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Traditional Chinese Medicine (TCM) has received increasing attention as a complementary approach or alterna-
tive to modern medicine. However, experimental methods for identifying novel targets of TCM herbs heavily re-
lied on the current available herb-compound-target relationships. In this work, we present an Herb-Target
Interaction Network (HTINet) approach, a novel network integration pipeline for herb-target prediction mainly
relying on the symptom related associations. HTINet focuses on capturing the low-dimensional feature vectors
for both herbs and proteins by network embedding, which incorporate the topological properties of nodes across
multi-layered heterogeneous network, and then performs supervised learning based on these low-dimensional
feature representations. HTINet obtains performance improvement over a well-established random walk based
herb-target prediction method. Furthermore, we have manually validated several predicted herb-target interac-
tions from independent literatures. These results indicate that HTINet can be used to integrate heterogeneous
information to predict novel herb-target interactions.

© 2019 The Authors. Published by Elsevier B.V. on behalf of Research Network of Computational and Structural
Biotechnology. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
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1. Introduction

The post-genome era argues a far more complex landscape of
disease that complex biological processes driving human disease
are nearly always the integrative result of multiple pathways
that interact through an interconnected network and even spread
across most of the genome [1,2]. This complexity puts forward a
great challenge to conventional medicine that develops drugs
focusing on a single molecular effector to treat disease. Alterna-
tively, Traditional Chinese Medicine (TCM) has received increas-
ing attention as a complementary approach or alternative to
modern medicine for its poly-pharmacological effects [3,4].
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ATCM prescription is a mixture of several herbs that contain numer-
ous chemical ingredients acting on different pharmacological targets
and regulating multiple biological mechanisms. Although promising,
the complexity of TCM makes it impossible to parse the underlying
mechanisms using the reductionist method of identifying one active in-
gredient to hit one biological target. Most TCM herbs contain dozens to
thousands of ingredients, and only a fraction is effective. Experimental
methods for identifying novel targets of TCM herbs need to both identify
active ingredients and the corresponding biological targets, which can
be extremely costly and time-consuming [5,6].

In recent years, researchers have developed a series of systems or
network pharmacological strategies to detect the molecular mecha-
nisms of TCM [7]. These studies adopt the strategy of “herb to ingredient
to target”: firstly, collect the TCM ingredients, and then the potential
targets of these ingredients are identified on a proteome-wide scale
with in silico ligand-based target prediction approaches, following
in vivo validation. These studies have provided a more comprehensive
understanding of the pharmacological basis of TCM [8,9]. However,
the performance of this strategy is also limited by the biochemical
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features of TCM and the drawback of the ligand-based approaches: for
example, there are still many components that are undiscovered for
some TCM. The ligand-based approaches often lead to poor prediction
results when a target has only a small number of known binding
ligands.

Inspired by these considerations, we expected to develop a
computation method that could explore the mechanisms of TCM
by avoiding the incorporating of the chemical compositions of
herbs. Recently, Tao et al. [10] presented a novel integrative ap-
proach combining ontology reasoning with network-assisted
gene ranking to predict new drug targets. Yuan et al. [11] proposed
the DrugE-Rank to improve the prediction performance by combin-
ing the advantages of the feature-based and similarity-based
methods. Zong et al. [12] described a similarity-based drug-target
prediction method that utilizes a topology-based similarity mea-
sure and two inference methods based on the similarities. Zhang
et al. [13] investigated the pharmacological mechanisms of Wu-
tou decoction acting on rheumatoid arthritis through systems ap-
proaches integrating drug target prediction, network analysis and
experimental validation. In addition, network-based methods
have been introduced to explore the latent correlation features of
drug-target interactions to predict new interactions [14]. A key fea-
ture of network-based approaches is to incorporate heterogeneous
data including chemical, pharmacological, genomic, functional or
phenotypic data to boosting the accuracy of drug-target prediction
[15]. The network-based methods have also been successfully used
for herb-target prediction. For example, Vanunu O et al. proposed
PRINCE method [16], which was originally used in disease-gene
prediction, and then was introduced into TCM target prediction
by Yang et al. [17]. Meanwhile, according to the “network pharma-
cology”, the “one target, one drug” paradigm was shifted to the
“network target, multi-component” strategy with the rapid prog-
ress in bioinformatics and polypharmacology [18]. In TCM network
pharmacology, target profile prediction is one of the critical proce-
dures [19]. A computational framework, drugCIPHER, had been
developed to achieve this goal [20], which was used to predict tar-
get profiles of herbal compounds by searching for new potential
uses for known bioactive compounds. Also, Yang et al. proposed a
network-based method [21] using the random walk to detect
novel herb-target interactions. However, these approaches solely
relied on the current available herb-compound-target relation-
ships, which have significant bottlenecks for the herb target predic-
tion since the herb-target relationships are in high noise rate and
incomplete.

