factors while keeping the 

main effects. The p-value of the ANOVA (< 0.05) and the adjusted R-Squared value of 

0.76 show that the response is described significantly by the optimized model (Figure 

1). Moreover, the model does not present lack of fit (p-value > 0.05), demonstrating its 

suitability. 

Based on DoE analysis and ANOVA results, seven factors including the main 

effects and the interaction terms were identified to have a significant influence on the 

response (p-values < 0.005). The main factors are ranked according to their impact on 

yield: atomizing air > HPMCAS-LF formulations > inlet temperature > drying airflow > 

interaction term between drying airflow and HPMCAS-LF formulations > pump speed  

> interaction term between the drying airflow and the inlet temperature. Interestingly, 

the type of polymer represented the second highest impacting effect on the yield. This 

reveals that the influence of this material attribute is as important as process parameters 

to understand yield variation of spray-dried material.  

Figure 2 shows the conditions (factors values) identified for every polymer 

formulation if the yield desirability is maximized. Mean yield values of 58.6% and 

75.6% were predicted for solid dispersions of Itraconazole/HPMCAS-LF and 

Itraconazole/Soluplus, respectively, at maximized desirability. The optimal values 

identified for the drying (0.45 m3/min) and atomizing (1.5 bars) airflows as well as the 

inlet temperature (60 °C) were the same for both HPMCAS-LF and Soluplus ASDs.  

The optimized value of the inlet temperature defined by the model was found at 

the lowest level of 60 °C. Indeed, the yield was negatively impacted by an increased 



 

 

inlet temperature. Low inlet temperature reduces the outlet temperature at the bottom of 

the chamber and at the entry of the cyclone (Cal and Sollohub 2010). Under the 

optimized process parameter conditions, the outlet temperature was measured at around 

40 °C; the outlet temperature is a good indicator of the product temperature to which the 

dried droplets are exposed (Maas et al. 2011; Paudel et al. 2013). High outlet 

temperature close or above the Tg of amorphous products favors material sticking on the 

glass walls and hence reduces significantly the yield (Paterson et al. 2005). Therefore, a 

low outlet temperature is particularly suitable for the production of ASDs with low Tg 

drug and/or polymer.  

According to the model, drying and atomizing airflows were positively 

correlated to the yield (Figure 2). Interestingly, atomization airflow was found as the 

main effect impacting the response and was positively correlated to the yield variation. 

In addition, a value of 0.45 m3/min of drying airflow was found to maximize the yield 

for both formulations. This observation is consistent with the theory of spray-drying: 

high drying airflow is reducing the residual moisture of the final product and improves 

the particle separation in the cyclone (Maury et al. 2005). The value of � P over the 

cyclone represents the cyclone efficiency to separate particles from the drying gas 

(Elsayed and Lacor 2011). The � P value is mostly influenced by the drying and the 

cooling airflows. A � P value of 51 mbar was measured during the tests with the 

optimized method. This value was in agreement with the supplier specification to ensure 

an optimal particle separation (ProCept 2014).  

Yet, pump speed was found to have a limited influence on the yield; DoE 

analysis revealed that the pump speed was identified as the least significant factor 

among the main effect terms. Moreover, the pump speed was found to influence the 

yield in an opposite way depending on the used polymer. The pump speed has a slightly 



 

 

negative effect on the yield of HPMCAS-LF ASDs but a slightly positive effect on the 

yield of Soluplus ASDs. This difference can be attributed to feed solution properties 

such as viscosity which is inherently impacted by the polymer type.  

Yield distribution map was constructed as a function of pump speed with each 

other variable process parameter. This aims to determine the pump speed value that 

enables the production of ASDs with various polymers in the context of generic method 

development. Figure 3 displays the two dimensional contour plot results that represent 

yield map for productions of 100 mg ASD of Itraconazole/HPMCAS-LF and 

Itraconazole/Soluplus 40:60 (w/w). The contour plots showed that a low pump speed in 

combination with optimal process parameter for inlet temperature, drying and atomizing 

airflows (Table 4 for further details) led to a maximum yield. Consequently, the pump 

speed value was set at 1 g/min.  

Furthermore, the fitted model was used to simulate the average yield of 5000 

productions using optimized process parameters as described in Table 4. The 

simulations were computed and the results are reported in Figure 4. Based on these 

simulations, the model predicted a mean yield above the specification limits being in 

line with minimum quantities needed for further characterization. Regarding HPMCAS-

LF formulations, the simulations predict a risk of 5.3% to obtain a yield lower than 50% 

which can be considered as an acceptable risk in the scope of the development of a 

generic method for preclinical screening of ASDs.  

Model validation 

Production of 100 mg ASD batches of Itraconazole/HPMCAS-LF and 

Itraconazole/Soluplus 40:60 (w/w) was performed in triplicate under optimized process 

conditions using medium cyclone. Mean yield values of 54.0% ± 8.4 and 56.6% ± 3.6 

were experimentally obtained for solid dispersions of Itraconazole/HPMCAS-LF and 



 

 

Itraconazole/Soluplus, respectively, while the prediction interval at 95 % provided by 

the model predicted a yield of 47.9 to 69.1% and of 61.9 to 83.7%, respectively. The 

prediction interval provided by the model overestimates the experimental results 

generated for the production of Soluplus ASDs. However, experimental yield results 

were found above the specification limits for both mixtures. The last observation 

confirms the selection of identified process conditions in line with the scope of the 

study.  

