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Abstract 
The amount of noise in web data is rapidly increasing, as is the number of 

users searching for information to suit their interest. The increase of web data 

has led to some critical issues, such as a high level of noise and irrelevant 

data. Given that the web is noisy, inconsistent and irrelevant by nature, finding 

useful information that defines interest of user has become a challenge. 

Existing research acknowledges that there is a need to propose machine 

learning tools capable of addressing problems with noise web data. Identifying 

and eliminating noise web data is critical to the web usage mining process. As 

the web evolves and more web data sources emerge, the level of noisiness 

also increases.  

Despite efforts by existing research to address noise in web data, a number 

of critical issues remain unresolved. For example, existing research work 

considers noise web data as irrelevant data that does not form part of the main 

content of a web page. Therefore, current machine learning tools focus on 

protecting the main content of a web page by eliminating noise/irrelevant data, 

such as advertisements, banners and external links etc. However, the main 

content of a web page can potentially be noise when user interests are 

considered. The position taken by the proposed research is based on the fact 

that noise web data can itself be useful when the interests of a user are 

considered prior to elimination.  

To justify this position, a Noise Web Data Learning (NWDL) approach which 

aims to learn noise web data prior to elimination is proposed. To the best of 

our knowledge, learning noise web data prior to elimination has not been 

addressed by current and relevant research works. The objective is to ensure 

that the interestingness of data on the web is defined by user interests over 

time. The proposed NWDL considers the following key aspects, 1) the 

significance of exit page in defining user interest level on web pages visited 

by a user. 2) The effect of the dynamic change of user interests towards the 

classification of web pages.  

Experiments conducted in this research shows that noise web data reduction 

process is user-centric, i.e., the dynamic changes of user interests influence 
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the interestingness of web data. As a result, what is currently identified and 

eliminated as noise can be useful when user interests and their changes over 

time are considered. The findings from validation and evaluation of the 

proposed NWDL against existing tools shows that user interest over time 

significantly impacts the importance of data on the web. Given that current 

research work mainly identifies and eliminate noise web data without defining 

user interests, the process is not user-centric. A key contribution of the 

proposed research is to identify and learn noise web data taking into account 

user interests as they change over time prior to elimination. Ultimately the 

proposed NWDL contributes towards minimising loss of useful information 

otherwise considered as noise by the existing tool as well as reduce the level 
of noise data suggested to a user. 

 

               



iv 
 

Disseminations based on this thesis 

Book Chapter 

Onyancha J., Plekhanova V., Nelson D. (2019), “Learning Noise in Web Data Prior 
to Elimination,” In: Ao SI., Gelman L., Kim H. (eds) Transactions on Engineering 
Technologies, WCE 2017, Springer, pp.177-187 

Journal Article 

Onyancha J. V. Plekhanova V., (2018) “Noise Reduction in Web Data: A Learning 
Approach Based on Dynamic User Interests,” International Journal of Computer and 
Information Engineering, Vol: 12, No: 1, pp 7-14 

Published Conferences Papers 

Onyancha J., Plekhanova V., Nelson D. (2017) “Noise Web Data Learning from a 
Web User Profile: Position Paper,” in Proceedings of the World Congress on 
Engineering, 2017, vol. 2, pp 608-611 

Onyancha J., V. Plekhanova V., (2017), “A User-Centric Approach towards Learning 
Noise in Web Data,” 12th International Conference on Intelligent Systems and 
Knowledge Engineering, IEEE 2017, Nanjing, Jiangsu, 2017, pp. 1-6.  

Accepted Conference Papers 

Onyancha J., Plekhanova V., Nelson D. (2018), “Effect of Dynamic Thresholds 
Values on Interestingness of Noise Web Data”, International Conference on 
Information Science and System (ICISS 2018), Jeju Island, South Korea, April 27-
29, 2018, Proceedings Series by ACM 

J Onyancha J., Plekhanova V., Nelson D. (2018), “Interestingness of Web Data 
Based on Dynamic Change of User Interests,” International Conference on Machine 
Learning and Data Analysis 2018, San Francisco, USA, 23-25 October 2018 

Presentations 

“Noisy Web Data Learning (NWDL),” MSc. Information Technology Management 
Seminar, University of Sunderland, 24 January 2017. 

“Problems with Noise in Web Data.” MSc. Data Science Seminar, University of 
Sunderland, 12 April 2018. 

Posters  

“Noise Web Data Learning (NWDL) - A User-Centric Approach,” University of 
Sunderland Research Conference, 5th June 2017 

“Learning Noise in Web Data – A User Centric Approach,” The 12th International 
Conference on Intelligent Systems and Knowledge Engineering,” November 24–26, 
2017, Nanjing, China. 

  



v 
 

Table of Contents 
Acknowledgment ................................................................................................................. i 
Abstract ................................................................................................................................. ii 
Disseminations based on this thesis ........................................................................... iv 

Chapter 1: The Research Background.......................................................................... 1 

1.1. Introduction .......................................................................................................... 1 

1.2. Research Motivation .......................................................................................... 2 

1.3. Problem Statement ............................................................................................. 2 

1.4. Proposed Research Position ........................................................................... 4 

1.5. Research Aims and Objectives ....................................................................... 4 

1.6. Research Questions .......................................................................................... 5 

1.7. Proposed Research Contributions to Knowledge ..................................... 6 

1.8. Thesis Structure ................................................................................................. 7 

Chapter 2: Noise Web Data – A Literature Review .................................................. 10 

2.1. Introduction ............................................................................................................ 10 

2.2. Noise Data – Definition and Relevant Research Issues/Theory ............... 11 

2.2.1. The context of web page content in the noise elimination process .... 14 

2.2.2. Common Sources of Noise in Web Data ................................................ 16 

2.2.3. Different Types of Noise in Web Data ..................................................... 17 

2.2.4. The Impact of Noise Web Data in the Web Usage Mining Process ... 17 

2.3. Critical Analysis and Evaluation of Relevant Research Works ........... 19 

2.3.1. Noise Web Data Reduction: Layout and Structure of Web Data ............. 19 

2.3.2. Noise Web Data Reduction: Extracted Web Data Logs ............................ 25 

2.4. The Influence of User Interest on the Noise Web Data Reduction 
Process ........................................................................................................................... 26 

2.5. Discussion of Critical Aspects ..................................................................... 27 

2.6. Chapter Summary............................................................................................. 29 

Chapter 3: Web User Profiling Based on Web Data ................................................ 31 

3.1. Introduction ............................................................................................................ 31 

3.2. Collection of User Interest Information .......................................................... 33 

3.2.1. Explicit User Interest Information .................................................................. 34 

3.2.2. Implicit User Interest Information .................................................................. 35 

3.3. Extraction and Pre-processing of Web Log Files ........................................ 36 

3.3.1. User Identification ....................................................................................... 39 

3.3.2. User Session Identification ........................................................................ 41 

3.3.3. Page View Identification ............................................................................ 47 



vi 
 

3.4. Web User Profile Construction ..................................................................... 48 

3.5. Web User Profiling: its Significance in Noise Web Data Reduction ... 49 

3.6. Chapter Summary............................................................................................. 50 

Chapter 4: Learning Noise in Web Data ..................................................................... 52 

4.1. Introduction ............................................................................................................ 52 

4.2. User Interest Learning ......................................................................................... 53 

4.2.1. Identifying Key Indicators for Learning User Interest ................................. 54 

4.2.2. Interestingness of a web page based on time and frequency of user 
visits .............................................................................................................................. 59 

4.2.3. Influence of Time and Frequency of Web Page Visits on Noise 
Elimination ................................................................................................................... 60 

4.2.4. Learning User Interest Based on Depth of User Visit ................................ 62 

4.2.5. Interestingness of a Web Page Based on User Interest Category .......... 66 

4.3. Addressing Dynamic Change in User Interests ........................................... 73 

4.3.1. Interestingness of a Web Page Based on Recency of Visit ...................... 74 

4.3.2. Dynamic Threshold Values ............................................................................ 75 

4.4. Learning Noise Web Data by Classification .................................................. 78 

4.5. Noise Web Data Learning: its Significance to Web Usage Mining .......... 81 

4.6. Chapter Summary ................................................................................................. 82 

Chapter 5:  Experimental Design Setup ..................................................................... 85 

5.1. Introduction ........................................................................................................ 86 

5.2. Experimental Data Preparation ..................................................................... 87 

5.3. Experimental Setup .......................................................................................... 88 

5.3.1. Interestingness of web page based on exit page user visit duration .. 89 

5.3.2. Interestingness of Web Data Based On Dynamic Change of User 
Interest 92 

5.3.3. The overall performance of the proposed noise web data learning 
approach ...................................................................................................................... 96 

5.4. Chapter Summary............................................................................................. 99 

Chapter 6: Evaluating Performance of Proposed NWDL ..................................... 100 

6.1. Introduction ...................................................................................................... 100 

6.2. Evaluation Metrics .......................................................................................... 102 

6.2.1. Confusion Matrix ....................................................................................... 102 

6.2.2. Accuracy/Error rate ................................................................................... 103 

6.2.3. Precision, Recall and F-Measure ........................................................... 104 

6.3. First Direction – Black-box Validation Process ...................................... 106 

6.3.1. Evaluating Performance of NWDL using a ‘Black Box’ Approach .... 106 



vii 
 

6.3.2. Discussion of the results .......................................................................... 107 

6.4. Second Direction- Baseline Model ............................................................. 110 

6.4.1. Evaluating the performance of NWDL against the Baseline Model .. 113 

6.4.2. Discussion of the results .......................................................................... 114 

6.5. Evaluating performance of the proposed NWDL approach using a 
noise dataset ............................................................................................................... 116 

6.5.1. Validation Process .................................................................................... 116 

6.5.2. Discussion of the results .......................................................................... 117 

6.6. Evaluating performance of the proposed NWDL using Open Source 
Dataset .......................................................................................................................... 118 

6.7. Discussion of critical aspects based on performance of NWDL ....... 121 

6.8. Chapter Summary ............................................................................................... 122 

Chapter 7: Conclusion and Future Work .................................................................. 123 

7.1. Introduction .......................................................................................................... 123 

7.2. Critical Discussions Based on Research Objectives ................................ 123 

7.3. Key Findings Based on the Proposed Research Questions ................... 124 

7.4. Research Contribution ...................................................................................... 127 

7.5. Future Work .......................................................................................................... 128 

References ....................................................................................................................... 131 

Appendices ...................................................................................................................... 145 

Appendix I: Samples of noise web data ............................................................... 145 

Appendix II: Comparative analysis of data mining techniques applied in 
noise web data reduction ......................................................................................... 146 

Appendix III: Data Modelling: Use Case Diagram .............................................. 148 

Appendix IV: Sample raw datasets ........................................................................ 149 

Appendix V: Experimental Design Procedures and Validation ...................... 150 

 

 

 

 

 

 

 



viii 
 

List of Algorithms  

Algorithm 1: User Identification......................................................................................... 40 

Algorithm 2. Session Identification based on dynamic time-out .................................. 47 

Algorithm 3. Depth of User Visit ....................................................................................... 64 

Algorithm 4. Learning noise web data ............................................................................. 81 

 

List of figures 

Figure 1.1:Thesis Structure ................................................................................................. 8 

Figure 2.1: Literature review structure ............................................................................. 11 

Figure 2.2 Different types of Noisy Data………………………………………………..12 
Figure 2.3: A web page containing noise data ............................................................... 15 
Figure 2.4: Relationship between a user and web data ............................................... 24 

Figure 3.1: Extraction and pre-processing of web log files .......................................... 33 

Figure 3.2: Explicit user feedback. ................................................................................... 34 

Figure 3.3: Session identification based on 30 min threshold value........................... 42 

Figure 3.4: User profile construction ................................................................................ 49 

Figure 4.1: Noise web data learning process flow diagram ......................................... 54 

Figure 4.2: Depth of a user visit to a website ................................................................. 63 

Figure 4.3: Categories of web pages ............................................................................... 67 

Figure 4.4: Frequency of visits to a web page category ............................................... 69 

Figure 4.5: Frequency versus visit to a web page category ........................................ 72 

Figure 5.1: Database Model .............................................................................................. 88 

Figure 5.2: Page visit duration based on fixed vs dynamic time-out session ............ 90 

Figure 5.3: Comparing page weight based on fixed vs dynamic time-out session .. 91 

Figure 5.4: Dynamic change of user interest over 90 days’ period ............................ 93 

Figure 5.5a: User interest level after one week ............................................................. 95 

Figure 5.5b: User interest level after 7 weeks ................................................................ 95 

Figure 5.6:  Noise Web Data Learning Process Flow Diagram ................................... 97 

Figure 5.7: Overall Performance of NWDL ..................................................................... 98 

Figure 6.1: Black-Box Validation Process ..................................................................... 106 

Figure 6.2: The output from black-box approach ......................................................... 107 

Figure 6.3: The output from the black-box approach .................................................. 108 

Figure 6.4: Noise output from black-box approach ..................................................... 108 

Figure 6.5: Interest output from black-box approach .................................................. 109 

Figure 6.6: Defining a Baseline Model .......................................................................... 111 

Figure 6.8: Baseline vs NWDL – A validation process. .............................................. 114 

Figure 6.9: Performance evaluation using Confusion Matrix ..................................... 114 

Figure 6.10: Performance evaluation in noise data set .............................................. 118 

Figure 6.11: Classification Performance of the Baseline Model……..…………….119 
Figure 6.12:  Classification Performance of the Proposed NWDL…………………120 
 

 

 

file:///E:/Thesis%20Draft/2018/NL%202018/Sept%202018-%20Final.docx%23_Toc523686496
file:///E:/Thesis%20Draft/2018/NL%202018/Sept%202018-%20Final.docx%23_Toc523686497
file:///E:/Thesis%20Draft/2018/Final%20Submission/Julius%20Onyancha_Thesis%20Submission%202018.docx%23_Toc525161728


ix 
 

 

 

List of Tables 

Table 1: Raw web log file .................................................................................................. 38 

Table 2: A set of records in the 𝑗𝑡ℎ user profile ............................................................. 40 

Table 3: Session identification for the 𝑗𝑡ℎ user .............................................................. 44 

Table 4: Visit duration for 𝑗𝑡ℎ user on 𝑘𝑡ℎ web page in 𝑖𝑡ℎ session ........................... 56 

Table 5: Time Duration versus Frequency of User Visit ............................................... 61 

Table 6: Length of visit to a web page category ............................................................ 71 

 

Abbreviations  
WWW:  World Wide Web 

NWDL:  Noise Web Data Learning 

WUM:   Web Usage Mining 

ANN:   Artificial Neural Networks 

k-NN:   k Nearest Neighbours 

CBS:   Case Based Reasoning 

NB:  Naïve Bayes 

ML:  Machine Learning 

DOM:  Document Object Model 

LRU:  Least Recently Used 

AUC:  Area Under Curve 

RF:  Random Forest 

CA:   Classification Accuracy 

 

  



1 
 

Chapter 1: The Research Background 
 

1.1. Introduction 
The World Wide Web (WWW) has in the recent past emerged as the main 

source of information, but its rapid growth has also made it more difficult for 

web users to actually find useful information (Gao et al., 2016; Varnagar et al., 

2013; Dohare et al., 2012). The process of extracting information from the web 

that meets the needs of a web user, referred to as web usage mining (WUM), 

has thus become a popular research area (Jafari et al., 2013; Srivastava et 

al., 2000). However, the level of noise data on the web is rapidly increasing, 

making it difficult to find useful information for a given user at any time. In order 

to improve the web usage mining process, a number of machine learning (ML) 

algorithms are proposed by the current research (Htwe et al., 2011; Kabir et 

al., 2012; Dutta et al., 2014; Lopes and Roy, 2015; Sirsat and Chavan, 2016). 