In this paper, we present an Herb-Target Interaction Network
(HTINet) approach, a novel network integration pipeline for herb-
target prediction mainly relying on the symptom related associations.
Our method applies a network-embedding algorithm, called node2vec
[22], to encode the heterogeneous network associated with herbs and
targets by interconnecting the phenotypes (i.e. symptoms and diseases)
to both herbs and proteins. In addition, HTINet not only integrates
diverse information from heterogeneous data sources (e.g., herbs,
symptoms, diseases, drugs, and proteins), but also copes with the
noisy, incomplete and high-dimensional nature of large-scale biological
data by learning low-dimensional but informative vector representa-
tions for both herbs and proteins. The low-dimensional feature vectors
learned by HTINet capture the context information of individual
networks, as well as the topological properties of nodes (e.g., herbs
or proteins) across multi-layered heterogeneous network. Then,
these low-dimensional vectors could be used as feature representations
of nodes for the next step of supervised learning. A series of classical
supervised learning models including K-Nearest Neighbor (KNN),
Support Vector Machines (SVM), Logistic Regression (LR), Decision
Tree (DT), Random Forest (RF) and Gradient Boosting Decision
Tree (GBDT) were tested in our work. We compared the
performance of HTINet with other herb-target prediction methods.

Furthermore, we have validated some interactions predicted by HTINet
between three herbs and their protein targets curated in TCMID
database.

2. Materials and Methods
2.1. Data Acquiring and Processing

We obtained the heterogeneous information covering the herb,
symptom, disease, drug and target and their corresponding interactions
from various public databases and publications (Table S1). Briefly, the
herb-target relationships were obtained from HIT database, and
regarded as the standard data set for training and evaluation of the clas-
sification model. The relationships between herbs and indications were
collected from Chinese pharmacopoeia (CHPA, 2015 edition). The drug-
indication relationships were extracted from SIDER [23]. The diseases-
symptom relationships were collected from MalaCards database [24].
The drug-target relationships were collected from DrugBank [25].

The herb-herb associations were built following our previous work
[21]. Specifically, the herb-efficacy associations were collected from
CHPA. According to the relationships of herb-efficacy, we built the
efficacy-based herb vectors. Then the efficacy-based cosine similarities
of herb pairs were calculated, which form the herb-herb associations,
with cosine similarity as edge weight. For example, there were m
types of herbs and n types of efficacies, and each herb a can be
represented by a vector of efficacy Vo = (w;,ws, ... ,wj, ... ,wy), where
w; = 1 if herb a has relationship with efficacy j, if not, w; = 0. Then
the efficacy-based cosine similarity of herb a and b can be calculated
by Eq. (1).

VoV
Costla Vo) = 1w v, W

The disease-disease and symptom-symptom relationships were in-
vestigated by text mining techniques. Firstly, both disease-disease,
symptom-symptom relationships were extracted from the Semantic
MEDLINE Database (SemMedDB) [26], which contains all (subject,
predicate, object) ternary semantic relationships extracted from the
MEDLINE database by the biomedical Semantic relation extraction
tool SemRep [27]. Then the significance of each relationship was
calculated by the Fisher's exact test [28]. Finally, those significant rela-
tionships (P < .05) through the inspection of clinicians were consid-
ered as reliable data. To further analysis the disease-disease
associations, we calculated the number of the common nodes and
links with the HSDN disease network in Zhou et.al [29]. The results
shown that the disease-disease associations in HTINet captures 2241
common nodes and 6153 common links (33.4% of the whole
disease-disease associations in HTINet, 99.0% of the subnetwork of
the 2241 common nodes in HTINet). The P-Value of the observed
number of 6153 shared links can be computed from the binomial
distribution to be P = 1.8 x 102!, indicating that the HTINet offers
reliable disease-disease associations.