One explanation to the differences obtained between predicted and experimental 

yield results is the lack of understanding of response by the fitted model. The adjusted 

R-Squared value of the model (0.76) attests that other parameters influencing the yield 

need to be taken into consideration to better explain the observed variability (Figure 1). 

Concentration effects and solvent choice have not been investigated in this study and 

would probably impact the response too (Paudel et al. 2013).  

Model and/or process parameter verification 

The suitability of the optimized manufacturing method was then evaluated by producing 

a 100 mg batch of Itraconazole and Naproxen ASDs using medium cyclone. Samples 

were prepared in triplicate at 40% (w/w) DL with a set of seven polymers listed in 

Table 1. Table 5 reports the average yield and standard deviation values experimentally 

obtained. Mean yield values ranging from 44.4 to 56.3% and 49.0 to 59.6% were 

obtained for Naproxen and Itraconazole ASDs, respectively.  

Nevertheless, four Naproxen/polymer and one Itraconazole/polymer 

combinations did not reach the specification value of 50% as shown in Table 5. The 

latter observation suggests that the initial choice to select HPMCAS-LF and Soluplus 

(mainly based on their thermal and viscosity properties) as model carriers in the DoE 

design may have been too restricted and other material attributes may have been omitted 



 

 

(density, surface tension). The identified process conditions in their current form are not 

fitting to these new drug/polymer combinations and to a large extent cannot be applied 

as screening procedure as the yield specification has not been reached consistently. 

Adaptation to the small cyclone use and model and/or process parameter 

verification 

The identified operating conditions were further adapted to the use of the small cyclone: 

the drying airflow was decreased to 0.3 m3/min to ensure a similar outlet temperature 

and a similar pressure drop over the cyclone compared to the previous operating 

conditions with the medium cyclone. As the small cyclone can only operate in a 

restricted domain, lower drying airflow was applied to avoid pressure overload in the 

system. All other parameters listed in Table 3 were kept constant. Table 4 summarizes 

the operating conditions applied using small cyclone.  

Productions of 100 mg batches of Itraconazole and Naproxen ASDs were 

repeated under these novel operating conditions. SEM microphotographs of 40:60 

(w/w) Itraconazole SDSDs collected from the small cyclone are displayed in Figure 

5. Particles smaller than 10 µm were obtained and collected after processing. The 

spray-dried particles showed spherical shape with both smooth and shrinked 

surface (Figure 5 a-b) and shriveled surface (Figure 5 c-f). This morphological 

shape is typical for spray-dried material manufactured at low inlet temperature 

(Tonon et al. 2008). Moreover, the structural morphological differences between 

powder made with different carriers arise from the physical characteristics of the 

solid crust formed during solvent evaporation which is largely influenced by 

polymer type (Vicente et al. 2013). 

Yield values obtained for the productions of ASD 40:60 (w/w) are detailed in 

Figure 6. Under these conditions, all screened drug-polymer combinations resulted in a 



 

 

yield of above 50%. The results obtained are mainly explained by the improved 

performance of the small cyclone to collect powder from drying air. In the present 

study, the highest selectivity of small cyclone is particularly adapted in the case of the 

identified process conditions derived from the DoE approach: where the combination of 

a high atomizing gas flow (1.5 bars) and a low pump speed (1 g/min) should 

theoretically favor the formation of small particle sizes. Application of high spray gas 

flow will produce smaller droplets and hence smaller particle. At a constant atomizing 

gas flow, a lower pump speed will decrease the droplet size and hence the particle size 

(Patel BB et al. 2015). In this regard and based on the supplier documentation, the small 

cyclone offers the most selective particle separation of up to 1.5 � m (ProCept 2014). 

This finding contrasts with previous studies where a large particle size correlates with a 

high yield (He and Ho 2015). 

Figure 7 represents the yield improvement of ASDs produced using small 

cyclone compared to initial medium cyclone. The use of the small cyclone improved the 

yield of the 100 mg ASD batches for both drugs, significantly. The overall yield for 

ASDs of Naproxen was 51.0% with the medium cyclone and 65.9% with the small 

cyclone. Similarly, the overall yield of solid dispersions of Itraconazole was improved 

from 54.4% to 68.0% by reducing cyclone size. Despite a significant increase in yield 

compared to the medium cyclone, the yield improvement was found to depend on the 

nature of the dug - polymer combination (Figure 7). This finding confirms earlier 

observations and highlights the importance of material attributes and more specifically 

feed solution properties on the response. Yield improvement was lower for solid 

dispersions made with HPMCP HP50, HPMCAS-LF, Eudragit L100 and Eudragit 

L100-55. These polymers were found to have the most important viscosifying 

properties among the set of polymers investigated (data not shown). Feed solutions with 



 

 

high viscosity will engender bigger particles (Davis et al. 2017), as a result the relative 

selectivity of the small cyclone compared to the medium size is probably be the least 

significant.  