 

Web data is noisy, inconsistent and often irrelevant by nature (Singla and 

White, 2010; Dwivedi and Rawat, 2015). The presence of noise web data 

hinders the discovery of relevant and useful information in relation to the given 

user interests (Jafari et al., 2013; Xiong et al., 2006). Lingwal (2013) and Yi et 

al (2003) define relevant data as the main content of the web page that a user 

needs to view. Content pages are web pages where a user can find useful 

information, while anything that does not form part of the main web page is 

considered noise (Kapusta et al., 2012). Noise is defined as irrelevant data 

that is not part of the main content of the web page (Yi et al., 2003; Laber et 

al., 2009; Lingwal et al., 2013; Bhamare and Pawar, 2013). Problems with 

noise web data have been explored by Goel (2014), Dutta et al. (2014) and 

Aldekhail (2016); such problems include the fact that data available on the 

web comes from different sources. Given that there are few measures in place 

to address the noise levels in web data, web users can write and post 

anything, thereby subjecting web data to low quality, erroneous or even 

misleading content (Srivastava et al., 2000; Jafari et al., 2013). Moreover, 

identifying information considered useful, as opposed to noise, for a specific 
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user varies from one person to another as not all web data are of equal interest 

to every user, and this also varies over time because user interests change.  

1.2. Research Motivation 
Existing research studies have made an effort to address problems associated 

with noise web data; for example, Yi et al (2003), Lingwal (2013) and 

Sivakumar (2015)  propose machine learning tools that can identify and 

eliminate noise in web data based on the structure and layout of web pages. 

Determining noise based on the structure and layout of web data, however, 

ignores the fact that the main content within a web page can be noise if it does 

not meet the interests of a user. Htwe and Kham (2011) and Velloso and 

Dorneles (2013) propose a mechanism whereby the noise associated with 

web pages is matched to stored noise data for classification and subsequent 

elimination. As a result, the elimination of noise in web data is based on pre-

existing noise data patterns. It is thus evident that current research 

concentrates on the structure and content of the web pages as a means of 

determining the usefulness of web data, under the assumption that the main 

web page content contains useful information (Yi et al., 2003; Ansari et al., 

2011; Htwe and Kham, 2011). However, the proposed research argues that 

noise is not necessarily data that does not form part of the main content of a 

web page; instead, the main web page content can also be noise if it does not 

reflect the user’s interest at the given time. 

1.3. Problem Statement 
Discovery of useful information from the noisy web is an area that has received 

extensive consideration in the existing research, as mentioned in previous 

sections of this chapter. Despite the contributions made by the existing 

research to address problems with noise web data, there are still critical issues 

that have not thus far been fully addressed. The existing research works that 

address problems with web data typically focus on identification and 

classification of web data, but it is unclear if they consider user interests prior 

to elimination of noise in web data. For example, Kakol et al. (2017) argue that 

the relationship between main content of a web page can have a substantial 

effect on identifying useful information from the noisy web. However, as user 

interests change over time, the interestingness of web data is also affected, 
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thus making it difficult to identify and eliminate noise in web data. The 

interestingness of web data is defined either subjectively or objectively (Huang 

et al., 2002; Dimitrijevic et al., 2014). For instance, objective interestingness 

depends on the structure of data and the patterns extracted from it, while 

subjective interestingness relies on the specific needs and interests of a user 

(Sahar, 2010; Jiang et al., 2013). Pazzani and Billsus (1997), Cooley et al. 

(1999) and Dimitrijevic et al. (2014) further define interestingness of a web 

page as the relevance of the page with respect to the interests of a user. The 

interestingness of web data may vary in line with different levels of user 

interests. This is due to the fact that information on the web can be useful only 

in some respects or for a certain period, which is defined by a sequence of 

user events that happen over time. For example, a user interest in shopping 

for a wedding is regarded as an event. Therefore, learning the interestingness 

of web data is critical to identification of information from the web that reflects 

the interests of a user. This is to ensure that the web data identified and 

eliminated as noise is first determined to be against the interests of the user.   

Noise web data elimination is a research area that cannot be investigated 

independent of user interests. This is because identification and elimination of 

noise web data is dependent on user needs and interests. The proposed 

research focus is to learn about noise in web data based on user need and 

interests. For example, what is noise to one user can be interesting to another, 

and current user interest data can become noise in the future. It is therefore 

important to note that as the web evolves, user interests change as well, and 

such changes influence the process of eliminating noise in web data. 

Changing user interests opens up challenges in determining whether the main 

web content itself is useful or noise for a given user at a given time. The 

dynamic aspects of user interest are critical to the identification and 

subsequent elimination of noise web data. It is therefore necessary to 

determine noise web data by considering a change of user interests. Given 

the current state of the web, eliminating noise in web data prior to learning its 

interestingness to a user can lead to the loss of useful information (Onyancha 

et al., 2017). 



4 
 

1.4. Proposed Research Position 
The proposed work is inspired by the existing research’s effort to address 

problems with noise web data. A number of critical issues discussed in 

sections 1.2 and 1.3 of this chapter define the gap the proposed research 

attempts to address. For example, the existing research on noise elimination 

from web data fails to acknowledge that as user interest change over time, the 

interestingness of web data changes as well. In addition, the main content of 

a web page is currently perceived to hold useful information, but in reality this 

does not necessarily mean it addresses the user interests. These are some of 

the critical issues the proposed research aims to address in order to ensure 

user interests play a part in eliminating noise in web data.   

With the rapid growth of data volume on the web, finding information that is 

interesting to the user is becoming even more challenging due to the level of 

noisy data. The proposed research revisits this problem from a user interest 

perspective. Specifically, it focuses on avoiding the elimination of useful 

information otherwise identified as noise by existing tools. Rather than just 

eliminating noise in web data, the proposed approach will learn about the 

interestingness of web data, taking into account user interests prior to noise 

elimination. Even though the structural layout of data on a web page creates 

a boundary between useful and noisy data (Velloso and Dorneles, 2013), the 

proposed research’s viewpoint is that “noise in web data can be useful if 
changes in user interests are considered prior to elimination”. Therefore, 

this research challenges the assertion of existing research on noise web data 

that: (1) the main content of the web contains useful information, while the rest 

is noise; and (2) noise web data is data that does not form the main content 

of a web page. 

1.5.  Research Aims and Objectives 
The aim of this research is to explore how current research addresses 

problems with noise web data and to identify critical issues in relation to noise 

in web data that current research works have not managed to fully address. 

The limitations with the existing tools, as discussed in section 1.3, highlight 

problems that need to be addressed given the current state of the web. The 

proposed research work aims to ensure that the process of finding and 
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eliminating noise web data is conducted in a way that allows user interests to 

play a central role. In order to fulfil the proposed research aims, the following 

objectives are considered: 

1. Identify and critically evaluate current research that addresses noise in 

web data. This includes exploring the types of noise data eliminated, 

problems addressed in relation to noise data eliminated, contributions 

and limitations of the current tools used. 

2. Identify gaps in current research based on the performance of existing 

tools to existing problems. The outcome aid in positioning the proposed 

research and its attempts to address the gap. 

3. Determine how changes in user interests impact identification and 

subsequent elimination of noise in web data. 

4. Propose a noise web data learning approach that can identify and learn 

noise in web data prior to elimination.  

5. Validate and evaluate the performance of the proposed algorithms 

against existing tools applied in the noise web data elimination process. 

6. Identify and evaluate key findings from the proposed research work 

against research objectives. 

1.6.  Research Questions 
This section identifies the research questions addressed by this thesis. The 

objectives outlined in the previous section are expressed in the following 

research questions: 

Question 1: In what ways do current research works define and address 
noise in web data?  

This question is answered through a critical review and evaluation of current 

research work in chapter 2 of this thesis. The existing research work is 

evaluated in terms of how noise web data is defined, machine learning tools 

proposed to address noise data, measures applied to evaluate performance 

of tools proposed by existing research and their contributions to address 

problems with noise in web data.  
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Question 2: What are the key indicators for learning user interests and 
how could the interests of a user influence identification of noise web 
data? 

This question is answered through a critical analysis and evaluation of 

measures used to learn user interests on the web. A number of key process 

and measures used to determine user interest levels on the web are explored 

in chapters 3 and 4. 

Question 3: How can learning noise web data better address problems 
with the noisy web in comparison to contributions made by the existing 
research? 

Chapters 5 and 6 introduce a number of experiments using the proposed 

machine learning algorithms. In order to verify whether the proposed noise 

web data learning approach performs better than existing tools, the proposed 

algorithms are validated by comparing the results using key measurement 

metrics such as confusion matrix, precision, recall and F-measure. In order to 

ensure the proposed research objective is achieved, the overall performance 

of the proposed algorithms is evaluated against the research objectives. 

1.7.   Proposed Research Contributions to Knowledge 
Based on the existing literature, the proposed research explores how the 

relevant current research studies address problems associated with noise 

web data. Noise web data is currently defined based on structure and layout 

of web data. Therefore, interestingness of web data depends on the structure 

of data and the patterns extracted from it. To the best of our knowledge, 

existing research do not clearly define noise web data taking into account 

change user interest. Moreover, they do not learn noise web data based on 

change of user interest prior to elimination Without learning the 

interestingness of web data based on a user’s interest, the process of 

eliminating noise web data is limited to simply recognising how web data is 

presented and not what users are interested in at any given time.  
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To justify this position, a noise web data learning (NWDL) approach is 

proposed, this approach aims to learn noise web data prior to elimination. 

NWDL approach introduces a number of measures capable of learning 

interestingness of web data prior noise identification. The proposed measures 

consider the following key aspects, 1) the influence of exit page in defining 

interestingness of web page visited by a user. 2) The effect of dynamic change 

of user interests towards the classification of web pages.  

A key contribution of the proposed research is to identify and learn noise web 

data taking into account user interests as they change over a time prior to 

elimination. Ultimately, the proposed NWDL contributes towards minimising 

loss of useful information otherwise considered as noise by existing tool as 
well as reduce level of noise data suggested to a user. 

1.8. Thesis Structure 
The thesis is divided into seven chapters, as presented in Figure 1. These 

include the definition of the research problem; rationale and contribution to 

existing research, as discussed in the previous chapter; a critical review and 

evaluation of current research work; the positioning of the proposed 

research’s methodological approach used to address the defined research 

problems, experimental design and validation process; and finally evaluation 

of the research outcomes against the defined objectives and conclusion. 
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Figure 1.1: Thesis Structure 

Chapter 2 is a critical review and evaluation of the existing researches that 

address problems with noise web data. This chapter further justifies the 

proposed research’s position and the gap it attempts to fill. 

Chapter 3 presents a methodological approach to address the defined 

research problem. The chapter first defines a user profile that captures the 

interests of a user on a web page. The key aspects of user profiling are: 

understanding varying user interests on the web and learning how changes in 

user interests influence interestingness of web data. The key stages explored 

in this chapter include: data extraction from web servers, pre-processing of 

extracted web log data, and finally building a user profile based on the 

extracted web log data. 

Chapter 4 proposes a noise web data learning approach that takes into 

account a change in user interests prior to noise elimination. In this chapter, a 

number of algorithms are defined to learn the interestingness of web data 

Chapter 1: Problem Formulation
Problem formulation
Proposed Research Position
Research Questions/Objectives

Chapter 2: Literature Review
Selection of current & relevant academic 
literature
A criteria for reviewing selected literature is set

Chapter 3: User Profiling
Data Collection & Data Cleaning
User Profile Creation

Chapter 4: User Interest Learning
Identify user interest indicators
Influence of user interest on noise data
Noise web data learning

Chapter 5: Experimental Design Setup

Chapter 6 : Analysis and Evaluation of Results 

Chapter 7 : Conclusion & Future Research Works 

Positioning the proposed research
Findings to research question 1

A number of machine learning 
algorithms are proposed

Results from  proposed 
algorithms are evaluated against 
the defined research objectives/
question

Validates the performance of 
proposed algorithms against 
existing tool/algorithms
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when user interests are considered. The defined algorithms are based on a 

number of user interest indicators: duration, frequency and depth of a user 

visit to a web page. This chapter aims to demonstrate how user interests and 

the changes in this influence identification and subsequent elimination of noise 

web data.  

In Chapter 5, a number of experiments are conducted based on proposed 

algorithms in order to validate the performance of the proposed algorithms. 

The objective of conducting experiments is to determine how the proposed 

machine learning algorithms perform over existing tools applied to address 

noise web data. The experiments are designed in such a way as to verify 

whether the proposed noise web data learning approach minimises loss of 

useful information, reduces noise in web data and considers change of user 

interests prior to   elimination of noise in web data.   

Chapter 6 is based on the results from the experiments conducted; the 

performance of the proposed algorithms is validated against existing tools that 

address noise web data. The goal of the validation process is to demonstrate 

that the proposed noise web data learning approach produces better results 

than existing tools. The outcome of the validation process aims to respond to 

the third research question: How can learning noise web data better address 

problems with the noisy web in comparison to contributions made by the 

existing research? 