The drug-drug associations were built by linking drugs with
similar ATC (Anatomical Therapeutic Chemical) classifications.
The drug ATC classification tree was obtained from KEGG database
[30]. The ATC classification tree records the functional classifica-
tion of drug in a tree-like structure. For each drug, we can build
a vector based on category encoding. For example, there were m
types of drugs and n types of ATC categories, and each drug a
can be represented by a vector of ATC categories V, = (w;,wo, ...
,Wj, ... ,Wy), where w; = 1 if drug a belonging to category j, if
not, w; = 0. Then the ATC-based cosine similarities between the
relationships of two drugs can be measured by Eq. (1).

The protein-protein interactions were extracted from the popular
gene-gene interaction network database, Search Tool for Recurring In-
stances of Neighboring Genes (STRING) [31], which quantitatively
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integrate different studies and interaction types into a single integrated
score for each gene pair based on the total weight of evidence. We fil-
tered the relationships with a weights >700 [29,32], and made linear
normalization (Eq. (2)), also known as min-max normalization, which
is a linear transformation of the original data, so that the weight is
mapped to [0, 1].

,  Xx— min(x)
~ max(x)— min(x)

)

2.2. Construction of the Heterogeneous Network

We constructed the heterogeneous network (Fig. 1A) using 5 types
of nodes (i.e., 2274 herbs, 3730 symptoms, 19,454 diseases, 2148
drugs and 15,709 protein targets) and 11 types of associations including
15,133 herb-herb associations, 476 symptom-symptom associa-
tions, 18,418 disease-disease associations, 4481 drug-drug associations,
319,889 protein-protein interactions, 7982 herb-symptom associations,
23,451 herb-disease associations, 72,248 disease-symptom associa-
tions, 4864 drug-symptom associations, 12,821 drug-disease associa-
tions and 7077 drug-target interactions (Table S1).

2.3. Network Embedding

In recent machine learning on graphs and networks, embedding is
a novel method to learn latent representation for nodes in network
[33]. The latent representation also is known as a d-dimensional
vector representing the feature of node by capturing a network's
structural properties. Here d is a parameter selecting the number of
dimensions of learning feature representation. The output feature rep-
resentations can be used as the input of machine learning algorithms
for various network science tasks, such as classification and link pre-
diction [34].

The previous researches with networks usually considered net-
work structural properties, such as betweenness centrality and modu-
larity, which required inclusive domain knowledge and expensive
computation. Dealing with these issues, network embedding has
been extensively studied in order to automatically discover and map
a network’s structural properties into a latent space [33]. In addition,
the main challenge in biology is finding the feature to represent
terms in biology network so that it can be easily utilized by machine
learning models. Traditionally, simple chemical sub-structure and se-
quence order information of drug and target were chosen as the
drugs and targets representation, which need a lot of molecular infor-
mation and dimension of feature is high [35]. But there is no need for
network embedding to get herbal compound and molecular informa-
tion to represent herb and target, and embedding could obtain the
low-dimensional feature.

2.3.1. Node2vec

Node2vec, a type of embedding method, is used as an algorithmic
framework for learning feature representations for nodes in the net-
works [22]. Compared to the previous embedding method (e.g., LINE
[36], DeepWalk [37]), a biased random walk strategy was used in
node2vec, which can flexibly and efficiently explore the diverse neigh-
borhoods of nodes [38]. In the framework, G = (V,E) is an input net-
work with V as the node set and E as the edge set. Let f: V — R? be the
mapping function from nodes to feature representations used for a
next prediction task. The node2vec mainly includes the following two
aspects.