Figure 6 represents the results obtained for additional productions of 

Itraconazole and Naproxen ASD at 20% (w/w) under optimized process conditions 

using the small cyclone. Yield results obtained at 20% DL (w/w) were found above the 

specification limits, consistently. Comparable yields were obtained for most of the drug-

polymer combinations with a DL of 20% and 40% (w/w) except for 

Itraconazole/PVPVA and Naproxen/Soluplus. In these particular cases, the yield was 

decreased from 40% to 20% (w/w) DL. The last observation contradicts the common 

assumption that reducing DL is expected to increase the yield of spray-dried material, 

theoretically. This is because the Tg value of ideal glass solution is function of the Tg of 

the pure components in the blend and of the system composition: a reduction in DL is 

increasing the mixing Tg due to higher polymer content (Teja et al. 2013).This 

assumption considers the fact that generally the Tg of the polymer is higher than the Tg 

of the drug (Table 1). This argument takes into account ideal glass solutions, only. In 

this regard, amorphous forms with high Tg are usually considered as suitable for spray-

drying production due to the limited risk of stickiness on the glass wall (Paterson et al. 

2005). Nevertheless, results obtained in the present study highlighted that the nature of 

the drug and its inherent properties such as Tg did not influence the yield. Mean yield of 

20% and 40% (w/w) solid dispersions of Naproxen and Itraconazole was 64.1 ± 4.7% 

and 66.8 ± 5.6%, respectively. Consequently, the proposed method can be considered as 

a well-suited approach for the ASDs screening of low Tg drug such as Naproxen. 

Downscaling 

Downscaling trials were performed to assess the capability of spray-drying to operate at 



 

 

minimum batch size while supporting the requirements for screening and analytical 

characterization. At this stage, a yield superior to 10% corresponding to 2 mg of ASD 

collected is sufficient to investigate the phase behavior and the solid state of screened 

formulations. As shown in Figure 8, optimized process conditions using the small 

cyclone were tested for 20 mg batch productions of Itraconazole and Naproxen ASD at 

20 and 40% DL (w/w), respectively. Mean yield values above the specification limits 

were obtained for all screened drug-polymer mixtures under these operating conditions. 

The lowest yield, 18.2 ± 8.1%  corresponding to an average mass of 3.6 ± 1.6 mg of 

ASD was obtained for Naproxen/PVPK30 40:60 (w/w), whereas, the highest yield, 30.1 

± 10.5%, corresponding to a mass of 6.0 ± 2.1 mg of ASD was found for 

Itraconazole/PVPK30 40:60 (w/w).  

In general, the results obtained at 40% (w/w) DL for Itraconazole samples were 

slightly above the results found for Naproxen samples except for HPMCP HP50. Data 

obtained at a batch size of 20mg suggest, that the yield seems to depend on the nature of 

the drug and the involved polymer; for instance, the yield was positively impacted by a 

lower DL for Naproxen samples mixed with HPMCAS-LF, PVPVA and Soluplus. 

However, similar yields were obtained for other Naproxen ASDs at both DL. Likewise 

for ASDs containing Itraconazole, the DL did not impact the yield and no correlation 

between the yield and the DL was found at a 20 mg scale. As the spray-drying is 

running at lowest possible operating conditions, the differences that are expected are 

probably hindered by these extreme operating conditions. Additional downscaling trials 

with a batch size of 10 mg were performed (data not shown). However, the minimal 

yield of 2 mg was not achieved for all drug-polymer systems, consistently. 

Drug-polymer miscibility characterization 

Along with the development of a generic method adapted for the screening of small size 



 

 

batches of ASD, the drug-polymer miscibility and the solid state of each SDSD 

produced at small and larger scale (20, 100 mg and 2.5 g) was characterized using 

mDSC and XRPD. Process and formulation parameters fixed during this DoE approach 

and listed in Table 3, were kept constant for the larger scale productions. Moreover, the 

following conditions of pump speed (6 g/min), inlet temperature (65 °C), drying airflow 

(0.35 m3/min) and atomization airflow (1 bar) were used.  

Figure 9 displays the mDSC thermograms of Itraconazole/PVPVA 40:60 (w/w) 

produced by spray-drying at various scales and prepared by standard screening 

methodologies, namely solvent casting and quench cooling. As seen in Figure 9, a glass 

solution, depicted by the presence of a single Tg in the reverse heat flow signal was 

obtained for the quench cooled sample. Residual crystallinity was detected in the film 

casted sample by the presence of the drug melting endotherm in both reverse and total 

heat flows. Additionally, the Tg of pure glassy Itraconazole with its inherent mesophase 

endotherms (Six et al. 2001) was found in the thermogram of film casted ASD and 

suggests the presence of a phase separated system (Six et al. 2002). Samples produced 

by spray-drying were identified as solid glass suspension. These samples are 

characterized by the presence of the Tg of the pure amorphous drug, the inherent 

mesophases of glassy Itraconazole and the Tg of the polymer. The absence of residual 

crystallinity was confirmed in the total heat flow signal of mDSC and by XRPD (data 

not shown). These results confirm that the above commonly used screening methods 

cannot predict the phase behavior of SDSDs.  