Chapter 7 provides a summary of the critical issues addressed in relation to 

the defined research problem and objectives. A discussion of the contribution 

made and further research work in the noisy web is also presented. 
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Chapter 2: Noise Web Data – A Literature Review  
 

2.1. Introduction 

Chapter 1 introduces the proposed research by examining problems with 

noise web data. It explores the contribution made by existing research to 

address the defined problems and, as a result, a number of critical issues in 

relation to the problem are identified. A gap in existing research has thus been 

defined that precipitates the need to propose an approach to address 

challenges with noise web data. In order to justify the rationale of the proposed 

research, it is necessary to understand how noise in web data is addressed 

by current research, the machine learning tools used by current research to 

address existing problems, and the measures used to evaluate the 

performance of the existing tools. 

This chapter provides a critical analysis and evaluation of current research on 

eliminating noise web data. The main objective is to find out how existing 

research identifies and addresses noise web data. The outcome of this 

chapter aids in identifying the gap in the literature that the proposed research 

attempts to address. Overall, this chapter answers the following question: 

Question 1: In what ways do current research works define and address 
noise in web data? 
 
The chapter comprises the following sections: Section 2.2 describes relevant 

research issues and theories associated with noise web data. For example, 

an understanding of how noise web data is currently defined, its source and 

how it affects the process of finding useful information from the web. Section 
2.3 provides a critical analysis and evaluation of the relevant and most current 

research work in the noise web data reduction process. A review of existing 

research works aids in understanding the problems with noise web data, the 

methodology used to address such problems, the contributions and 

limitations. Section 2.4 explores how user interests impact the noise web data 

reduction process. This section ascertains whether existing research 

considers the influence of user interest when identifying and eliminating noise 
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web data. Section 2.5 presents a discussion of critical aspects in relation to 

the current approach to noise web data reduction and dynamic change in user 

interest with regard to web data. This will identify the gap in the literature and 

position the proposed research. Finally, Section 2.6 summarises the entire 

chapter. The literature review structure is outlined in Figure 2.1. 

 

 

2.2. Noise Data – Definition and Relevant Research Issues/Theory 

Noise data is a broad term that has been interpreted and applied in various 

different ways by current research. In data mining, several definitions have 

been proposed; for example, Yang and Fong (2011) define noise data as 

irrelevant or meaningless data that does not typically reflect the main trends, 

but instead makes the identification of these trends more difficult. Sunitha et 

al. (2013) add that noise data is meaningless or corrupted data, i.e. any data 

that cannot be understood and interpreted correctly by a machine, or data that 

is incorrectly typed or dissimilar to other entries.  

Research Question(s)/Objectives

Select relevant & current academic 
publication to address the research 

question

Identify relevant academic 
publications 

Critical analysis and review of 
Selected academic publications

Findings from current literature in 
relation to the research question/

objectives

Positioning the proposed research

Figure 2.1: Literature review structure 
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Presence of noise in data affects the intrinsic characteristics of classification 

problem (López et al., 2013). For this reason, classification problems as a 

result of noise data are often difficult to address. Noise data is differentiated 

into two categories, i.e., attribute and class noise (Zhu and Wu, 2004; Frenay, 

B. and Verleysen, M., 2014). Attribute noise refers to corruption in the values 

of one or more attributes (Wu and Zhu, 2008). Examples of attributes noise 

are erroneous attribute values, missing or unknown attributes values, and 

incomplete attributes. This type of noise can be tackled from the input end by 

eliminating data objects that are suspect of noise according to certain 

evaluation mechanisms. When removing noisy objects from data, there is a 

trade-off between the amount of information available for building the classifier 

and the amount of noise retained in the data set. Class noise occurs when a 

data object is incorrectly labelled as shown in Figure 2.2. This type of noise 

usually occurs on the boundaries of the classes, where the examples may 

have similar characteristics. (Sáez, et al 2013) highlight some of the reasons 

why class noise occur; firstly subjectivity, i.e., the information used to label an 

object is different from the information which learning algorithm will have 

access to, secondly inadequacy of the information used to label each data 

object, for example in medical domain it is difficult to perform diagnosis of 

100% accuracy with test data available because it is highly likely that the 

information available is incomplete or sometimes misleading. Lastly, data 

entry errors which will affect the meaning of data more especially when 

devices are used to capture and automatically create data classes 

(Pechenizkiy, et al., 2010). 

 
Figure 2.2 Different types of Noisy Data 

Source: https://sci2s.ugr.es/noisydata  

https://sci2s.ugr.es/noisydata
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In web data mining, noise is defined as irrelevant data that is not part of the 

main content of a web page (Yi et al., 2003; Laber et al., 2009; Lingwal et al., 

2013; Bhamare and Pawar, 2013). For example, advertisements banners, 

graphics, web page links from external websites etc., which surround the main 

content of the web page, as shown in Figure 2.2. Dutta et al. (2014) argue that 

noise removal from web pages is an important task that helps to extract the 

actual content for the web usage mining process. Based on this viewpoint, the 

actual content where useful information resides is protected from noisy data 

prior to web usage mining. However, the proposed research’s viewpoint is that 

identifying useful information from the noisy web should not only be limited to 

the main web page content perceived to contain useful information, but 

instead considered from a user interest perspective. In order to ensure an 

efficient web usage mining process, it is important to identify and eliminate 

noise data that may misguide users without loss of any useful information. 

However, various challenges are encountered in this regard; for example, the 

dynamic nature of web data makes it difficult to detect noisy data, and various 

sources of web data are seen to generate voluminous data characterised by 

noise, thus making it difficult to identify the useful information (Castellano et 

al., 2009; Cai and Zhu, 2015). 

It is widely acknowledged that the web has become the main source of 

information in the modern world. Indeed, 90% of the data in the world today 

has been created in the last two years (IBM, 2013). However, as the amount 

of data on the web increase, the levels of noise data also increase. For this 

reason, machine learning tools have emerged as critical in the web usage 

mining process. The main sources of data used in the web usage mining 

process are web server logs, proxy servers and client or browser logs 

(Srivastava et al., 2014). Web servers are considered the richest and most 

common source of data for the web usage mining process (Adeniyi et al., 

2016; Kaddu and Kulkarni, 2016; Mobasher et al., 2000; Ramya et al., 2011). 

The information related to a user request is recorded on the server in a web 

log file. Log file data represent the fine-grained details of user activities on the 

web; they also give an idea of what a user is interested in.  
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One of the key issues in web usage mining is the ability to extract information 

in relation to the interests expressed by a user. In order to discover useful 

information, extracted web log data need to be pre-processed. Pre-processing 

is necessary to identify interesting data patterns in relation to user interest 

(Srivastava et al., 2000).  However, there are a number of challenges that 

hinder the web usage mining process (Goel, 2014; Mobasher and Nasraoui, 

2011). Firstly, the dynamic tendencies of the web, as well as evolving user 

interests, affect the process of separating which data is useful or not for any 

given user. Therefore, a critical issue the proposed research aim to address 

is how change of user interests influence interestingness of web data. 

Secondly, the web is noisy; data available on the web comes from various 

different sources. Due to the fact that the web does not have control over the 

quality of data available, web users can write and post anything, hence 

subjecting web data to low quality, erroneous or even misleading data (Cai 

and Zhu, 2015). 

Due to the richness and diversity of data available on the web, machine 

learning algorithms have been proposed to address the above challenges. For 

example, Dutta et al. (2014), Qi and Sun (2011) and Zhang and Deng (2010) 

propose noise elimination tools based on the fact that information that does 

not form part of the main web page contents is noisy and should be eliminated. 

This thesis recognises that since the data available on the web is 

heterogeneous and rapidly increasing, integration of user interests and 

available web data is becoming a challenge. Therefore, prior to determining 

user interest in extracted web log data, there is a need to identify and learn 

noisiness in web data in relation to the interests of a user. This is done to 

ensure that the process of eliminating noise in web data does not lead to a 

loss of useful information. For example, what is noisy to one user can be useful 

to another, hence the need to learn and define noise in web data in relation to 

user interests (Onyancha et al., 2017). 

2.2.1. The context of web page content in the noise elimination process 

The web page is considered the main source of useful information (Dutta et 

al., 2014; Kaddu and Kulkarni, 2016). Alongside the main content, however, a 

web page also comprises noisy parts, such as advertisements that surround 
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the main content, as shown in Figure 2.3. Further samples of noise web data 

are shown in Appendix I. 

 

Figure 2.3: A web page containing noise data 

Source: https://www.standardmedia.co.ke/ accessed on 23/02/2015 

A number of machine learning tools applied in the noise web data reduction 

process are based on the followings concepts: (1) web page segmentation, 

i.e. finding the boundary between the main web page content and noisy data 

(Hu et al., 2013; Velloso and Dorneles, 2013); and (2) detecting and removing 

noisy data based on the visual layout of the web page as per the assumption 

of Htwe and Kham (2011) that relevant information mainly exists in the middle 

of a web page, while the rest of the page contains noise data. Based on these 

two critical aspects, web data is considered relevant if it is part of the main 

content of a web page.  However, this thesis argues that the main content can 

be noise if a user finds the information irrelevant. Therefore, this thesis 

considers web page content for a very basic reason: web logs contain data 

https://www.standardmedia.co.ke/
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extracted from the main content of a web page. Given that a user is looking 

for interesting information from the main content, it is important to learn its 

interestingness in relation to dynamic change in user interests. The existing 

tools applied to eliminate noise from web pages mainly focus on the web 

content, but there are no clear discussions how noise is defined in web data 

in relation to the web user. 

2.2.2. Common Sources of Noise in Web Data 

Understanding the source of noise in web data is the first step to the noise 

web data reduction process (Stoica, 2012). Noise in web data comes from two 

main sources (Liu, 2011; Sáez et al., 2013, 2016). Firstly, a typical web page 

contains many pieces of information, mainly in form of navigation links. For 

any particular application, only part of such information is useful, while the rest 

is considered noise (Liu et al., 2011; Patil, 2012). Secondly, there are no clear 

measures in place to control the information available on the web; a person 

can write and post anything on the web, hence subjecting web data to low 

quality, erroneous or misleading information. Noise data is mainly generated 

by inaccuracies in data collection, transmission and storage (Garcia et al., 

2012; García-Gil et al., 2017). Frenay and Verleysen (2014) add that some 

noise in web data can simply come from data communication problems, such 

as spam and accidental clicks. Fan et al. (2014) note that noise occurrence in 

data is related to the way the data is accessed and pre-processed.  

Current research works acknowledge that data is noise-free if it is accurately 

processed and transmitted (Sáez et al., 2015). However, accuracy can be 

defined based on a number of aspects and its application domain. For 

example, Garcia-Gil (2017) suggests that data must be accurate: it must be 

what it says it is with enough precision to drive value. On the other hand, 

information that is only relevant to a specific user over a specified period of 

time can be noise if suggested to a user outside the time of need or use. The 

proposed research therefore argues that the usefulness of web data should 

be determined based on a user-centric approach that considers user change 

of interests, as well as the evolving web. This is due to the fact that the web is 

not only about data or information, but also about interaction among users 

(Yazidi and Granmo, 2011). Understanding the sources of noise in web data 
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opens up a discussion as to why learning noise data prior to elimination is 

critical. This is precisely the proposed research’s focus: it makes a significant 

contribution to reducing noise levels with minimal loss of information relevant 

to the given user’s interest at the time. 

2.2.3. Different Types of Noise in Web Data 

The concept of noise in web data has been defined and discussed by various 

research works from different application domains. As defined in section 2.2.2, 

noise web data is mainly external data that does not make up the main web 

page content. Noise web data is categorised as global and local noise (Liu et 

al., 2004; Nithya and Sumathi, 2012; John and Jayasudha, 2016). Global 

noise is redundant web pages over the internet, such as mirror sites and illegal 

or legal duplicated web pages. Local noise is any irrelevant, incoherent data 

in the main content of a web page. Global noise is caused by duplicated web 

pages, whereas local noise is caused by irrelevant content on a web page, 

such as advertisements, navigational panels, announcements, etc.  

The existing machine learning tools applied in local noise elimination have 

been developed on the basis of the web content – the main web page content 

being considered useful, and any other external data irrelevant (Dutta et al., 

2014; Wang et al., 2007; Zhang and Deng, 2010). Gunduz-Oguducu (2010) 

adds that the presence of local noise in web pages makes it difficult to extract 

useful information, which also decreases the quality of information available 

on the web. Therefore, prior to finding the interestingness of web data given a 

user interest, pre-processing becomes one of the critical stages in the web 

usage mining process. Understanding the source and type of noise in web 

data simplifies the process of exploring its impact on the process of web usage 

mining (Mobasher and Nasraoui, 2011) 

2.2.4. The Impact of Noise Web Data in the Web Usage Mining Process 

Noise in web data is an unavoidable problem that can affect the process of 

extracting useful information from the web (Xiong et al., 2006; Wu and Zhu, 

2008; Yu et al., 2016). The performance of machine learning tools applied in 

the web data mining process can also be affected by the presence of noise 

data (Shanab et al., 2012; Sáez et al., 2015-16; García-Gil et al., 2017). This 
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includes pre-processing of data to remove irrelevant data, extraction of useful 

information, and classification of similar data. The research proposed in this 

thesis identifies and discusses the impact of noise in web data in relation to 

the end users, as well as website developers/owners. The rationale for this 

consideration is based on the fact that information that is noisy to end users 

could actually be of commercial benefit to website owners, hence their 

determination to push this type of content on users. 

Web Users: Web users get frustrated when a website promotes content that 

isn't tailored to their interests. According to a study by Janrain (2013), 74% of 

web users get frustrated with websites that suggest content that has nothing 

to do with their interests; 57% say they will leave the site if they are married 

and shown ads for a dating site. Various machine learning algorithms/tools 

have been proposed to address such issues experienced by end users 

(Adeniyi et al., 2016; Santra and Jayasudha, 2012; Yi et al., 2003). However, 

since web log data are being continuously generated, in some cases 

amounting to a dynamic change of user interests, existing tools have not fully 

addressed such changes while eliminating noise data. 

Website developers (owners): Website owners attempt to suggest more 

content to end users, especially promotional information for marketing 

purposes. Their approach is based on the fact that if some content is popular 

with the majority of users, or within a certain geo-location, then it should be 

widely disseminated. One of the problems with this approach is that users 

have no choice other than to view or click on the suggested web pages. The 

feedback received can be misleading where user interest learning is not 

considered. Khasawneh and Chan (2006) state that analysing web data logs 

can provide useful information that helps web developers suggest information 

that meets the needs of a user given the time of interest.  