2.3.1.1. Random Walks. When node2vec learns the vector represen-
tation for nodes in V, it first simulates a random walk to sample
neighborhoods of the source node u. Let ¢; denote the ith node in
the walk, starting with ¢y = u. Nodes c; in the walk are generated

by the following distribution:

My .
—, if(v,x)EE

PG =K1 =v.G o =t)= | 2 T 3)
0 , otherwise

where m,, = a(t,x) - Wy, is the unnormalized transition probability
between nodes v and x, and w,, represents the edge weight be-
tween nodes v and x, and Z is the normalizing constant. Let a(t,x)
be calculated by following:

119 lf dtx =0

at,x)={ 1 ifdy=1 (4)
1.
a lfd[x =2

where d,, is the shortest path between nodes t and x. Thus, it can
guide the random walks process with two parameters p and q. If
we set parameter p is a high value, the walk is less likely to sample
already-visited nodes. On the other hand, if g is high, it is biased to
sample nodes that are close to node u.

2.3.1.2. Feature Learning. Let Ns(u) C V be defined as a network neigh-
borhood of node u generated through a random walk. Then node2vec
learns feature representations by maximizing the likelihood of preserv-
ing node neighborhoods (Eq. (5)), and the feature representation for a
node u is a d-dimensional vector, where d may be chosen by the user.

max Y| logX ey ep(fW:f) + > fim)f(w) (5)

uev ;€N (u)

Therefore, we learn a mapping of nodes to a low-dimensional space
of features that maximizes the likelihood of preserving network neigh-
borhoods of nodes in node2vec.

2.3.2. Learning Edge Features

In our work, we are interested in predicting the relationships be-
tween herbs and targets. Since we have got the feature representations
of herbs and targets from node2vec, we extend them to pairs of herbs
and targets using a bootstrapping approach over the feature representa-
tions of the individual node. Given two nodes herb u and target v, we de-
fine the relationship between herb-target using the Hadamard product
[22] of feature vectors f(u) and f(v) (Eq. (6)).

fu,v) = f(wof(v) (6)

Thus, we get the herb-target relationship from previous process.
Even if an edge of herb and target does not exist since doing so makes
the representations useful for our next classification model prediction
task. According to the node2vec algorithm, the vector representation
of nodes can be considered as the feature of nodes. In this way, the fea-
ture representation of herb-target relationship is obtained through the
feature representation of nodes, which is used as the training and test
of classification.

2.4. Machine Learning Model

The output feature representations from embedding learning can be
used as the input of machine learning tasks. These features are applied
to the task of herb-target edge prediction, in which we intend to esti-
mate the probability that the herb-target edge according to their vector
representation. Six classic supervised learning methods implemented in
the sklearn library [39] including the K-Nearest Neighbor (KNN),
Support Vector Machines (SVM), Logistic Regression (LR), Decision
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Tree (DT), Random Forest (RF) and Gradient Boosting Decision Tree
(GBDT) were used to train the model.

3. Result
3.1. Overview of HTINet

We developed a new method called HTINet to predict herb-target in-
teractions from a heterogeneous network. As an overview (Fig. 1), HTINet
firstly builds a heterogeneous network by integrating 5 types of nodes,
and the corresponding 11 types of edges from diverse datasets (see de-
tails in Materials and Methods). Totally, the heterogeneous network in-
cludes 43,315 nodes and 486,840 edges. Subsequently, we extracted
the latent representations of herb and protein nodes in the heteroge-
neous network using a network embedding algorithm node2vec [22].
The algorithm combines a random walk process and a shallow neural
network with one hidden layer to capture the underlying structural prop-
erties of the heterogeneous network. After getting the feature vectors of
all herb and protein nodes in the heterogeneous network, we constructed
the features of herb-protein interactions by Hadamard product [22] of the
feature of each herb and protein node. In this way, we obtained a large-
scale feature matrix with 12,520,083 herb-protein interactions that
pack the heterogeneous network information led by the corresponding
herb and protein nodes. Based on the feature matrix of the herb-protein
interactions, those classical supervised learning models including K-
Nearest Neighbor (KNN), Support Vector Machines (SVM), Logistic Re-
gression (LR), Decision Tree (DT), Random Forest (RF) and Gradient
Boosting Decision Tree (GBDT) can be applied to construct classification
models to predict the herb-target interactions.