The prediction accuracy of our small-scale spray-drying approach and 

conventional screening methodologies to determine the drug-polymer miscibility of 

SDSDs is compared Table 6, through the entire set of ASD productions giving a total of 

28 samples. As seen in Table 6, the highest accuracy was obtained in the case of small-



 

 

scale spray-drying screening of 20 and 100 mg: these approaches allow for the drug-

polymer miscibility prediction of 27/28 and 28/28 of SDSDs tested, respectively. One 

difference was obtained for Itraconazole/Soluplus 20:80 (w/w) produced at 20 mg and 

identified as a glass suspension while drug recrystallization occurred during analysis at 

100 mg and 2.5 g. On the contrary, solvent casting and quench cooling did not provide a 

reliable insight into the prediction of the phase behavior of SDSDs over the set of tested 

drug-polymer combinations. Lower accuracy to predict the phase behavior of SDSDs 

than small-scale spray-drying approach was found for solvent casting and quench 

cooling with predictive ratio of 16/28 and 18/28 of SDSDs tested, respectively. In 

addition, the evaluation of thermograms (data not provided) showed that similar Tg 

value was obtained for samples produced by spray-drying at various scales. As Tg is 

known to provide insight into the stability and homogeneity of amorphous material, this 

demonstrated the superior ability of spray-drying screening compared to standard 

methodologies to anticipate the final properties and performance of SDSDs (Engers et 

al. 2010). This confirms the strategy developed in the current study in order to 

overcome the limitations of standard screening tests to predict SDSDs properties and 

performance in early phase of drug development. 

Assessment of screened SDSDs potential: insight into physical stability and 

dissolution performance 

 

Carrier performance with regard to the manufacture of glass solutions that 

improve drug solubility and that remain physically stable upon storage needs to be 

assessed during the screening phase (Chiang et al. 2012). In this regard, the 

performance of 100 mg batches of Itraconazole and Naproxen 40:60 (w/w) SDSDs 

have been investigated in terms of physical stability and dissolution performance. 



 

 

The selected drug-polymer ratio is appropriate to reach the high doses to be tested 

during preclinical stage of drug development in the pharmaceutical industry 

(Lohani et al. 2014). 

The XRPD patterns of 40:60 (w/w) SDSDs of Itraconazole are depicted in 

Figure 10. All screened drug-polymer systems were characterized by the presence 

of amorphous halo. The absence of peaks relative to crystalline drug in XRPD 

pattern confirms that all screened samples are manufactured in amorphous state 

after processing. However, as aforementioned in previous section, the evaluation of 

drug-polymer miscibility using mDSC confirms the presence of glass solution 

system with HPMCP HP50, HPMCAS-LF, Eudragit L100 and Eudragit L100-55 

and the presence of phase separation with PVPVA and PVPK30, as seen in Table 

6. Furthermore, glass solution followed by drug recrystallization during 

measurement was obtained in the case of Itraconazole/Soluplus system. Therefore, 

mDSC was proven to be a more sensitive technique to differentiate stable glass 

solutions from those which are prone to partial phase separation and drug 

recrystallization during the heating process (Baird and Taylor 2012).  

The physical stability of Itraconazole-polymer combinations was 

investigated under stress (40°C/75% RH) and ambient (25°C/60% RH) storage 

conditions. Results are summarized in Table 7. Under standard storage conditions, 

all Itraconazole SDSDs maintained their inherent amorphous state during 5 weeks 

at 25°C/60% RH. XRPD pattern of Itraconazole SDSDs stored at 40°C/75% RH 

for 5 weeks are shown in Figure 10. Under stress conditions, Itraconazole systems 

made with HPMCP HP50, HPMCAS-LF, Eudragit L100 and Eudragit L100-55 

were found to remain amorphous. However, drug recrystallization was confirmed 

for Itraconazole/Soluplus system after 2 weeks at 40°C/75% RH. This finding 



 

 

corroborates the thermal signature of Itraconazole/Soluplus obtained in mDSC 

where drug recrystallization was recorded during analysis. Indeed, drug 

recrystallization during the heating procedure of mDSC is a sign of limited 

capacity of polymer to stabilize the amorphous drug and therefore can provide 

valuable insight into the physical stability of amorphous system (Duarte et al. 

2015). As seen in Figure 10, the onset of drug recrystallization detected for solid 

dispersions of Itraconazole with PVPVA and PVPK30 stored 5 weeks under stress 

conditions confirms the fact that phase separated systems are more prone to 

recrystallization than glass solutions.  

Figure 10 displays the XRPD pattern of 40:60 (w/w) SDSDs of Naproxen 

after manufacturing. Examination of XRPD patterns confirms that only ASDs 

made with PVPVA and PVPK30 maintained a complete amorphous state after 

processing. Evidence of drug residual crystallinity was observed for remaining 

SDSDs made with HPMC HP50, HPMCAS-LF, Soluplus, Eudragit L100 and 

Eudragit L100-55. This finding confirms drug-polymer miscibility as summarized 

in Table 6. In this regard, only Naproxen-polymer systems characterized in 

amorphous state i.e. PVPVA and PVPK30 ASDs were subjected to stability 

studies. Results from stability study are summarized in Table 7 and XRPD pattern 

of Naproxen ASDs stored at 40°C/75% RH during 5 weeks is depicted in Figure 

10. Under both ambient and stress conditions, Naproxen/PVPVA and 

Naproxen/PVPK30 were found to maintain complete drug amorphous state up to 5 

weeks, which is a good indicator of polymer potential to stabilize amorphous drug 

upon storage. This argument strengthens the selection of such carriers for 

Naproxen SDSD manufacturing. Storage of ASDs systems containing hygroscopic 

carriers such as PVPVA and PVPK30 should be ideally done under dried 



 

 

conditions to reduce drug mobility and hence prevent drug recrystallization 

(Rumondor et al. 2009). 