In summary, this section examines critical issues in relation to problems with 

noise in web data. One of the research objectives is to provide a clear 

understanding of how existing research defines noise and addresses 

problems with noise in web data. The criterion is to identify and critically 

analyse current research work in order to position the proposed research. In 
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the following section, this thesis will explore various machine learning tools 

applied by existing research in order to address the identified problems. At the 

end of this chapter, the thesis will be able to position its proposed research 

and respond to the defined research question.  

2.3. Critical Analysis and Evaluation of Relevant Research Works 

This section explores how existing research addresses the problem of noise 

in web data. In order to justify the position taken by the proposed research, 

this section undertakes the following critical investigations:  

1) Establish from current and relevant research work the different types of 

machine learning tools applied to identify and eliminate noise in web 

data. 

2) Identify and critically analyse machine learning tools proposed by 

existing research to address problems with noise in web data; this 

includes considering the contribution, limitations and how the 

performance of existing tools are evaluated. 

3) Ascertain whether the existing tools take into consideration the 

interests of a user prior to eliminating noise in web data.  

 

2.3.1. Noise Web Data Reduction: Layout and Structure of Web Data 
The current tools developed to identify and eliminate noise from web pages 

are generally based on (1) the underlying structure of the document as 

appraised using a document object model (DOM) tree (John and Jayasudha, 

2016; Yi et al., 2003); and (2) entire dependence on the visual layout of web 

pages (Akpınar and Yesilada, 2013). The DOM tree is a data structure used 

to represent the structure of a web page; it is built using a web page’s HTML 

parse, from which a web content structure is created to distinguish areas of a 

website based on relevance and noise data (Dutta et al., 2014; Garg and Kaur, 

2014).   

Existing research works have proposed a number of tools using the DOM 

approach that eliminate noise in web data. For example, the Site Style Tree 

(SST) proposed by Yi et al. (2003) detects and eliminates noise data from web 

pages based on the observation that the main web page contents usually 
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share the same presentation style and that any other pages with different 

presentation styles may be considered noise. To eliminate noise from web 

pages, SST simply maps the page against the main web page to determine 

whether the page is useful or noise based on its presentation style. With 

regard to removing noise from web data, SST only considers the structure and 

layout of a web page, thus neglecting the needs of web users when it comes 

to identifying information that fits their interest or not (Dutta et al., 2014). 

A new tree structure was proposed by Yi et al (2003) to capture the general 

presentation style and usefulness of a page on a specified website. A Site 

Pattern Tree algorithm (SPT) is used as a measure that determines the parts 

of the web representing noise and those that represent the core information 

of the web page. By mapping any web page to the SPT, noise data is identified 

and eliminated. Narwal (2013) also proposed an algorithm to eliminate noise 

in web pages based on the DOM approach. The Pattern Tree algorithm 

proposed by Narwal captures the layout pattern and actual content of the web 

page. The objective is to improve the web usage mining process through 

classification of web pages prior to removing noise data. The algorithm 

analyses different web pages to formulate two key measures based on the 

style and similarity of web pages. Using a defined threshold value, the two 

measures are then engaged to identify noise data from the main content of a 

web page. The general observation made by Narwal is that web pages in a 

given website often follow a similar layout. Therefore, any content with a 

dissimilar pattern will be considered as noise. Based on such view point, it is 

clear that the importance of web data is subjected to the layout of the website 

and not interests and needs of a user.  

Swe Swe Nyein (2011) proposed the Content Structure Tree algorithm (CST), 

which also uses the DOM tree to identify and extract irrelevant data from the 

main web page content. The proposed tool has the ability to rank the content 

using similarity value and it subsequently extracts relevant data based on the 

given search criteria. CST uses the cosine similarity measure to evaluate 

which parts of the web page contain relevant and irrelevant data. The cosine 

similarity measure is widely used in web data mining to determine how 

different data values are likely to be identified based on their interestingness 



21 
 

(Bhattacharjee et al., 2015). However, classification of similar web pages does 

not necessarily mean absence of noise in web data due to the fact that content 

such as navigations panels, copyright and privacy notices, as well as 

advertisements, can always have a serious impact on the quality of 

information available on the web when user interest is taken into account.  

Dutta et al. (2014) proposed a machine learning tool to remove noise from 

web pages based on structural analysis and the regular expression of web 

pages. The two main steps applied in their proposed work are tag-based 

filtering, which means that information with positive tags form the useful part 

of the web page, while negative tags contain information that is noise. The 

assumption made in their proposed work is that noise present on every page 

of a website has the same presentation style. Therefore, the process of 

identifying and eliminating noise in web data is based on the principle that the 

consistency of web pages on a given website separates noise from useful web 

data. Similarly, Sivakumar (2015) proposed a tool to remove a large amount 

of information that is not part of the main web page content. The proposed 

tool aims at identifying and removing banner advertisements, navigation bars, 

copyright notices, etc. This type of web data is considered noise and thus 

likely to not fit with the user interest. The author uses keyword redundancy, 

link-word percentage and title-word relevancy to identify noise in web data. 

These parameters are used to compute the importance of each web page 

based on a defined threshold value so as to determine whether the page is 

relevant or noise prior to elimination. Even though the author acknowledges 

that it is important to eliminate noise in web data that may affect user interest, 

there is no evidence in the work to suggest how the interests of a user 

influence the elimination of noise. 

Jiang and Yang (2015) proposed an algorithm that uses the DOM tree to 

identify and eliminate noise from web pages. The objective is to preserve the 

original structure and layout of the web page so as to ensure an efficient web 

usage mining process. The observation made by Jiang and Yang indicates 

that extracting the main content from web pages has recently become more 

difficult due to the fact that all web pages contain information that are irrelevant 

to the main content. Jiang and Yang argue that there is no algorithm that can 
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completely solve problems with noise web data independently. Based on their 

literature findings, measures such as style and layout are considered 

independently in noise reduction, rather than a combination of both. However, 

this thesis proposes acknowledging that problems with noise in web data 

cannot be solved independently, suggesting that the analysis of both web data 

and user interest is key to an efficient web usage mining process. The 

rationale for this viewpoint is that a web page contains information that is 

aimed at addressing the needs of the ‘target audience’, which is the user. 

Therefore, regardless of the structure and layout of web data, the interests of 

a user should be considered critical and therefore overrule how data is 

structured on the web. 

Htwe and Kham (2011) developed a tool using case-based reasoning (CBR) 

and neural networks to eliminate noise data from web pages. CBR is a 

machine learning approach that makes use of past experience to solve future 

problems; in this case it detects noise from web pages using existing stored 

noise data for reference. The elimination of noise from web pages not only 

depends on the DOM tree, but also the classification of results of neural 

networks. Artificial Neural Network is used to match noise patterns with those 

stored in the case base. This approach is based on the idea of using case-

based reasoning to identify noise data by matching existing noise patterns 

stored in the case base. However, it is difficult to determine if such content is 

relevant or noise to a particular user interest because: (1) it matches existing 

patterns of noise data and the output can be misleading because web data is 

dynamic, as is the user’s interest; and (2) Htwe and Kham (2011) argue that 

relevant information mainly exists in the middle of a web page, while the rest 

of the page contains noise data, but again information in the middle of the web 

page can be noise if user interest is considered. 

To address these challenges, Pappas et al. (2012) proposed an algorithm that 

takes into account the non-visual characteristic of a web page to identify and 

eliminate noise data. The Least Recently Used (LRU) paging algorithm is used 

to detect and remove noise from web pages. LRU considers both the visual 

and non-visual characteristics of a web page and is able to remove web data 

noise, such as news, blogs and discussions. The LRU algorithm determines 



23 
 

frequently visited pages and those that have not been visited over a certain 

period. The algorithm then classes least recently used pages as noisy or 

irrelevant content that needs to be eliminated. However, various aspects can 

contribute to infrequent use of a web page. For example, in the case of 

seasonal data, which a user will only be interested in for a specific time or 

occasion. LRU was also applied by Garg and Kaur (2014), but there is no clear 

discussion of whether least visited web pages might be considered as useful 

in the future.  

The proposed research outlines some of the major contributions made by the 

existing research. For example:  

i. Protecting useful data regions by identifying boundaries between noise 

and useful data (Hu et al., 2013; Velloso and Dorneles, 2013; Wang et 

al., 2014, 2011). This is tied to the assumption that only the main web 

data contains useful information. 

ii. Automatically detecting and removing noise data by matching noise 

data in extracted web log data with previously stored web data noise 

patterns. The contribution of the proposed research is not only to 

remove multiple noise patterns from logs relating to a web page, but 

also to enable classification of the noise encountered based on defined 

patterns.  

iii. The existing tools applied in the noise web data reduction process 

mainly focus on improving the quality of web data by removing noise at 

the pre-processing stage. Borzemski (2007), Narwal (2013) and Azad 

et al. (2014) add that the discovery of useful information that 

characterises the interests of the user is dependent on the performance 

of the machine learning tool applied.  

From the above literature, current research acknowledges that the noise web 

data reduction process is aimed at improving the process of mining useful 

information from the web (Jiang and Yang, 2015; Xiong et al., 2006; Yang and 

Fong, 2011). They also acknowledge that there is a need to extract relevant 

information from the noisy web to ensure that the main content of the web is 

protected from noisy data. However, relevant data and the main content of the 
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web are defined and interpreted in the current literature from the following 

viewpoint: (1) relevant data is the main content of a web page that a user 

needs to view (Lingwal, 2013); and (2) the content pages are web pages 

where a user can find useful information, while anything that does not form 

part of the main web page is noise (Kapusta et al., 2012). 

The proposed research’s viewpoint is that the usefulness of web data is 

determined by user interests, which also change over time. In order to justify 

this perspective, Figure 2.3 presents the relationship between web users and 

web data. The interdependence between the two actors – user and website – 

demonstrates the need to learn noise in web data, taking into account the 

interests of a user prior to elimination. It is widely recognised that web servers 

are the richest source of web data (Mehak et al., 2013; Ramya et al., 2011). 

Data stored in web log files defines the relationship between a user and the 

web. The interestingness of information provided to users by web servers can 

therefore be influenced by what an individual user is interested in. The 

following section explores how current research addresses noise in web log 

data. The findings will aid in understanding whether noise in web data is 

influenced by user interests discovered from web log files. 

 

Figure 2.4: Relationship between a user and web data 

User Website

Web Server

Web log data

Interestingness of web data is determined
 based on interest indicators

A user request a web 
page on a from a website

Web server records user 
interest on the web

Web user access log file is 
extracted from web server 
to determine interest level 

on visited web pages
User interest level on web data 

determines if information is useful 
or noise
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2.3.2. Noise Web Data Reduction: Extracted Web Data Logs 
The proposed research does not simply rely on the structure and layout of 

web data to identify and eliminate noise; instead, it focuses on the interests of 

a user in relation to the available web data. However, the existing research 

does play a significant role in defining user interest level based on web log 

data. The reduction of noise from web pages based on the structure of data 

on a given website will thus affect the quality of the extracted web log data. 

The proposed research work argues that noise in web data should be 

determined based on the web user’s level of interest in the available data. The 

rationale for this argument is that while the web provides valuable information 

to its users, the interestingness of data can only be determined if there is any 

evidence that a user is interested; otherwise such information is noise 

regardless of its structure on a website. 

Valuable information about user interests on the web is hidden in user logs 

extracted from a web server. In order to ensure useful information is extracted 

from raw web log files, understanding user needs and how they vary is critical 

to this process. The outcome will provide a more dynamic approach to finding 

useful information that reflects changes in user interests. In order to 

understand user interest from the extracted web log data, pre-processing is 

essential for the purpose of improving the quality of the output from the web 

usage mining processes (Nithya and Sumathi, 2012). Pre-processing 

eliminates noise data from web user logs (Vidyavathi and Begum, 2016). The 

process involves building a web user profile through user, session and page 

view identification in order to determine user interest level in relation to visited 

web pages. Han and Xia (2014) acknowledge that the web usage mining 

process can identify useful information from noisy data if the pre-processing 

of the web log takes into account the level of user interest. A more detailed 

discussion and critical evaluation of pre-processing web log files is presented 

in the next chapter. 

A number of machine learning tools have been proposed for extracting useful 

information from the noisy web. For example, Santra and Jayasudha (2012) 

applied a Naïve Bayesian Classification (NB) algorithm to identify the interests 

of users based on web log data extracted from a website. Their main objective 
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was to classify extracted web data logs and study how useful the extracted 

information was based on a user’s interest. Their initial processing phase 

involved removing noise data, such as advertisement banners, images and 

screensavers, from the extracted web data logs. They used a Naïve Bayesian 

Classification model to classify useful, as opposed to noise data, based on the 

number of pages viewed and the time spent on a specific page.  

Sripriya and Samundeeswari (2012) proposed an algorithm based on Neural 

Networks to determine the frequency of a web page in extracted web log data. 

The frequency of occurrence of a web page in a user log file shows the level 

of user interest. The authors define weight as a statistical measure used to 

evaluate interestingness of a web page to a given user. Azad et al. (2014) 

applied kNN to web data logs to find useful information from noisy web log 

files; their main focus was on local noise, for example, advertisements, 

banners, navigational links etc. Web log data was extracted and surveyed with 

regard to which web server they belonged. If the address belonged to a list of 

already defined advertisement servers, the link was removed. Similarly, 

Malarvizhi and Sathiyabhama (2014) proposed a Weighted Association Rule 

Mining method for extracting useful information from web log data. Their 

objective was to find web pages visited by a user and assign weight based on 

interest level. The user interest-based page weight is used to eliminate noise 

web pages from useful information. In their research work, the weight of a web 

page in relation to a user interest is estimated from the frequency of page 

visits and the number of different pages visit. Where pages are visited only 

once, for instance, they will be assigned low weight and subsequently 

considered irrelevant (Gupta et al., 2016; Tyagi and Sharma, 2012). 

2.4. The Influence of User Interest on the Noise Web Data 
Reduction Process 

Finding useful information based on user interest is challenging due to the 

increasing amount of data available on the web (Nanda et al., 2014). The 

interestingness of web data is dependent on a user and the interests of a user 

may change over time. Wu and Liu (2014) acknowledge that user interest 

relies on the principle that the visiting time of a page is an indicator of the level 

of user interest. The amount of time spent on a set of pages requested by the 
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user within a single session forms the aggregate interest of that user in that 

session. 