3.2. Performance of Models

In our model, we selected the HIT database [40], a comprehensive
and fully curated database of herbs and their corresponding protein tar-
gets, as the benchmarks for herb-target interactions containing 8933
herb-target interactions. A 10-fold cross-validation procedure was uti-
lized to evaluate the performance of HTINet. Specifically, the benchmark
data were randomly divided into 10 subsets. Then the 9 subsets and a

A

A A A
Her‘b—ﬁerb Herb-disease
L—_:' o -

Herb-symptom pisease-symptom

Disease-disease Symptom-symptom

Network emb'edding learning

Ny:number of herbs
Ng:number of proteins
Npe:number of herb-protein
Ny:dimension of feature

Feature matrix of
herb nodes

Ny Ny

Feature matrix of
protein nodes

matching number of randomly sampled non-interacting interactions
were selected as the training dataset to train a classification model.
The remaining one subset and a matching number of randomly sampled
non-interacting interactions were used as testing dataset. This cross-
validation process was repeated ten times. Cross-validation is used to
prevent over-fitting caused by the model. Using 10-fold cross-
validation, all samples were used as training and test sets, and each
sample was verified once, avoiding wasted data. A large number of ex-
periments using a large number of data sets and using different learning
techniques showed that 10% is the right choice for obtaining the best
error estimate.

In this work, we chose six classical supervised learning models KNN,
SVM, LR, DT, RF and GBDT to examine the performance of HTINet. Both
area under the receiver operating characteristic (ROC) curve (AUROC)
and area under the precision-recall curve (AUPR) were used to evaluate
the performance of the model (Table S2). As shown in Fig. 2A, B, DT-
HTINet is the worst-performing model with both AUROC (61%) and
AUPR (57%). The more sophisticated model RF-HTINet, LR-HTINet,
SVM-HTINet and GBDT-HTINet perform better, achieving an AUROC of
75%, 77%, 80% and 83% and an AUPR of 71%, 76%, 79% and 83%, respec-
tively. More importantly, we found that KNN-HTINet achieves an
AUROC of 95% and an AUPR of 94%, a clear improvement in prediction
performance over other HTINet models. Meanwhile, many common ar-
tificial intelligence algorithms are inspired by nature, including artificial
neural networks which have been designed and built to mimic brain
function on a neuron level. Neural Networks can be used to solve a
wide range of problem types including both regression and classifica-
tion problems. Therefore, we also tested the performance of model
using the artificial neural networks, obtaining an AUROC of 82% and
an AUPR of 79%. In addition, we also tested the performance of the
HTINet models whose drug-drug similarities were calculated by Jaccard
similarity (Table S3). The results indicated that the KNN-HTINet still
achieved a clear improvement in prediction performance over other
HTINet models, with an AUROC of 91% and an AUPR of 93%. But the per-
formance is lower than KNN-HTINet whose drug-drug similarities are
calculated by cosine similarity, with an AUROC of 95% and an AUPR of
94%. Thus, the KNN-HTINet model whose drug-drug similarities are cal-
culated by cosine similarity is used in the following analysis.

C

Drug-drug #<_
. Drug-disease
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. -... :
Drug-target \;-:'\:
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Target-target o Analysis
2
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. Ny = .
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Feature matrix of model

herb-protein edges

Fig. 1. The overview of HTINet method. (A) HTINet firstly builds a heterogeneous network by integrating 5 types of nodes and corresponding 11 types of edges from diverse datasets (see
details in Materials and Methods). (B) Secondly, the latent representations of herb and protein nodes were extracted in the heterogeneous network using an embedding learning algorithm
node2vec. And the feature matrix of herb-protein interactions was constructed by Hadamard product using the feature vectors of all herb and protein nodes. (C) Finally, the classification