In parallel to stability studies, the dissolution performance of screened 

Itraconazole SDSDs was assessed at 37°C in dissolution medium at pH 6.5 

containing surfactants. Dissolution profile of screened Itraconazole SDSDs and 

solubility improvement percentage compared to crystalline drug after 60 and 150 

minutes are depicted in Figure 11. After 60 minutes, all screened ASDs allowed to 

generate supersaturation and improve drug solubility, significantly. Solubility 

improvement in the range of 5679-6931% was obtained and thus confirms the 

greater solubility of amorphous Itraconazole form compared to crystalline 

counterpart. After 150 minutes, only four ASDs made with HPMCAS-LF, 

Soluplus, Eudragit L100 and Eudragit L100-55 allowed to maintain 

supersaturation during dissolution tests. These dispersions systems display similar 

solubility improvement percentages between 60 and 150 minutes. However, 

recrystallization process during dissolution tests characterized by sudden drop in 

solubility value was recorded for ASDs containing HPMCP HP50, PVPVA and 

PVPK30. Indeed, such ASDs lost their potential in enhancing drug solubility. As 

an example, solubility improvement of Itraconazole/PVPK30 fell back to 263% 

after 150 minutes. 

The obtained dissolution profile of screened Itraconazole SDSDs correlates 

well with their inherent solid state and drug-polymer miscibility characterization 

discussed in the previous section. Indeed, ASDs containing HPMCAS-LF, Eudragit 

L100 and Eudragit L100-55, previously identified as glass solutions, were able to 

generate and maintain supersaturation during the entire dissolution test. 

Furthermore, Itraconazole/Soluplus was also found to provide improved drug 



 

 

solubility up to 150 minutes during the dissolution tests. However, as seen in Table 

7, this system tends to recrystallize upon storage at 40°C/75% RH. In addition, 

dissolution tests (data not shown) performed in the case of Itraconazole/Soluplus 

stored during 2 weeks at 40°C/75% RH reveal that this ASD lost its potential in 

increasing drug solubility contrary to other glass solutions: solubility improvement 

of 5679/5347% and 1097/825% at 60/150 minutes were obtained for 

Itraconazole/Soluplus after manufacturing and after 2 weeks under stress 

conditions, respectively. As aforementioned, phase separation was observed during 

solid state characterization of SDSDs containing PVPVA and PVPK30. This 

translated well with their inherent dissolution profile where recrystallization 

process was observed during dissolution tests. This demonstrates the higher 

tendency of phase separated system to revert back to their crystalline form during 

both dissolution tests and physical stability (Huang and Dai 2014). Interestingly, 

Itraconazole/HPMCP HP50 was found to not maintain supersaturation during the 

length of dissolution test, despite this system was identified as physically stable 

amorphous glass solution under stress and ambient conditions. This finding 

suggests that the mechanism of polymer stabilization that occurs at solid state and 

during dissolution is different (Brouwers et al. 2009; Chauhan et al. 2013) which 

justified that both dissolution and physical stability performance of ASD should be 

addressed during screening phases. The selection of HPMCP HP50 as potential 

carrier for Itraconazole SDSD development would not be considered as it does not 

meet the key expectations of solid dispersion performance during screening 

phases. 

Similarly, the potential of screened SDSDs of Naproxen to improve drug 

solubility was investigated. Because Naproxen is an acidic compound of which 



 

 

solubility varies greatly depending on pH value, dissolutions tests have been 

performed in dissolution mediums representative to pH of both gastric and 

intestinal fluids (Chowhan 1978). First, solubility improvement results of screened 

SDSDs of Naproxen recorded after 60 and 150 minutes in dissolution medium at 

pH 6.5 containing surfactants, are depicted in Figure 12. Only three screened 

systems containing PVPVA, PVPK30 and Soluplus were found to generate and 

maintain supersaturation during dissolution test. On the contrary, SDSDs made 

with HPMCP HP50, HPMCAS-LF, Eudragit L100 and Eudragit L100-55 

recrystallized in the fists seconds of dissolution tests (data not shown) which 

explains the fact that solubility was not improved even after 60 minutes. As seen in 

Table 6, the fact that residual crystallinity was observed for these specific 

Naproxen-polymer systems after processing translates well with their limited 

dissolution potential. Likewise, Naproxen/PVPVA and Naproxen/PVPK30, 

previously identified as glass solution were found to display the best dissolution 

performance with solubility improvement in the range of 50% after 150 minutes. 

Interestingly, Naproxen/Soluplus exhibited similar potential that ASDs containing 

PVPVA and PVPK30 in terms of solubility enhancement, despite the fact that 

complete amorphization was not achieved after processing as seen in Figure 10. In 

this context, Thakral et al. found that Camptothecin/Soluplus solid dispersion led 

to a 75-fold increase of drug solubility while incomplete amorphization was 

reported after processing (Thakral et al. 2012). Potential explanations may arise 

from the amphiphilic structure of Soluplus which has been demonstrated to 

solubilize drug and retard crystallization mechanisms through micellar formation 

(Shamma and Basha 2013; Patnaik 2016). Herein, Naproxen-Soluplus affinity 

would probably help in the stabilization of supersaturated solution generated by 



 

 

dissolved amorphous drug fraction and prevent additional recrystallization 

process during dissolution test.  

The potential of PVPVA, PVPK30 and Soluplus to improve Naproxen 

solubility was confirmed in gastric dissolution medium at pH 1.2 containing 

surfactants. Figure 13 displays the dissolution profile and solubility improvement 

percentage compared to crystalline drug after 60 and 150 minutes of such 

Naproxen SDSDs. All drug-polymer combinations were found to generate and 

maintain supersaturation during dissolution tests. Comparable solubility 

improvement percentages ranging from 203-257% were obtained among tested 

carriers after 60 minutes. Soluplus based solid dispersion was found to provide 

similar dissolution performance than identified glass solutions. Additional tests 

including biorelevant conditions and simulation of intestinal absorption would be 

needed to discriminate among screened systems (Linn et al. 2012; Puppolo et al. 