User interest can be determined in two ways: explicitly or implicitly (Nanda et 

al., 2014; Rao et al., 2017; Wei et al., 2015). Explicit interest is where users 

provide feedback concerning what they think about the information that they 

have received.  However, many users are unwilling to state what their true 

intentions are in terms of the visited websites. For this reason, implicit learning 

of user interest is also considered by this proposed research. The implicit 

method uses logs created by a user’s visit to a website to learn their interests, 

instead of requesting user feedback. There are two ways of capturing implicit 

user interest: from browsing behaviour and from browser history (Grčar et al., 

2005; Kim and Chan, 2005a). Browsing histories capture the relationship 

between a user’s interests and their click history; this is necessary for the 

identification of useful information from the extracted web log data.  Learning 

user interests plays a fundamental role in understanding how useful web data 

is to a user at a given time, thereby improving the process of noise web data 

reduction. It is therefore important to understand how the dynamic nature of 

the web and varying user interests influence the identification of noise in web 

data. In the proposed research work, the focus is on learning the interests of 

a user in relation to available web data with the aim of reducing the amount of 

useful information eliminated as noise. 

2.5. Discussion of Critical Aspects 
This thesis highlights a number of critical issues that are widely discussed in 

recent research, but with a limited or different approach to addressing 

problems with noise in web data. For example, in terms of the recent works’ 

emphasis on the need to identify and eliminate data that does not form part of 

the main web page content. This is done to ensure that the core information 

that forms the main content of the web is isolated from noise data (Lingwal, 

2013). The machine learning algorithms that have been proposed by the 

existing research are based on the observation that web pages usually share 

common layouts and presentation styles (Das et al., 2012; Jiang and Yang, 

2015; Nithya and Sumathi, 2012). However, the dynamic nature of the web 

makes it difficult to rely on presentation of web pages for the identification and 
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elimination of noise data. Secondly, the common objective identified from 

existing research on noise web data elimination is to improve the performance 

of the web usage mining process (Ramya et al., 2011). Performance is this 

respect focuses on easy access to information from the web and discovery of 

useful information. However, there are no clear discussions of how the 

performance of existing tools is evaluated and whether user interests are 

considered. Azad et al. (2014), Narwal (2013) and Ting and Wu (2009) argue 

that the performance of a web usage mining process is evaluated based on 

the discovery of useful information that characterises the interests of end 

users. Therefore, eliminating noise in web data should consider the interests 

of the web user in order to determine the interestingness of data on the web. 

Finally, there is a great deal of focus on identifying and eliminating noise, such 

as advertisement banners, failed https links, mirror sites, duplicated web 

pages, copyright, external links etc. Since the process of identifying and 

eliminating this type of noise is mainly based on its relationship with the main 

web page content, the process is not user-driven, hence the outcome will not 

reflect user interests.  

Appendix II is a summary of some of the recent research works that have 

applied data mining techniques to extract useful information from web pages, 

analyse web log data by removing any irrelevant data and subsequently 

identifying useful information based on a specific user interest. Data attributes 

considered as input mainly include user IP address, page URL, time of access 

etc. This indicates that creating a data class, cluster or associating a user to 

data available on the web takes into account these attributes.  On the other 

hand, IP address used by the user to access a web page can be used to 

determine interest web pages but user’s interest cannot only be directed 

towards the IP address. Sometimes it may require a combination of other data 

attributes such as source of web page visited, type of request, time of request, 

frequency of visits etc. to determine user level of interest. 

In summary, this work’s main focus is to learn to recognise noise in web data 

in order to reduce the loss of useful information otherwise considered as 

noise, as well as to decrease noise levels. Rather than isolating the main web 

page content and relying on its layout and content, the proposed research 
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aims to focus on how user interest can influence the type of noise present in 

web logs. 

2.6. Chapter Summary 
This chapter undertook a critical review and analysis of the existing research 

work addressing problems with noise in web data. The aim was to find out 

how current research defines and addresses noise in web data; the findings 

respond to the first research question identified in the first chapter of this 

thesis. At the onset, the criteria was to review and evaluate existing literatures 

covering the following aspects: definition of noise in web data, tools and 

techniques proposed to identify and eliminate noise data, measures employed 

by existing research to evaluate the performance of existing tools, contribution 

and limitations taking into account the defined problems, and the current 

situation.  

The critical review and evaluation of the existing research conducted in this 

chapter acknowledges the contribution made by using existing machine 

learning tools to address problems with noise in web data. This thesis found 

that although there are a number of tools and techniques that identify and 

eliminate noise in web data, there are still critical issues that have not been 

fully addressed in relation to noise in web data. For example, there are no 

tools currently applied to learn noise web data prior to elimination. There are 

no discussions on how the existing tools used to eliminate noise in web data 

take into account evolving user interests. The existing research work has 

therefore not explicitly defined measures that will aid in understanding the 

influence of user interests and how change in user interests is modelled to 

minimise loss of useful information. Therefore, the discussions presented in 

this chapter begin to respond to research question 1 below: 

Question 1: In what ways do current research works define and address 
noise in web data? 

Noise in web data is defined by the existing research mainly based on the 

structure and layout of web pages. It is also widely acknowledged that noise 

in web pages often follow a similar layout pattern, which is used to distinguish 

between useful and noise web data. 
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The rationale to propose a new approach is based on the fact that if noise in 

web data is not defined in relation to web users and their evolving interests, 

the interestingness of web data will be misinterpreted during the web usage 

mining process. In the following chapter, a research methodology framework 

is presented. The methodological approach considered in this thesis defines 

the process of collecting user interest information, as well as different phases 

of pre-processing data. A user profile, which is defined in the next chapter, 

plays a key role in learning the interestingness of web data and subsequent 

elimination of noise based on user change of interests. 
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Chapter 3: Web User Profiling Based on Web Data 

In chapter 2, a critical review and evaluation of the existing research that 

addresses problems with noise web data was presented. A number of critical 

issues were examined, for example, ways in which the existing research 

address problems with noise web data, their contribution and limitations. The 

objective was to understand to what extent recent research addresses defined 

problems vis-à-vis the current situation. The position taken by the proposed 

research was then defined with a justification as to why there is a need to 

propose a new approach to address the defined problems. This chapter 

examines the methods recent research considered for learning about web 

users and their interests. 

3.1. Introduction  
This chapter makes reference to the proposed research focus defined in 

chapter 1: learning noise web data taking into account changes in user 

interests. Learning the interestingness of web data based on user interest 

involves finding information on the web that defines user interests, and 

building a user profile based on user interest information. User profiling is 

defined as the process of identifying data from the web in relation to user 

interest (Gauch et al., 2012; Kanoje et al., 2014; Dias et al., 2017). The goal 

of user profiling is to find and extract information from the web on what a user 

is interested in while on the web. Key aspects of user profiling involve 

understanding varying user interests and learning how such changes 

influence the interestingness of web data. Generally, a user profile evolves 

over time, which means that information that defines user interest is time 

variant. Therefore, there is a need to examine how changes in user interest 

impact the identification and subsequent elimination of noise in web data.  

Building a user profile can be considered a process in which machine learning 

tools are applied to understand user interests on the web (Kanoje et al., 2015). 

The process mainly relies on a user’s browsing behaviour while on a given 

web page. Machine learning algorithms are then applied to analyse user visits 

in order to discover user interest level, taking into account a number of 

measures. For example, the time spent on a given web page and the number 
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of visits made within a given period of time can signify interestingness of a 

web page. 

This chapter introduces the methodological approach the proposed research 

uses in an attempt to address the defined objective: finding how changes in 

user interests impact identification and subsequent elimination of noise in web 

data. The framework of the proposed research methodology is outlined in 

Figure 3.1. A typical user profiling process consists of a number of phases 

(Gauch et al., 2012; Kanoje et al., 2014; Rathipriya and Thangavel, 2014). 

The initial phase is collecting raw information about user interests, involving, 

for example, extraction of web user access logs from the web server. Access 

logs contain user records, such as IP address, request time, requested URL 

and agent. This type of information is used by search engines to better 

understand user interests. It aids in discovering trends, patterns of user 

interests and data that does not fit the interests of a user, such as noise data. 

The second phase focuses on pre-processing raw information; the pre-

processing phase includes the user, session and page view identification 

process. In the final phase, a user profile is constructed.   
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Figure 3.1: Extraction and pre-processing of web log files 

 

This chapter explores in detail the key stages of processing raw web log files, 

as outlined in Figure 3.1, and subsequent creation of a user profile prior to 

learning user interests. 

3.2. Collection of User Interest Information  
The initial phase of user profiling is to collect information about a user that 

defines his/her interests (Isinkaye et al., 2015). In order to identify and define 

user interests on the web and manage changes in this over time, the proposed 

approach should be able to tell a story about the user. Therefore, collecting 

information about user interests is critical to learning the interestingness of 

web data prior to noise elimination. User interests are determined from the 

user’s journey on the web, which is defined by information about the user 

collected either explicitly or implicitly. The explicit method of collecting user 

interest information involves asking web users directly about their interests, 

usually in the form of rating web pages they have visited. The implicit method 
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is based on analysing user visits to a given website and this is done without 

the user’s knowledge.  

3.2.1. Explicit User Interest Information 

The explicit method of collecting user interest information, often referred to as 

explicit user feedback, mainly relies on web users providing direct feedback 

on information of interest (Reusens et al., 2017). Explicit user feedback is 

usually collected in the form of user ratings. For example, in Figure 3.2, users 

are required to rate information as either relevant or not relevant. Website 

owners will thereafter analyse user feedback in order to improve the web 

usage mining process, thus minimising the noise data suggested to a user. 

 

Figure 3.2: Explicit user feedback. 

Accessed via https://www.amazon.co.uk/ 

 

Even though explicitly collecting user interest information is easy to 

implement, the method has some limitations. For example, it requires users to 

take time and explicitly rate the web page before proceeding to another page. 

Furthermore, it is considered difficult to motivate users to continuously provide 

an explicit rating (Kim et al., 2002). The user’s unwillingness to provide 

accurate information about their interests on the web is another challenge; 

some may consider it to be time consuming and hence they may opt not to 

participate (Ajabshir, 2014).  
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This method therefore falls short of adaptability in line with a change in user 

interest over time. It is difficult for this to reflect the user’s change of interest 

due to its static nature (Pasi, 2014). As a result, a user profile built using the 

explicit method does not usually reflect changing user interests because they 

degrade over time. Gauch et al. (2012) and Jawaheer et al. (2014) add that 

web users are explicitly requested to rate a web page based on a given level 

of interest, i.e. ‘not relevant…to relevant’. However, whenever the interest of 

the user changes, the previous rating of the web page will not change unless 

the user updates the profile to reflect their current interest. Therefore, using 

the explicit method requires a lot of effort to update a user profile in order to 

ensure the noise data eliminated reflects the user interests at any given time. 

 

3.2.2. Implicit User Interest Information 

Defining a user profile based on information collected explicitly is only relevant 

for a given period of time (Akuma et al., 2016). However, as user interests 

change, the current profile information may become noisy unless the user 

advises the website owner about their change of interests. Instead of relying 

on a user to advise on changing interest, an implicit method of collecting user 

interest information is considered by this research. The implicit method is the 

process of extracting and analysing user visits in order to determine their 

interest level with regard to web pages visited (Kim and Chan, 2005; Nanda 

et al., 2014). There are a number of ways to implicitly collect user information; 

these include: web user logs, clickstream, browsing histories and content 

information from visited web pages (Fan et al., 2014). Existing research 

studies argue that web log data are a rich and common source of implicit user 

information (Gu et al., 2016; Kanoje et al., 2015; Gauch et al., 2012). Web log 

data contains links to visited web pages, the date and time of every user visit. 

These records are captured by the web server, thereby allowing the website 

to define interestingness of a web page in relation to user interest levels. Kim 

and Chan (2005) support the idea that interestingness of a web page should 

be captured from user’s visits to a given website in order to assess their 

interest level. The main advantage of implicitly collecting user interest 

information is that it does not directly require user effort when constructing a 
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user profile (Zahoor et al., 2014). It also allows for easy and continuous access 

to data, hence the ability to learn user interests as they change over time.  

Based on the discussion of the recent research, this work suggests that the 

implicit method is easily updatable to a dynamic change of user interest. 

Therefore, the proposed research’s choice to use web log data to learn noise 

web data prior to noise elimination is based on the following key aspects.  

1. Users rarely give explicit feedback regarding their interests: It is widely 

acknowledged that users are reluctant to perform actions such as rating 

a web page they have visited. Asking a user to rate web pages is not 

only time consuming, but can also rely on a user’s willingness to 

disclose their interests.  

2. User interests change over time: User interests are bound to change 

over time (Kellar et al., 2004; Pasi, 2014), which means that using 

explicitly collected user interest information from the past is less 

reliable. This is because a user will be required to manually advise 

whenever their interests change by rating or updating preference 

forms. Consequently, if the past interests of a user are used to 

determine interestingness of a web page, the information available to 

a user is likely to be noise.  

3.3. Extraction and Pre-processing of Web Log Files 
The web server logs used by the proposed research are extracted from a web 

server of an ecommerce website for a period of 90 days. The objective of 

using this range is to collect a wide range of data capable of understanding 

user interests, as well as with the ability to identify any changes within the 

specified time period. Each record is associated with a unique IP address that 

has been anonymised with a User_ID. The assumption taken is that the IP 

address is unique to the user where operating system and browser 

type/version is considered. 50 users were randomly selected with the criteria 

that they had to have an average of 10 unique clicks a day for a period of 90 

days.  