models were constructed to predict the herb-target interactions.
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Fig. 2. The performance of PRINCE and HTINet for herb-target interaction prediction and parameters adjustment of HTINet. A 10-fold cross-validation procedure was used to evaluate the
performance of PRINCE, DT-HTINet, RF-HTINet, LR-HTINet, SVM-HTINet, GBDT-HTINet and KNN-HTINet. The area under the ROC curve (AUROC) and area under the precision-recall curve
(AUPR) were used to evaluate the performance of the model. (A) The AUROC distribution of the models. (B) The AUPR distribution of the models. (C) The AUROC distribution under
different number of walks and dimensions. (D) The AUPR distribution under different number of walks and dimensions. (E) The AUROC distribution under different parameter k. (F)
The AUPR distribution under different parameter k.
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Furthermore, we compared the prediction performance of HTINet
with PRINCE method, which is an iteration algorithm spreading infor-
mation of known nodes to other nodes in the network. HTINet outper-
forms PRINCE method, with 28% higher AUROC (67%) and 6% higher
AUPR (88%). As previous studies [41,42] indicated, ROC is an overopti-
mistic metric to evaluate the performance of an algorithm in prediction
tasks, especially on highly-skewed data. Comparatively, PR model pres-
ent a better assessment in this scenario. The noticeable performance im-
provement of KNN-HTINet in terms of AUPR over PRINCE demonstrated
its superior ability in predicting novel herb-target interactions in the
heterogeneous networks. This could be explained from their principles.
PRINCE starts with the target nodes to capture other nodes with similar
information, which should be effective for extracting local features in
uniformly distributed networks rather than the heterogeneous network
with various types of sparse data. Alternatively, HTINet utilized a com-
bined random walk and neural network-based feature learning proce-
dure, which can integrate more domain information to learn much
broader and deeper node information in the heterogeneous network.
After comparing the AUC and AUPR between HTINet and PRINCE, we
also calculated the Wilcoxon signed-rank test (p-value is 0.000295) ac-
cording to the results of PRINCE and HTINet. The results indicated a sig-
nificant difference in results of PRINCE and HTINet.

3.3. Parameters Adjustment of HTINet

In HTINet, the node2vec was used to get the feature vector represen-
tation of nodes in network. We need to learn two important parame-
ters: number of walks and embedding dimensions. We adjusted the
parameters of the algorithm by evaluating the performance of HTINet
under different parameters. Specifically, embedding dimensions were
test under the following parameters: 128, 160, 196, 224, 448 and 512,
and number of walks: 30, 35, 40, 45 and 50. We found the best
performing parameters to be 512 for the embedding dimensions, and
50 for the number of walks, and we fix these parameters throughout
our experiments (Fig. 2C, D). In addition, the value of k in KNN predic-
tion model is also important, we evaluated the performance of HTINet
under different k, which include 1,3,5,7 and 9. We found that KNN
model had the best performance when parameter k is 5, 7 and 9 (Fig.
2E, F). In our experiments, we chose 5 as value of k, as other two k values
(7 and 9) would increase the approximate error.

3.4. Prediction of Novel Herb-Target Interactions

After confirming the reliability of HTINet, we evaluated all the re-
maining 12,511,151 unknown herb-target pairs, and ranked them by
the probability. According to the KNN-HTINet model, we obtained
the probability of predicted herb-target pair based on the number of
true sample in 5 nearest samples around it. If the number of true sam-
ple was 5, the probability was 1.0, which was calculated from 5 di-
vided by 5. Alike, when the number was 4, 3, 2, 1 and 0, the
probability was 0.8, 0.6, 0.4, 0.2, and 0.0, respectively. Therefore,
each predicted herb-target pair lies in a probability of 0.0, 0.2, 0.4,
0.6, 0.8 or 1.0. As shown in Fig. 3A more than 95% herb-target pairs
have prediction probabilities <0.5, indicating most pairs have no inter-
action. For each herb, there are averagely 814 predicted targets with
probability >.5. When the threshold is set as 0.9, this number declines
to 148.