2017). Despite this, PVPK30 and PVPVA were found to offer the best guarantee to 

achieve the manufacturing of physically stable amorphous system of Naproxen 

upon storage and providing solubility enhancement. 

The results obtained in the present study prove that spray-drying can be adapted 

during the screening phases of ASDs and replaces existing screening methods. 

Productions of 100 mg of ASD under optimized operating conditions would provide 

enough material to ensure conventional preclinical screening activities (solid state 

characterization, dissolution tests, physical stability assessment). In parallel, 

downscaled trials allowed to assess the capability of spray-drying to run at lowest 

possible operating conditions while supporting the needs for screening and analytical 

characterization. In this regard, identified processing conditions allow the production of 

solid dispersion of 20 mg batch size that can be used as first step in carrier selection 



 

 

with regards to solid state characterization of screened samples (mDSC, XRPD, 

polarized light microscopy…). 

Otherwise, the proposed screening methodology focused on preclinical and 

small-scale manufacturing activities with a DL investigated up to 40% (w/w). 

Nevertheless, high DLs are commonly preferred in the final drug formulation regarding 

late clinical studies (Demuth et al. 2015; Patel S et al. 2017). In this regard, the 

proposed method would need to be further tested with higher DL to confirm that the 

amount of material collected is sufficient to cover the needs during screening phase. 

Additionally, a particular focus was placed on the ability of the proposed small-scale 

approach to predict the phase behavior of SDSDs which was found to provide valuable 

information regarding the physical stability and dissolution performance of screened 

SDSDs. Nevertheless, particle size distribution has not been particularly investigated in 

this study: it is assumed that particle size of powder generated at small-scale would not 

be representative for material produced by larger scale equipment where the nozzle 

geometry would generate larger particle size (Cal and Sollohub 2010). 

In this study, DoE approach has been chosen to optimize process conditions of 

spray-dried material. As mentioned in the previous section, this approach has limitations 

such as the lack of understanding of response by the fitted model. However, when used 

in conjunction with mechanistic modelling can lead to a better understanding of the 

optimization process (Van Daele et al. 2017; Van Bockstal et al. 2018). 

Conclusions 

This study investigated the development of a generic screening method for ASD based 

on a small-scale spray-drying approach that respects the requirements of screening 

activities in the pharmaceutical industry. Optimized process conditions derived from 

DoE approach allowed the consistent production of ASD batches of 100 and 20 mg and 



 

 

would ensured the production of sufficient material to support analytical 

characterization during screening phases. The proposed method was found particularly 

suitable for the testing of a large number of carriers and drugs, including low Tg 

compounds, and up to 40% (w/w) DL. In practical terms, this approach respects the 

scope of screening methodologies in particular the limited drug supply in early drug 

development: 4 to 8 mg and 20 to 40 mg of drug were needed per drug-polymer 

combination for the production of batch size of 20 mg and 100 mg, respectively. 

Although solvent casting and quench cooling approaches are known to operate in 

automated way and limit loss of product during screening phases, our proposed method 

constitutes a reliable alternative as it achieved the best trade-off regarding drug 

consumption, work flexibility and short processing time.  

The main benefit of the implementation of spray-drying during screening phases 

is the improved prediction accuracy in terms of drug-polymer miscibility and 

performance of SDSDs: miscibility prediction accuracy of 27/28 and 28/28 of SDSDs 

tested was found for 20 and 100 mg SDSDs screening, respectively while lower 

accuracy was obtained for solvent casting (16/28) and quench cooling (18/28). In that 

respect, spray-drying screening was found to be representative and scalable with regards 

to process parameters as well as formulation attributes. This novel approach would 

allow to erase errors in polymer and DL selection during screening phases, ease the 

transfer from screening phase to laboratory batch production, and shorten delivery 

deadlines in the pharmaceutical industry. The outcome of the work demonstrates the 

interest to move beyond standard screening approaches and to consider the use of spray-

drying in early phase of drug development so that a better prediction of SDSDs 

properties and performance can be achieved. Indeed, this approach demonstrated 



 

 

that screened SDSDs of Itraconazole and Naproxen could be accurately 

discriminated in terms of physical stability and dissolution properties.  
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Appendices 

Appendix 1: Response surface DoE and yield results obtained for the 100 mg 

productions of ASD of Itraconazole at DL 40% (w/w). 