The objective of data pre-processing is to transform log files extracted from a 

web server into a user profile (Ansari et al., 2015). Every visit a user makes to 
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a website is recorded in a web server and stored as a web log file. As 

discussed in chapter 1, web log files store useful data patterns that define the 

interests of a user on a web page, but it is difficult to extract such data without 

the pre-processing phase. Pre-processing involves cleaning raw data with the 

aim of ensuring the extracted web log file provides a clear picture of the type 

of user interest data, the level of interestingness and whether the interests of 

a user change over time (Aye, 2011; Dhandi and Chakrawarti, 2016; Hussain 

et al., 2010). Since it is difficult to identify the interestingness of a raw web log 

file, pre-processing of web log files is considered a critical phase in the web 

usage mining process (Lokeshkumar and Sengottuvelan, 2015). This is to 

ensure useful information is identified from the web log file, which is believed 

to contain noise data. A log file is a plain text file that records information about 

each user visiting a website (Nithya and Sumathi, 2012); for example, the IP 

address that identifies a user visiting a specific website, the timestamp that 

reports the time of the visit, the web page requested, browser and operating 

system used, etc. A web server writes information into a log file each time a 

user requests a web page from a specific site and every request is recorded 

in a web log file. A record of a user visit to a web page comprises: 

 IP address – in this research, IP address has been anonymised with 

the User_ID  

 A link to the page visited, i.e. Uniform Resource Locator (URL) 

 Time of visit, which is presented by the Time_Stamp 

 Agent that stores the browser used; operating system, etc.  
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Table 1 shows a sample log file containing user records extracted from a web 

server 

Table 1: Raw web log file 

User_ID URL_ID Time_Stamp Agent 

150 58 22/01/2016 17:40:02 
Mozilla/5.0 (X11; Linux i686; rv:17.0) Gecko/20100101 
Firefox/17.0 

150 56 22/01/2016 17:29:36 
Mozilla/5.0 (X11; Linux i686; rv:17.0) Gecko/20100101 
Firefox/17.0 

150 53 22/01/2016 17:21:35 
Mozilla/5.0 (X11; Linux i686; rv:17.0) Gecko/20100101 
Firefox/17.0 

150 1 22/01/2016 17:21:08 
Mozilla/5.0 (X11; Linux i686; rv:17.0) Gecko/20100101 
Firefox/17.0 

126 55 21/01/2016 10:37:10 

Mozilla/5.0 (iPhone; CPU iPhone OS 9_2 like Mac OS X) 
AppleWebKit/601.1.46 (KHTML, like Gecko) Version/9.0 
Mobile/13C75 Safari/601.1 

126 56 21/01/2016 10:24:10 

Mozilla/5.0 (iPhone; CPU iPhone OS 9_2 like Mac OS X) 
AppleWebKit/601.1.46 (KHTML, like Gecko) Version/9.0 
Mobile/13C75 Safari/601.1 

126 53 21/01/2016 10:13:16 

Mozilla/5.0 (iPhone; CPU iPhone OS 9_2 like Mac OS X) 
AppleWebKit/601.1.46 (KHTML, like Gecko) Version/9.0 
Mobile/13C75 Safari/601.1 

126 1 21/01/2016 10:13:10 

Mozilla/5.0 (iPhone; CPU iPhone OS 9_2 like Mac OS X) 
AppleWebKit/601.1.46 (KHTML, like Gecko) Version/9.0 
Mobile/13C75 Safari/601.1 

173 56 19/01/2016 06:19:30 

Mozilla/5.0 (Linux; U; Android 4.1.2; de-at; GT-I8190 
Build/JZO54K) AppleWebKit/534.30 (KHTML, like Gecko) 
Version/4.0 Mobile Safari/534.30 

173 53 19/01/2016 06:13:29 

Mozilla/5.0 (Linux; U; Android 4.1.2; de-at; GT-I8190 
Build/JZO54K) AppleWebKit/534.30 (KHTML, like Gecko) 
Version/4.0 Mobile Safari/534.30 

173 55 19/01/2016 06:02:59 

Mozilla/5.0 (Linux; U; Android 4.1.2; de-at; GT-I8190 
Build/JZO54K) AppleWebKit/534.30 (KHTML, like Gecko) 
Version/4.0 Mobile Safari/534.30 

173 1 19/01/2016 06:02:52 

Mozilla/5.0 (Linux; U; Android 4.1.2; de-at; GT-I8190 
Build/JZO54K) AppleWebKit/534.30 (KHTML, like Gecko) 
Version/4.0 Mobile Safari/534.30 

173 53 15/01/2016 11:33:30 

Mozilla/5.0 (Linux; U; Android 4.1.2; de-at; GT-I8190 
Build/JZO54K) AppleWebKit/534.30 (KHTML, like Gecko) 
Version/4.0 Mobile Safari/534.30 

173 56 15/01/2016 11:25:29 

Mozilla/5.0 (Linux; U; Android 4.1.2; de-at; GT-I8190 
Build/JZO54K) AppleWebKit/534.30 (KHTML, like Gecko) 
Version/4.0 Mobile Safari/534.30 

173 54 15/01/2016 11:20:12 

Mozilla/5.0 (Linux; U; Android 4.1.2; de-at; GT-I8190 
Build/JZO54K) AppleWebKit/534.30 (KHTML, like Gecko) 
Version/4.0 Mobile Safari/534.30 

173 1 15/01/2016 11:19:52 

Mozilla/5.0 (Linux; U; Android 4.1.2; de-at; GT-I8190 
Build/JZO54K) AppleWebKit/534.30 (KHTML, like Gecko) 
Version/4.0 Mobile Safari/534.30 

 

Munk et al. (2015; Zhang and Chen, 2012) argue that the process of finding 

useful information from a noisy web log file is dependent on the pre-

processing stage, which involves a number of phases. Firstly, users are 

identified based on information requests logged on a web server. Secondly, 

sessions from different users are identified. A session is a sequence of 
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records accessed by a user visit to a website within a defined time duration. 

Following user session identification, the sequence of user records accessed 

by the user is generated. A sequence in this case is a set of items with a 

specific relationship between them. Finally, a user profile is created; the profile 

aids in learning user interest levels with regard to the visited web pages. 

3.3.1. User Identification 

A user is an individual accessing a web page through a web browser (Grace 

et al., 2011). User activities are recorded as web logs on the server based on 

the time-stamp that notes when they occurred. The relationship between a 

user and web log record is considered to be one-to-many, i.e. each user is 

identified by one or more records. User identification is the process of 

identifying each user who has visited a given web site (Grace et al., 2011; 

Neelima and Rodda, 2016). The user identification process is based on the 

following rules: different IP address reflects different users, the same IP with 

a different operating system or different browser should also be considered as 

a different user (Patel and Parmar, 2014). Prior to learning the interests of a 

user from visited web pages, it is important to identify and study every user’s 

visit characteristics, such as, IP address, location, new or returning user, 

operating system, browser used to visit the website, etc. These characteristics 

aid in creating a user profile that is adaptable enough to reflect changes in 

user interest.  

The following is an extracted web log file presented as a set of records N= 

(𝑟𝑒𝑐1, …,𝑟𝑒𝑐𝑛,…, 𝑟𝑒𝑐𝑁), where N is the total number of records in a web log 

file, as shown in Table 2. The 𝑛𝑡ℎ record of the 𝑗𝑡ℎ user is defined by the 

following attributes: 𝑟𝑒𝑐𝑛
𝑗= (𝑢𝑠𝑒𝑟_𝑖𝑑1

𝑗
, 𝑢𝑟𝑙_𝑖𝑑𝑛

𝑗 , 𝑡𝑖𝑚𝑒_𝑠𝑡𝑎𝑚𝑝𝑛
𝑗
, … , 𝑎𝑔𝑒𝑛𝑡𝑛

𝑗 ), where  

𝑢𝑠𝑒𝑟_𝑖𝑑1
𝑗 = the IP address that identifies a user visiting a specific website  

𝑢𝑟𝑙_𝑖𝑑𝑛
𝑗 , = a link to the web page requested by the 𝑗𝑡ℎ user 

𝑡𝑖𝑚𝑒_𝑠𝑡𝑎𝑚𝑝𝑛
𝑗  = date and time the 𝑗𝑡ℎ user visited a web page 

𝑎𝑔𝑒𝑛𝑡𝑛
𝑗  = the browser version and operating system used by the 𝑗𝑡ℎ user 

 



40 
 

From the above representation of records in web log file N, Algorithm 1 is 

used to identify the 𝑛𝑡ℎ record of the 𝑗𝑡ℎ user, as shown in Table 2. 
 

Algorithm 1: User Identification 

Input: N // web log file 
Output: 𝑟𝑒𝑐𝑛

𝑗 //A set of records for the 𝑗𝑡ℎ  
Begin 
 Read the logs in N 
 For every entry in N 
  If (IP address of first log entry = IP address of second log entry)   
   Compare the user browser and operating system of both entries 
  Else 
  If both user browser and operating system are the same,  
   Assign both entries to the same user_id. 
  Else  
   a different user_id 
  End if 
  End for 
 

Table 2: A set of records in the 𝑗𝑡ℎ user profile 

𝑢𝑠𝑒𝑟_𝑖𝑑𝑗  𝑢𝑟𝑙_𝑖𝑑𝑗  𝑡𝑖𝑚𝑒_𝑠𝑡𝑎𝑚𝑝𝑗  

173 1 02/01/2016 08:02:08 

173 54 02/01/2016 08:07:52 

173 53 02/01/2016 08:29:29 

173 56 02/01/2016 08:33:30 

173 55 02/01/2016 08:39:54 

173 1 06/01/2016 19:32:27 

173 53 06/01/2016 19:33:10 

173 56 06/01/2016 19:34:19 

173 20 06/01/2016 19:40:10 

173 54 06/01/2016 19:51:02 

173 1 09/01/2016 08:02:52 

173 54 09/01/2016 08:02:56 

173 55 09/01/2016 08:17:29 

173 56 09/01/2016 08:24:30 

173 1 15/01/2016 11:19:52 

173 54 15/01/2016 11:20:12 

173 56 15/01/2016 11:25:29 

173 53 15/01/2016 11:33:30 

 

Table 2 shows access records for the 𝑗𝑡ℎ user. Each record includes the 

User_ID, the timestamp of each user access record and the web page visited, 
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which is determined by the URL_ID. The timestamp of each page visit plays 

a critical role in identifying user sessions because the difference between two 

timestamps determines whether access records are within a session given a 

specified threshold value. 

3.3.2. User Session Identification 

A session is defined as a sequence of records accessed by the same user 

within a single visit to a website (Dwivedi and Rawat, 2015; Kapusta et al., 

2012). The user session identification process is considered one of the key 

phases of pre-processing web log data; it segments records of each user visit 

to a website into sessions (Patel and Pamar, 2014). The process of identifying 

user sessions from a web log file aids in finding a sequence of user records 

on a website from the time of entry until he/she exits the website. The session 

identification process can either be navigation-oriented or time-oriented 

(Castellano et al., 2013; Srivastava et al., 2000). 

Navigation-oriented user session identification: The time a user spends 

on a web page can illustrate the interestingness of the web page. The 

navigation-oriented approach takes into account the sequence of web page 

access by a user based on the structure and layout of a web page (Kapusta 

et al., 2012). Each page visit can be categorised as navigational/auxiliary and 

content page (Varnagar et al., 2013; Kapusta et al., 2012). Content pages are 

perceived as the ultimate destination of a web user and a user is likely to 

spend more time on such pages, whereas navigational features are hyperlinks 

that simply connect to content pages (Mayil, 2012; Aldekhail, 2016). However, 

in the proposed research, the usefulness of web data is determined by the 

interests of a user rather than the structure or layout of a website. Importantly, 

the navigation-oriented approach to session identification overlooks the 

interests of a user with regard to available web data. To address the limitations 

of the navigation-oriented approach, Yuankang and Huang (2010) and 

Kapusta et al. (2014) argue the that time-oriented session identification 

approach is better at identifying sessions that correspond to user interests on 

a web page. 
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Time-oriented user session identification: The time-oriented session 

identification process is considered the most common technique used to 

identify user sessions from raw web access log files (Srivastava et al., 2000; 

Jafari et al., 2013; Kapusta et al., 2014; Rao et al., 2017). A number of 

algorithms based on fixed time-out values have been proposed by existing 

research. For example, Guerbas et al. (2013), Halfaker et al. (2014) and 

Verma and Kesswani (2014) propose a time-oriented algorithm based on a 

fixed time threshold value for user session identification. Time-oriented 

session identification defines a user session as a sequence of requests made 

to a web server by the same user within a specified time. The assumption 

applied in the time-oriented approach is that if there is a break between user 

requests that is reasonably long, it is likely that the user is no longer active, 

and therefore the session is considered to have ended. A new session will 

then start when the next user request is reported on the server. For example, 

consider 𝑡𝑠𝑘 as the initial timestamp of the first page request by the 𝑗𝑡ℎ user in 

𝑖𝑡ℎ session, and 𝑡𝑠𝑘+1 is the timestamp for the page put into the current 

session. If 𝑡𝑠𝑘+1- 𝑡𝑠𝑘> = 𝑡𝑖𝑚𝑒𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑,, then a new session is created. Figure 

3.3 shows that the first session was created when the 𝑗𝑡ℎ user visited the home 

page and shoes categories, 30 minutes later he/she visited the computers and 

phones categories. 

 

Figure 3.3: Session identification based on 30 min threshold value 

 

It is thus observed that a session is created if the timestamp between two 

pages requested exceeds a given threshold value, such as 30 minutes, as 
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shown in Figure 3.3. Where the proceeding timestamp is not recorded, the 

session will end 30 minutes after the current timestamp. Zhang and Ghorbani 

(2004) argue that each user request and time spent on a page can be affected 

by website structure and layout, as well as varying user interests. Hence, 

using a fixed threshold value to determine a session does not reflect the actual 

time on a page. It is therefore important to note that determining the 

interestingness of a web page based on fixed time-out threshold value can be 

misleading. For example, the time spent on the current page may be less than 

30 minutes. If the interestingness of a web page is measured based on fixed 

time-out value, it can lead to misclassification of the web page as either noise 

or useful. 

Illustrative example: A session on a web server is defined by the 𝑛𝑡ℎ record 

requested by the 𝑗𝑡ℎ user within a specified time. Every 𝑗𝑡ℎ user has 𝑖𝑡ℎ 

session, each of which has a sequence of records, such that 𝑆𝑖
𝑗= 

(𝑟𝑒𝑐1
𝑗,…,𝑟𝑒𝑐𝑛

𝑗,…, 𝑟𝑒𝑐𝑁
𝑗 ). A record of a user visit to a web page comprises a 

user-id, time of visit, web page visited, etc., where 𝑟𝑒𝑐𝑛
𝑗=(𝑢𝑠𝑒𝑟_𝑖𝑑𝑖𝑛

𝑗
,

𝑢𝑟𝑙_𝑖𝑑𝑖𝑛
𝑗 , 𝑡𝑖𝑚𝑒_𝑠𝑡𝑎𝑚𝑝𝑖𝑛

𝑗
). 