Next, we randomly selected three herbs, Polygonum bistorta,
Tussilago farfara and Rhododendron dauricum, and predicted their tar-
gets. Consistent with the overall results, the distribution of

prediction probability for these herbs showed that most predicted
herb-target pairs have prediction probability <.5 (98.76%, 97.16%
and 95.93% for Polygonum bistorta, Tussilago farfara and Rhododen-
dron dauricum, respectively, Fig. 3B, C and D). Then, the predicted
results of the three herbs (Table S4) were compared with the
herb-target interaction data curated in TCMID [43], which is a
comprehensive TCM database containing herb-ingredient-target
interaction data collected from literatures. As shown in Fig. 3E
we found that 47.1% predicted targets for Polygonum bistorta,
67.5% for Tussilago farfara and 64.0% for Rhododendron dauricum
were validated in TCMID. Furthermore, we examined the pre-
dicted targets in literatures. Our new predictions showed that Po-
lygonum bistorta can also act on TOP2A (probability = .8) and
CYP2B6 (probability = .6). This new prediction can be supported
by a previous study that showed that aqueous extract of Polygo-
num bistorta could significantly regulate the expression levels of
the two targets [44]. Our new predictions showed that Salvia
miltiorrhiza Bunge (Danshen in Chinese), can act on CD40
(probability = 1.0), TRPC1 (probability = .6), CRP (probability
= .6) and TIMP (probability = .6). These new predictions can be
supported by the previous study which showed that Salvia
miltiorrhiza Bunge could downregulate the levels of the four tar-
gets, contributing to inhibition of atherosclerosis [45]. Panax
notoginseng (Sanqi in Chinese) was predicted to target VCAM1
(probability = 1.0) and ICAM1 (probability = 1.0). The two tar-
gets were proved to be reduced by Panax notoginseng treatment
in a previous study [46]. Panax ginseng (Renshen in Chinese) has
been proved to protect against amyloid p-induced neurotoxicity
by acting on DSTN and TOMM40 relate to actin cytoskeleton orga-
nization [47]. Consistently, HTINet displayed the probability of
Panax ginseng targeting the two proteins >0.5 (probability of
DSTN = 0.8 and probability of TOMM40 = 0.6).

3.5. Case Study Using Gene Expression Omnibus (GEO) Database

Furthermore, we conducted the case study according to Gene Ex-
pression Omnibus (GEO) database [48]. The GEO is an international
public repository for high-throughput microarray and next-generation
sequence functional genomic data sets submitted by the research com-
munity [49].

Previous studies have reported the anti-tumor effects of Tanshinone
I[IA (Tan IIA), which is extracted from the root of Salvia miltiorrhiza
(Danshen in Chinese), on various human cancer cells. Then, we want
to explore which genes in cells are specifically affected. Therefore, we
conducted an analysis of gene expression underlying Tan IIA's apoptotic
effects on leukemia cells using a GEO data set (GSE33358). We used on-
line analysis tool GEO2R, obtaining the top 10 differentially expressed
genes (Table S5) and the prediction probability of these genes in HTINet
were also shown in Table S5. We found the probability of 60.0% genes in
the top 10 differentially expressed genes >0.5.

Next, we also conducted an analysis of gene expression in normal
lung and diabetic lung using a GEO data set (GSE15900) to find out
the impact of diabetes on the cellular and molecular processes in the
lung, obtaining the top 10 differentially expressed genes (Table S6). In
addition, Panax ginseng (Renshen in Chinese) could be used for the
treatment of diabetes. Therefore, we calculated the prediction probabil-
ity of these differentially expressed genes in HTINet (Table S6). The re-
sults showed that the probability of 60.0% genes in the top 10
differentially expressed genes >0.5.

Fig. 3. Prediction of novel herb-target interaction. The distributions of the prediction probability of all unknown herb-target pairs (A), Polygonum bistorta (B), Tussilago farfara (C) and
Rhododendron dauricum (D). (E) The herb-target interaction network of Polygonum bistorta, Tussilago farfara and Rhododendron dauricum. Herb-target interactions were collected from
TCMID or literature. The herb nodes were shown in red circles, and the validated targets were marked by blue circles, while the non-validated targets were shown by green circles.
(For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
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Finally, we conducted an analysis of gene expression in animals
with epilepsy and animals without epilepsy using a GEO data set
(GSE27166) to find out the impact of epilepsy, obtaining the top 10
differentially expressed genes (Table S7). Furthermore, Pueraria
(Gegen in Chinese) could be used for the treatment of epilepsy.
Therefore, we calculated the prediction probability of these differen-
tially expressed genes in HTINet (Table S7). The results showed that
the probability of 40.0% genes in the top 10 differentially expressed
genes >0.5.