 

 

 

 

 

 

 

 

Run 
Drying airflow 

(m³/min) 
Inlet temperature 

(°C) 
Pump speed 

(g/min) 
Atomizing airflow 

(bars) Polymers 
Yield 
(%) 

1 0.33 60 1 1 HPMCAS-LF 51.6 
2 0.45 60 4.5 1 Soluplus 70.7 
3 0.20 60 1 0.5 Soluplus 35.0 
4 0.33 60 8 0.5 Soluplus 48.4 
5 0.20 60 8 1.5 Soluplus 48.4 
6 0.20 60 8 0.5 HPMCAS-LF 28.8 
7 0.33 60 1 1.5 Soluplus 61.3 
8 0.20 60 4.5 1.5 HPMCAS-LF 37.7 
9 0.45 60 1 0.5 HPMCAS-LF 44.6 
10 0.45 60 8 1.5 HPMCAS-LF 54.1 
11 0.33 90 4.5 1 Soluplus 46.4 
12 0.33 90 4.5 1 Soluplus 36.4 
13 0.45 90 4.5 0.5 Soluplus 43.8 
14 0.33 90 4.5 1 HPMCAS-LF 47.6 
15 0.33 90 4.5 1 HPMCAS-LF 33.6 
16 0.45 90 1 1 HPMCAS-LF 47.5 
17 0.45 90 8 0.5 HPMCAS-LF 19.2 
18 0.20 90 1 0.5 HPMCAS-LF 43.2 
19 0.33 90 8 1.5 HPMCAS-LF 36.2 
20 0.45 90 1 1.5 Soluplus 59.6 
21 0.33 90 4.5 1 Soluplus 42.0 
22 0.20 120 8 1 HPMCAS-LF 32.0 
23 0.33 120 1 0.5 HPMCAS-LF 27.3 
24 0.45 120 1 0.5 Soluplus 49.8 
25 0.20 120 4.5 1.5 Soluplus 49.9 
26 0.2 120 1 1.5 HPMCAS-LF 46.6 
27 0.45 120 8 1 Soluplus 46.2 
28 0.2 120 1 1 Soluplus 43.3 
29 0.45 120 4.5 1.5 HPMCAS-LF 34.9 
30 0.33 120 4.5 0.5 HPMCAS-LF 31.5 
31 0.2 120 8 0.5 Soluplus 23.1 
32 0.2 120 8 1 HPMCAS-LF 27.9 
33 0.33 120 8 1.5 Soluplus 48.5 



 

 

Tables 

Table 1: Physicochemical properties of selected polymers. 

Polymer Mw (g/mol) Dissolution pH Tg (°C)  

HPMCP HP50 78000 > 5.0 140  
HPMCAS-LF 18167 > 5.5 122  

PVPVA 57500 - 112  
PVPK30 50000 - 162  
Soluplus 115000 - 70  

Eudragit L100 125000 > 6.0 192  
Eudragit L100-55 320000 > 5.5 122  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

Table 2: Level values of process and formulation parameters included in the DoE. 

Factors Unit Low level Center level High level 
Drying airflow m³/min 0.2 0.33 0.45 

Temperature inlet °C 60 90 120 
Atomizing airflow bars 0.5 1 1.5 

Pump speed g/min 1 4.5 8 
Polymer type - HPMCAS-LF - Soluplus 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

Table 3: List of process parameters, formulation attributes and process configuration 

kept constant in the DoE. 

Factors Unit Value/attribute/configuration 
Nozzle orifice diameter mm 1.2 

Cooling airflow L/min 100 
Cyclone size - Medium 
Solid content mg/mL 50 

DL % (w/w) 40 
Drug - Itraconazole 

Solvent - DCM/EtOH 2:1 (v/v) 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

Table 4: Optimized values of process parameters identified by the model and adapted 

for the small cyclone use. 

Factors Unit Medium cyclone Small cyclone 
Drying airflow m³/min 0.45 0.3 

Inlet temperature °C 60 60 
Atomizing airflow bars 1.5 1.5 

Pump speed g/min 1 1 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

Table 5: Mean values of yield (%) and standard deviation (SD) (%) for solid dispersions 

of Itraconazole and Naproxen produced with the medium cyclone at a fixed DL of 40% 

(w/w). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Drug DL Cyclone Polymers 
HPMCP 

HP50 
HPMCAS

-LF 
PVPVA PVPK30 Soluplus 

Eudragit 
L100 

Eudragit 
L100-55 

Itraconazole 40% Medium 
Yield (%) 54.4 54.0 53.4 49.0 56.6 59.6 53.5 

SD (%) 3.5 8.4 6.9 5.5 3.6 8.2 7.0 

Naproxen 40% Medium 
Yield (%) 53.8 56.3 44.4 47.6 49.8 55.6 49.5 

SD (%) 2.7 2.7 4.1 4.4 2.2 2.6 3.9 



 

 

Table 6: Miscibility characterization of ASDs produced by spray-drying at 2.5 g, 

100 mg and 20 mg batch size and prepared by solvent casting and quench cooling 

for Itraconazole (a) and Naproxen (b) ASDs. 

a) Itraconazole ASDs DL 
(w/w) 

HPMCP 
HP50 

HPMCAS
-LF PVPVA PVPK30 Soluplus Eudragit  

L100 
Eudragit 
L100-55 

Spray-drying - 
2.5 g 

20% 
GS GS 

GS GS 
DM/DR GS GS 

40% PS PS 

Small scale 
Spray-drying – 

100 mg 

20% 
GS GS 

GS GS 
DM/DR GS GS 

40% PS PS 

Small scale 
Spray-drying – 

20 mg 

20% 
GS GS 

GS GS PS 
GS GS 

40% PS PS DM/DR 

Solvent casting 
20% GS GS 

DM/DR DM/DR DM/DR GS GS 
40% PS PS 

Quench cooling 
20% 

GS GS GS GS GS GS GS 
40% 

b) Naproxen ASDs 
DL 

(w/w) 
HPMCP 

HP50 
HPMCAS

-LF PVPVA PVPK30 Soluplus Eudragit 
L100 

Eudragit  
L100-55 

Spray-drying - 
2.5 g 

20% 
DM/DR DM/DR GS GS 

GS GS 
DM/DR 

40% DM/DR DM/DR 

Small scale 
Spray-drying – 

100 mg 

20% 
DM/DR DM/DR GS GS 

GS GS 
DM/DR 

40% DM/DR DM/DR 

Small scale 
Spray-drying – 

20 mg 

20% 
DM/DR DM/DR GS GS 

GS GS 
DM/DR 

40% DM/DR DM/DR 

Solvent casting 
20% 

DM/DR 
GS PS GS 

GS DM/DR DM/DR 
40% DM/DR DM/DR DM/DR 

Quench cooling 
20% 

GS GS GS GS GS 
GS GS 

40% DM/DR DM/DR 

Miscibility characterization examined by mDSC; 