The concept of user session is important because it corresponds to what is 

often considered to be a visit to a website (Yuankang and Huang, 2010). The 

following stages are used to create a user session based on a fixed time-out 

threshold value, which is 30 minutes. 

1. The time spent on a page must not exceed a specified threshold, for 

example, 30 minutes in this case. 

2. Let 𝑡𝑠𝑘 be the timestamp of the initial 𝑘𝑡ℎ web page request. 

3. Let the next 𝑡𝑠𝑘+1 be the timestamp for the next 𝑘𝑡ℎ web page request. 

4. The next 𝑘𝑡ℎ web page request belongs to the same session if 𝑡𝑠𝑘+1- 

𝑡𝑠𝑘< 30 minutes, otherwise it becomes the first of the next user session. 

Table 3 shows a session created from a web log file with a default time-out 

threshold value of 30 minutes. However, the proposed research argues that it 

is difficult to set a fixed time-out threshold value because each user’s time 

intervals between page visits may vary for a number of reasons. For example, 
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interruptions occur when browsing the internet, when a user is likely to attend 

to other activities like making a cup of tea or answering a phone call. Based 

on Figure 7, if we were to determine the time taken by the 𝑗𝑡ℎ user on the 

shoes category with the timestamp 08:29, it would be 30 minutes, which is 

reflected in the next timestamp at 08:59. Fatima et al. (2016) argue that 

session identification based on fixed time-out threshold value fails to consider 

key aspects in relation to the interests of a web user. For instance, different 

users have different reading speeds and the content of a web page may vary 

in structure and layout; thus the time taken will vary. Moreover, where a fixed 

time threshold value is used to determine session duration, a long session can 

easily be divided into two sessions. For these reasons, there is a need to 

determine user session based on a dynamic threshold value rather than using 

a fixed time-out value. 

Table 3: Session identification for the 𝑗𝑡ℎ user 

𝒖𝒔𝒆𝒓_𝒊𝒅𝒊

𝒋
 𝑺𝒊

𝒋
 𝒖𝒓𝒍_𝒊𝒅𝒊

𝒋
 𝒕𝒊𝒎𝒆_𝒔𝒕𝒂𝒎𝒑

𝒊
𝒋 

173 1 1 02/01/2016:08:02 
173 1 54 02/01/2016:08:07 
173 1 53 02/01/2016:08:29 
173 1 56 02/01/2016:08:33 
173 1 55 02/01/2016:08:39 
 
173 2 55 02/01/2016:17:24 
173 2 53 02/01/2016:17:36 
173 2 54 02/01/2016:17:48 
 
173 3 1 06/01/2016:19:32 
173 3 53 06/01/2016:19:33 
173 3 56 06/01/2016:19:34 
173 3 20 06/01/2016:19:40 
173 3 54 06/01/2016:19:51 
 
173 4 1 09/01/2016:08:02 
173 4 54 09/01/2016:08:02 
173 4 55 09/01/2016:08:17 
173 4 56 09/01/2016:08:24 
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The effectiveness of finding useful information from the noisy web depends 

on how accurate the process of user session identification is (Patel and 

Parmar, 2014). The proposed research argues that it is difficult to measure 

the accuracy of user sessions because any fixed time-out threshold value is 

subject to incorrect identification of user sessions. It is therefore difficult to 

determine the interestingness of a web page to a specific user based on a 

fixed time-out threshold value. This is due to the fact that sessions based on 

a fixed time-out fail to consider change of user interests. For example, any 

fixed threshold will be too short for some sessions with relatively long breaks, 

but too long for other sessions where the access time is too short (Xinhua and 

Qiong, 2011). This will lead to incorrect classification of web pages, thereby 

affecting the process of identifying useful information in relation to a user 

interest. 

With regard to problems with the navigation-oriented and fixed time-out 

session identification approach, the proposed research considers user 

session identification based on dynamic time-out adjustment values (Sharma 

and Makhija, 2015). In the dynamic time-out adjustment approach, more 

emphasis is given to page requests where the time intervals are large or the 

last timestamp cannot be determined. This is due to the assumption that the 

large time interval between page requests signifies the end of a session and 

start of a new one (Zhuang et al., 2004). 

User session identification based on dynamic time-out adjustment: User 

interests on the web vary, and so does the time taken to access useful 

information. For example, the time spent on a web page by a specific user on 

different occasions of page requests will vary (Xinhua and Qiong, 2011). 

Where a long user session is present in the web access log, the page will be 

divided with the next session where a fixed time-out threshold is applied. In 

order to ensure page requests with long time intervals reflect the time a user 

spends on the requested pages, there is a need to adjust the time threshold 

used to define a session (Sengottuvelan et al., 2017).  

Dynamic time-out adjustment has been used to address the challenges faced 

by the fixed time-out process (Halfaker et al., 2014; Sharma and Makhija, 
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2015). One of the key objectives is to ensure time intervals between page 

requests reflect user interests on the page based on the duration of the user 

visit. This approach identifies all page visits within a user session prior to 

making any time-out adjustments, thus avoiding misclassification of 

information requested by a user. For example, if a fixed time threshold is used 

to determine the interestingness of a web page, it can either be identified as 

useful or noise. In the dynamic time-out adjustment process, visit time is 

calculated for each page visit by the user by using a consecutive timestamp 

value. For example: 

 𝑡1 = the primal time-out of a web page 

 𝑡𝑛𝑒𝑤 = the time-out of a web page that is put into the current session 

 

The average time-out, denoted as 𝑡′, is defined as: 𝑡′ =(t1 +tnew) 

𝑛
, where 𝑛 is 

the total number of web pages considered. In order to apply the adjustment to 

other pages, the adjustment ration η is defined using the following equations: 

 

η = (𝑡′ −t1) 

t1
 = (tnew−t1) 

n(t1)
       (1) 

To apply the adjustment to all pages, the adjusted time δ denotes 

 

δ = δ0(1 + η) =δ0(tnew+t1) n(t0)     (2) 

 

where, δ0 denotes the time-out by the last adjustment time-out. 

 

The dynamic threshold value considered in the proposed research uses the 

average time of visiting web pages to indicate the end of a session. Time on 

a web page, also referred to as page visit duration, is calculated for each page 

visited by the user by using a consecutive timestamp value. The average 

duration of a particular page is the average of all the times spent on that page. 

At the beginning of a new session, the initial time-out 𝑡1 is set for each page, 

while the requested page is put into the current session 𝑡𝑛𝑒𝑤. The time-out will 

be computed dynamically in order to make it reflect the actual time a user 

spends on a web page. The dynamic adjustment means that only requests 
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with a long interval will be considered. Algorithm 2 describes the stages of 

determining user session based on dynamic time-out value. 

 

Algorithm 2: Session Identification Based on Dynamic Time-out 

Input: 𝑟𝑒𝑐𝑛
𝑗
 //A set of records for the 𝑗𝑡ℎ user 

Output:  𝑆𝐼
𝑗
 //A set of sessions for the 𝑗𝑡ℎ user 

Begin 
Read user log_file // extracted access logs from a web server 
Sort all web logs by user_ID and Time_stamp 
For every unique user_ID do 
  Create a new user session 𝑖𝑗  
 If time interval 𝑇𝑘+1- 𝑇𝑘 is < δ //adjusted time-out 

          Assign 𝑘𝑡ℎ into 𝑆𝑖
𝑗
 

  Else 

          Create a new user session 𝑆𝑖
𝑗
+1 

  End if 
 End for 

 
The success of the web user mining process depends on the effective 

identification of user sessions implicitly recorded in a web log file (Pater and 

Parmar, 2014). A number of algorithms proposed by current research to define 

user sessions mainly rely on fixed time-out threshold value to determine the 

end of a session, as well as the beginning of a new one. However, the 

proposed research points out a number of limitations associated with fixed-

time-out value. Fatima et al. (2016) argue that the user session identification 

approach based on dynamic time-out threshold value precisely captures user 

interests on the web as compared to a fixed time-out approach. This is due to 

the fact that it eliminates the assumptions made when using a fixed threshold 

value. The adjacent time-out value is also dynamic enough to reflect the 

interestingness of a web page in relation to the interests of a user.  

3.3.3. Page View Identification 

Page view is a collection of information on the web linked together in a 

particular page representing a user event (Srivastava et al., 2000). This is 

what the user actually sees while on a website. The page view identification 

process determines which pages accessed by a user lead to the display of 

web content the user is interested in. Identifying page views based on a user 

visit is heavily dependent on the layout and structure of a website (Zubi and 
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Raiani, 2014). Each page view can be considered a collection of web pages 

that represent information the user is interested in. However, where measures 

such as duration and frequency of visit are considered, the interests of a user 

will vary between the relevant page views. 

3.4. Web User Profile Construction 
A user profile is a collection of information that describes the interests of a 

user on the web (Gasparetti et al., 2014; Hasan et al., 2013). The main 

characteristic of a web user profile is the ability to determine the information 

from the web that defines the interests of a user. The initial step in constructing 

a web user profile is analysing web user access logs extracted from a web 

server. The pre-processing of web log data discussed earlier in this chapter is 

critical to user profiling, as well as extraction of useful information that reflect 

user interests.  

The main actors in building a user profile are the user and the web (Amato 

and Straccia, 1999; Grčar et al., 2005). The user specifies what he/she is 

looking for while on the web. However, user interests may change over time 

and this is one of the aspects that need to be taken into account during the 

user profiling process. On the other hand, the web acts as the information 

source, where all different types of information the user might be interested in 

resides. The web aims to satisfy users by providing all information, but the key 

aspect is ensuring that the right information is available to the user at the right 

time. For example, one user may be searching for “python” due to an interest 

in computer programming language, while a different user will be interested in 

studying different species of reptile. Such requests should consider a user 

profile in order to provide results that meet the interests of a specific user. In 

essence, user profiling aims to address classification problems that contribute 

to noise in web data. Between these two actors, there are a number of key 

stages, which include: a user request to the web server, extracting and 

analysing user interest information, determining user interest level on visited 

web pages, etc.  
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Figure 3.4: User profile construction 

 

The user profiling process shown in Figure 3.4 implicitly learns user interests 

from extracted web user logs. Huidrom and Bagoria (2013) consider user 

profiling based on web user access log files as one of the most efficient ways 

of determining the interestingness of web data in relation to a specific user. 

However, challenges such as the presence of noise levels in web log files 

hinder the process of finding useful information in relation to user interest. The 

following section explores the significance of web user profiling in the 

identification and subsequent elimination of noise web data. 

3.5. Web User Profiling: its Significance in Noise Web Data 
Reduction 

Every piece of information on the web that a user requests is recorded on a 

web server (Wiedmann et al., 2002). When user requests are combined with 

the information available on the web, a clear picture of user needs and 

interests is defined. Determining the interestingness of web data requires 

finding the level of user interest to ensure that problems with noise web data 

are addressed in relation to change in user interests. One way to ensure useful 
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information is available to a user at the right time is by building a user profile 

based on web log data. The main goal of user profiling is to learn user interests 

on the web and provide them with what they need without explicitly requesting 

input. Each web page in a user profile is presented in the form of a URL, from 

which user interest level can be measured; for example, based on duration 

and frequency of user visits. 

Web user profiles are considered to be dynamic in relation to changes in user 

interests. A number of recent research works have emerged that address 

changes in user interest with regard to web data (Alphy and Prabakaran, 

2015). When user interests change, the user profile needs to be dynamic 

enough to learn such changes and thus minimise the noise data suggested to 

a user. User interests can be quite wide and the user can at any time focus 

on a small subset of his/her broad interests. In the case of internet browsing, 

the entire set of user interests can include interests that are relevant to his/her 

job and hobbies. For instance, after the birth of a baby users will naturally be 

interested in parenting issues and their preferences in automobiles may 

change (Ahmed et al., 2011). Some events, such as planning a holiday, 

purchasing a car, obtaining a mortgage, etc., will lead to a marked change in 

user interests. Therefore, it is clear that user interests are subject to change 

over time. Due to such dynamic tendencies in the web usage mining process, 

it is important to consider various measures that are key in learning user 

interests. These include: duration, frequency and depth of a user visit to a web 

page, as well as how recently a user has visited a specific page. These 

measures are extensively analysed and discussed in the following chapter. 

3.6.  Chapter Summary 

One of the proposed research aims is to learn the interests of a user and how 

noise in web data is affected by a dynamic change of user interests. In this 

chapter, a user profile that captures the interests of a user on a web page was 

defined. The rationale was based on the key aspects identified and discussed 

in previous chapters. For example, this thesis acknowledged that the 

interestingness of web data is influenced by user interests and dynamic 

changes in this. User interests can be subjective; in the context of the 
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proposed research, a web page is considered useful if it is available to a user 

when relevant, and otherwise it is noisy.  

The key stages involved in defining a user profile were explored. These 

include: user and session identification stages of pre-processing web log data, 

which plays an important role in finding data on the web and defining a user 

and his/her interests. A session identification algorithm based on dynamic 

threshold value was considered when defining user sessions. The rationale 

for using the dynamic time-out threshold approach in the user session 

identification process is to ensure that the importance of a web page reflects 

the interests of a user. The proposed research’s position aims to ensure that 

noise web data is defined, with clear consideration of user interests and their 

changes over time. Therefore, using the dynamic user session identification 

approach ensures all web pages visited by a user are considered when 

defining the level of user interest in requested web pages. In the next chapter, 

a number of the measures used to learn user interests on the web are critically 

evaluated. Even though many users may show an interest in the web pages 

requested, the level of interest varies. The objective of learning user interests 

is to examine how different measures affect the interestingness of web data. 

The outcome of the user interest learning process will lead to a user-driven 

approach to learning noise web data prior to elimination. 

After collecting user interest information and building a user profile, it is 

important to determine to what extent the web data requested by the user is 

of interest so as to minimise nosiness in the web user profile. Current research 

considers various measures to define the interestingness of web data in 

relation to user interest levels. Measures such as duration and frequency of 

page visit are defined and critically evaluated in the following chapter. 
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Chapter 4: Learning Noise in Web Data 

Chapter 3 identified and critically evaluated the various stages current 

research considers when defining a user profile based on user interest 

information extracted from web servers. One of the objectives of this thesis is 

to examine how user interests influence the interestingness of web data. This 

is to ensure that noise data eliminated from the web takes into account the 

user’s change of interests. This chapter first explores how the interests of a 

user on the web are currently determined and how various measures impact 

the interestingness of web data. The chapter also attempts to address the 

following research question: 

Question 2: What are the key indicators for learning user interests and how 

interests of a user could improve noise web data elimination? 