4. Discussion

Herbal medicine differs in substance, methodology and philosophy
from modern medicine. The applications of herbal medicine are mostly
derived from the accumulation of empirical evidence and perception.
Compared with modern medicine, the most distinguishing feature of
herbal medicine is that an herbal preparation is a mixture of numerous
chemical ingredients [6]. Although researches have applied a series of
chemical analysis methods to disassemble the complexity of herbal
medicine. The underlying mechanisms of most herbal preparations are
still obscure for some reasons. First, most medicinal herbs contain
many ingredients and it is difficult to differentiate between effective
and non-effective. In addition, even the active compounds have been
identified, their corresponding pharmacological targets also need to be
discovered. All of this work is a slow and troublesome process even if
the computational ligand-based prediction methodology was utilized.
These concerns prompted us to consider an alternative strategy that
might be capable of detecting the pharmacological targets by detouring
around the complexity of herbal medicine. Previously, we proposed a
transcriptome-based inference approach to identify the targets of
herbal medicine [50]. This method assumes that drugs with the similar
biological mechanisms will have similar gene expression profiles. Thus,
if knowing the transcriptional profile of a query herbal preparation, its
targets can be assessed by comparing its transcriptional profile with
that of drugs with known targets [51]. However, this method needs
the transcriptional profile of herbal medicine firstly being measured
and also is restricted by the database size of the transcriptome data of
drugs with known targets. Here, we developed a network-based em-
bedding representation method HTINet to infer novel herb-target
interactions.

Network-based methods explore the latent correlation features of
different network nodes to predict their interactions, and have become
a popular tool for drug discovery and repositioning [14]. A network-
based approach is generally a scalable framework that can integrate
heterogeneous data sources that can improve the performance of
drug-target interactions from a multi-view perspective. For example,
Yunan et al. integrated diverse drug-related information, including
drugs, proteins, diseases and side-effects into a heterogeneous network
to predict drug-target interactions, which achieves substantial perfor-
mance improvement over other state-of-the-art methods [15]. In the
present work, to boost the accuracy of herb-target interaction predic-
tion, HTINet has incorporated different types of information including
TCM information (e.g. herbal efficiency), TCM clinical information (e.g.
herb-disease/symptom association) and genomic data (e.g. protein-
protein interactions).

The main challenge in network-based methods comes from the
complexity and heterogeneity of datasets. Generally, network propa-
gation methods, such as random walk [52], information diffusion [53]
and electrical resistance [54], have been used to amplify the network
information. For example, we have constructed a heterogeneous
herb-target network to identify candidate targets for herbs by using
the random walk algorithm [21]. However, the method considered
only unilateral similarity of herbs or targets likely loses substantial
network information. In addition, directly using the diffusion states
as the features might easily suffer from the bias induced by the
noise and high-dimensionality of biological data. Here, HTINet copes

with the noisy, incomplete and high-dimensional nature of large-
scale biological data by combining the random walk algorithm and
a shallow neural network to train and extract informative represen-
tations of nodes in the network [22]. The results showed that HTINet
performs better than the diffusion algorithm PRINCE in the heteroge-
neous network.

In the future, our work has three further directions to improve the
ability of HTINet. Firstly, we will include more related data in our
model, such as gene expression, pathway and Gene Ontology (GO) in-
formation. Meanwhile, we would try the drug-drug similarity according
to the OFFSIDES database [55] in our future work. In addition, as the
HTINet model doesn't conflict with other target prediction approaches
including ligand-based and transcriptome-based methods, we plan to
integrate all these methods together to help us predict the novel herb-
target interactions. Also, since the current sample size is limited, next
we would expand our sample size to try other deep learning algorithms
in our future works. Finally, we will choose some suitable ways to select
gold positive and negative datasets in future work to improve the per-
formance of HTINet.
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