GS: glass solution, PS: Phase separation, DM/DR: drug melting/drug recrystallization 

 

 

 

 

 

 

 

 



 

 

Table 7: Summary of stability results of 40:60 (w/w) solid dispersions of 

Itraconazole and Naproxen upon storage at 25°C/60% RH and 40°C/75% RH. 

Drug Carriers DL 

(w/w) 

25°C/60% RH 40°C/75%RH 

2w 5w 2w 5w 

Itraconazole HPMCP HP50 40:60 N N N N 

HPMCAS-LF 40:60 N N N N 

PVPVA 40:60 N N N Y 

PVPK30 40:60 N N N Y 

Soluplus 40:60 N N Y Y 

Eudragit L100 40:60 N N N N 

Eudragit L100-55 40:60 N N N N 

Naproxen PVPVA 40:60 N N N N 

PVPK30 40:60 N N N N 

Residual crystallinity examined by XRPD;  N: No crystalline signal, Y: crystalline signal 
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Figure captions 

Figure 1: Fit model analysis for yield prediction. 

Figure 2: Maximized yield response for 100 mg production of spray-dried ASDs of 

Itraconazole mixed with HPMCAS-LF (A) and Soluplus (B) at 40% (w/w) DL. 

Confidence interval at 95% is represented in dash blue lines. 

Figure 3: Distribution map of mean yield values as a function of pump speed with 

atomizing airflow, drying airflow and inlet temperature respectively, for overlapped 100 

mg ASD productions of Itraconazole/HPMCAS and Itraconazole/Soluplus 40:60 (w/w) 

with optimized process conditions. 

Figure 4: Yield distribution based on simulation of 5000 productions computed for the 

40:60 (w/w) ASD of Itraconazole mixed with HPMCAS-LF (A) and Soluplus (B); 

under identified process conditions. 

Figure 5: SEM microphotographs of 40:60 (w/w) Itraconazole SDSDs with: 

HPMCP HP50 (a), HPMCAS-LF (b), PVPVA (c), PVPK30 (d), Soluplus (e) and 

Eudragit L100 (f) collected from the small cyclone. 

Figure 6: Average yield values (n=3) obtained for the 100 mg ASD productions of 

20:80 and 40:60 (w/w) Itraconazole (a) and Naproxen (b) using the small cyclone. The 

minimum yield is represented by the solid red line at 50%. 

Figure 7: Cyclone efficiency: yield improvement (%) for the 100 mg ASD productions 

of 40:60 (w/w) Itraconazole and Naproxen performed under optimized process 

parameters using small/medium cyclone. 

Figure 8: Average yield values (n=3) obtained for the 20 mg ASD productions of 20:80 

and 40:60 (w/w) Itraconazole (a) and Naproxen (b) using the small cyclone. The 

minimum yield is represented by the solid red line at 10%. 

Figure 9: Reverse heat flow signals of Itraconazole/PVPVA 40:60 (w/w) produced by 

spray-drying for 2.5 g batch production (a), small-scale spray-drying approach for 20 

mg (b) and 100 mg (c) batches production, quench cooling (d) and solvent casting (e). 



 

 

The arrows indicated the presence of the Tg, the mesophases of glassy Itraconazole and 

the drug melting endotherm. 

Figure 10: XRPD patterns of 40:60 SDSDs of Itraconazole and Naproxen just after 

processing and after 5 weeks under stress conditions at 40°C/75% RH, respectively 

with HPMCP HP50 (a), HPMCAS-LF (b), PVPVA (c), PVPK30 (d), Soluplus (e), 

Eudragit L100 (f) and Eudragit L100-55 (g). 

Figure 11: Dissolutions profiles (a) and solubility improvement (%) (b) of screened 

40:60 (w/w) Itraconazole SDSDs compared to crystalline drug after 60 and 150 

minutes in 50 mM phosphate buffer (pH 6.5) containing 2% Vitamine E TPGS at a 

drug concentration of 1 mg/mL.  

Figure 12: Solubility improvement (%) of screened 40:60 (w/w) Naproxen SDSDs 

compared to crystalline drug after 60 and 150 minutes in 50 mM phosphate buffer 

(pH 6.5) containing 0.5% SDS and 2% HPMC at a drug concentration of 5mg/mL. 

Figure 13: Dissolutions profiles (a) and solubility improvement (%) (b) of screened 

40:60 (w/w) Naproxen SDSDs compared to crystalline drug after 60 and 150 

minutes in simulated gastric fluid (pH 1.2) containing 0.5% SDS and 2% HPMC at 

a drug concentration of 1 mg/mL.  

 

 

 

 

 

 

 

 

 

 