4.1. Introduction 

Nowadays, the most common challenge a web user faces is finding 

information of interest from the web without encountering a high volume of 

noise data. Website owners and developers are also facing challenges in 

catching up with the dynamic change in user interests in understanding the 

kind of information a user is interested in. In most cases, user interests on the 

web are assumed to be fixed over a given period of time (Qiu and Cho et al., 

2006). For example, a student is likely to have a fixed interest in a given 

research domain, hence they will be interested in specific information from the 

web. However, it is also realistic to suggest that user interests change over 

time (Wang et al., 2013, Ko and Jiamthapthaksin, 2014). For example, at 

Christmas time, a person may be interested in shopping, but his/her interests 

will change during the summer period. Ahmed et al. (2011) and Cheng et al. 

(2015) suggest the use of time-variant data based on an implicit learning aid 

in determining interestingness of web data to a user, either dynamic or fixed. 

As defined and discussed in chapter 3 of this thesis, the implicit approach to 

learning user interest take into account measures such as duration and 

frequency of a user visit. 
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Based on the extracted web log data and subsequent creation of a user profile, 

the proposed research defines the level of user interests by taking into 

account key aspects. (1) The visiting time for a web page is an indicator of a 

user’s interest level (Ahmed et al., 2011; Wu et al., 2014). The amount of time 

a user spends on a web page reflects its interestingness, which is defined as 

the degree of user interest in a web page (Zhang et al., 2007). (2) The 

frequency of a user visit to a web page is positively related to his/her interests 

(Rebon et al., 2015). Furthermore, duration and frequency of visit are 

interlinked because the longer the time spent on a web page, the higher the 

user preference for the web page visited. The proposed research aims to 

identify and examine various measures used by existing research to 

determine the interestingness of web page in relation to user interest. The 

outcome is to ascertain the impact of these measures in identifying noise web 

data when change of user interests are considered. 

The rest of this chapter is organised as follows: section 4.2 critically evaluates 

how current research defines, learns and measures user interests while 

visiting a website. Section 4.3 examines how a change in user interests 

influences the interestingness of web data. Section 4.4 proposes a noise web 

data learning approach that considers change in user interests prior to noise 

elimination. Finally, section 4.5 discusses the critical aspects in relation to 

learning noise web data vis-à-vis the current situation, and then the chapter is 

summarised.  

4.2. User Interest Learning  

User interest information is regarded as the key indicator when learning how 

useful data is on the web. Zeng et al. (2012) argue that user interests are not 

only about finding web pages where a user spends more time, but also when 

a user appears to be interested or not in a given piece of information. The 

ability to build a user profile based on web log data is at the heart of learning 

the interests of a user in a given website (Dong et al., 2008; Bhargava et al., 

2015). The learning approach mainly involves determining the interestingness 

of a web page taking into account change in user interests over time. This 

thesis proposes machine learning algorithms capable of learning user 
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interests on the web, as well as how change in user interests impacts the 

identification of noise web data. The proposed algorithm mainly relies on key 

user interest indicators to determine interestingness of web data (Claypool et 

al., 2001; Kim and Chan, 2005; Zahoor et al., 2015). Figure 4.1 outlines the 

main stages of the user interest learning process, which are critically 

evaluated throughout this chapter, further Appendix III presents a use case 

for the proposed NWDL approach. 

 

Figure 4.1: Noise web data learning process flow diagram 

 

4.2.1. Identifying Key Indicators for Learning User Interest 

User interest is expressed as the weight of a web page visited by a user (Wu 

and Liu, 2014). The weight of a web page can be determined using binary (0 
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and 1) or a function of parameters (Forsati and Meybodi, 2010). The binary 

approach identifies the existence or non-existence of a web page in a user 

session. This approach fails to measure the level of user interest in the visited 

web pages, however, because they are all treated equally regardless of the 

level of user interest. Not all pages present in a user session are interesting; 

a user can visit a page and find it irrelevant, but the page will be captured in 

the web log file as part of the user interest information. Page weight based on 

parameters, such as the frequency and duration of a user visit to a web page, 

provides an opportunity to measure interest degree in a web page in relation 

to varying user interests (Kabir et al., 2012). It is believed that the longer the 

time spent on a web page and the greater the number of visits to the same 

page, the higher the interest level (Suguna and Sharmila, 2013). Hence, the 

assumption is that the degree of interest is in proportion to the duration and 

frequency of a user visit ( Wu et al., 2014).  

In this thesis, the level of user interest in a web page is determined by a 

number of key indicators, including: page visit duration, which defines the 

length of time a user spends on a web page; frequency of page visit, which 

indicates the number of times a web page has been visited; depth of page visit 

by a user, which shows the path that leads to user interest information; and 

the frequency of a web page category, which signifies the preference for a 

web page category by a given user.  

Page visit duration: Page visit duration is one of the indicators widely used 

to measure user interest level on a web page (Azimpour-Kivi and Azmi, 2011; 

Kim and Chan, 2005a). Naturally, page visit duration 𝑇𝑘
𝑗 is determined by the 

difference between the timestamp of the current page and the timestamp for 

the next page view (Yonghong et al., 2016).  

𝑇𝑘
𝑗 = 𝑡𝑠𝑘+1

𝑗  - 𝑡𝑠𝑘
𝑗     (3) 

where 𝑇𝑘
𝑗 is the time duration of the 𝑗𝑡ℎ user on the 𝑘𝑡ℎ web page, 𝑡𝑠𝑘+1

𝑗  represents 

the timestamp of the next 𝑘𝑡ℎ web page and 𝑡𝑠𝑘
𝑗 is the timestamp for the current page. 

Therefore, the relative importance of each page to the 𝑗𝑡ℎ user is determined 

by the duration of the visit. Forsati and Meybodi (2010) acknowledge some of 
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the key aspects of using page visit duration: this reflects the relative 

importance of a page in relation to user interest; a user will spend more time 

on a page of interest. However, the web access logs do not contain enough 

information to determine the time a user exits a website (Chen and Su, 2013; 

Hofgesang, 2006). This makes it difficult to measure the time a user spent on 

the last page of their visit. For example, Table 4 shows user sessions for a set 

of web pages whose time duration is determined based on a fixed threshold 

value. 

Table 4: Visit duration for 𝑗𝑡ℎ user on 𝑘𝑡ℎ web page in 𝑖𝑡ℎ session 

𝑢𝑠𝑒𝑟_𝑖𝑑𝑖
𝑗
 𝑢𝑟𝑙_𝑖𝑑𝑖

𝑗
 𝑆𝑖

𝑗 𝑡𝑖𝑚𝑒_𝑠𝑡𝑎𝑚𝑝𝑖
𝑗
 𝑇𝑘𝑖

𝑗
 

Session 1 

173 1 1 02/01/2016 08:02 05:44 

173 54 1 02/01/2016 08:07 21:37 

173 53 1 02/01/2016 08:29 04:01 

173 56 1 02/01/2016 08:33 06:24 

173 55 1 02/01/2016 08:39 00:00 

Session 2 

173 55 2 02/01/2016 17:24 12:04 

173 53 2 02/01/2016 17:36 11:50 

173 54 2 02/01/2016 17:48 00:00 

 

Time spent on 𝑢𝑟𝑙_𝑖𝑑 in session 1 is defined as  𝑡𝑖𝑚𝑒_𝑠𝑡𝑎𝑚𝑝 for 𝑢𝑟𝑙_𝑖𝑑 54 - 
𝑡𝑖𝑚𝑒_𝑠𝑡𝑎𝑚𝑝 for 𝑢𝑟𝑙_𝑖𝑑 1 
 

= 02/01/2016 08:07 - 02/01/2016 08:02 = 05:44min 
 
However, the time spent on url_id 55 in session 1 is unknown (?) due to lack 
of next page timestamp 
 

= ? - 02/01/2016 08:39 = 00:00min 
 

The existing research argues that the exit page should be excluded from other 

user requests due to the lack of an exit timestamp (Prasad and Rao, 2016). 

However, the importance of the exit page will be affected by its 

misclassification, hence leading to a misinterpretation of user interests. The 

last page a user visits on a website is often referred to as the exit page 

(Sreedhar, 2016). The exit rate is defined as the number of times a user exits 
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from a particular page divided by the total page views. The exit rate signifies 

how likely a user is to end his/her journey on a given website. Ultimately, this 

draws up suggestions on whether the page is interesting or not, but because 

the time spent on the exit page cannot be determined, it will be difficult to 

measure the interestingness of such pages. Aldekhail (2016) and Sharma and 

Makhija (2015) claim that the last page the user visits is always a content 

page, which is believed to contain useful information (Kapusta et al., 2014; 

Munk et al., 2015). Therefore, if there is a lack of sufficient information to 

determine the page visit duration, then the last page, which is a content page, 

will be excluded when determining user interest level in web pages visited. 

Finding how long a user spends on a website, i.e. session duration and the 

time spent by a user on a specific web page, is critical to addressing the above 

problem. Chapter 3 of this thesis addressed challenges faced when using 

fixed default value in the user session identification process. A dynamic time-

out session identification approach was considered instead, where long 

intervals between user requests are recalculated, as shown in equations (1) 

and (2). Therefore, finding the time a user spent on the last page not only 

allows the interestingness of all web pages visited by a user to be determined, 

but also avoids misclassification, thus affecting the quality of information 

available to a specific user. 

Due to the missing timestamp, the time spent on the last page is not 

calculated. The proposed research thus considers the missing value 

imputation technique to find the time a user spent on the exit page. Rahman 

and Islam (2011) and Aljuaid and Sasi (2016) apply the missing value 

imputation technique to address missing values in a dataset; their aim is to 

ensure the quality of data is not affected where missing values in a dataset 

cannot be determined. The proposed research borrows this concept because 

the interestingness of a web page will be affected if the time a user spends on 

the exit page cannot be determined. Even though this technique has been 

used by existing research, there is no existing work that has applied it in 

defining user session and calculating user page visit duration. 
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In this thesis, the missing value imputation technique uses previously known 

time a user spent on the same page to estimate the time duration on the exit 

page. This technique is considered effective where previous page visits and 

time spent are known. However, instead of using the time duration on the 

immediate web page, the proposed research considers average duration in 

the relevant web page estimated duration for the last three user requests. This 

takes into account any assumption that a user was struggling to find 

information of interest or the page was just a link to the destination page. The 

exit page visit duration, denoted as 𝑇𝑘𝑒

𝑗
,  is determined using equation (4), 

where 𝑁 represents the last three user requests for the 𝑘𝑡ℎ web page: 

𝑇𝑘𝑒

𝑗
=  

(𝑇𝑘1

𝑗
+ 𝑇𝑘2

𝑗
 …,+𝑇𝑘𝑁

𝑗
)

𝑁
    (4) 

Therefore, the average time duration on the kth web page in the  ith user 

session for the ith user is defined by equation (5) 

𝐴𝑉𝑇𝑘𝑖

𝑗
=  

∑ 𝑇𝑘
𝑗

 
𝐾𝑗

𝑗=1   

𝐾
𝑖
𝑗            (5) 

where, 

𝐴𝑉𝑇𝑘𝑖

𝑗 = average visit duration on 𝑘𝑡ℎweb page by the  𝑗𝑡ℎ user in 𝑖𝑡ℎ 
𝑇𝑘𝑖

𝑗 = page visit duration on 𝑘𝑡ℎweb page by the  𝑗𝑡ℎ user in 𝑖𝑡ℎ session 
 𝐾𝑖

𝑗 = total number of page visited by the 𝑗𝑡ℎ user in the  𝑖𝑡ℎ user session 

 

Page visit duration is widely considered a good indicator to measure user 

interest level on a web page (Ahmed et al., 2011; Wu et al., 2014). However, 

time alone cannot provide a ‘clear picture’ of how interesting a web page is to 

a given user because of the various reasons mentioned in the previous 

chapter. For example, different users have different reading speeds and the 

content of a web page may vary in structure and layout. Therefore, it is 

important to consider how frequently a user visits the page alongside the time 

spent when determining its interestingness.  

Frequency of user visit: Frequency is the number of times a web page is 

accessed by a user within a session (Suguna and Sharmila, 2013). This is 



59 
 

considered one of the key indicators used to learn interestingness of a web 

page in relation to user interests (Booth and Jansen, 2009; Neelima and 

Rodda, 2016). Where a web page appears frequently in a user session, it 

might be considered interesting to the user. In the proposed research, 

frequency of a user visit to a web page is determined by the number of 

times 𝑘𝑡ℎ web page appears in 𝑖𝑡ℎ session for the 𝑗𝑡ℎ user. Frequency of the 

𝑗𝑡ℎ user on 𝑘𝑡ℎ web page is defined in equation (6) 

𝐹𝑟𝑒𝑞𝑘𝑖

𝑗
=  

∑
𝑢𝑟𝑙𝑘𝑖

𝑗

            

𝐾𝑗

𝑗=1   

𝐾𝑖
𝑗

                                  (6) 

where 

 𝐹𝑟𝑒𝑞𝑘𝑖

𝑗
=  Frequency for the 𝑗𝑡ℎ user visit on 𝑘𝑡ℎ web page 

 ∑ 𝑢𝑟𝑙𝑘𝑖

𝑗

            

𝐾𝑗

𝑗=1   

= the number of times  𝑘𝑡ℎ web page appears in the  𝑖𝑡ℎ user session 

𝐾𝑖
𝑗 = total number of page visited by the 𝑗𝑡ℎ user in the  𝑖𝑡ℎ user session 

 
The frequency of a user visit may be higher, but the time spent on the web 

page lower. Therefore, finding the weight of a web page in relation to user 

interest level involves two aspects: the time spent by a user visiting a web 

page and the frequency of visits to a web page.  

4.2.2. Interestingness of a web page based on time and frequency of user 

visits 

Duration and frequency of page visits are measures widely used to determine 

the interestingness of a web page (Grace et al., 2011; Wang et al., 2013; 

Chitraa and Thanamani, 2013). Each web page in a user profile is assigned a 

weight to reflect the level of user interest. This weight defines the 

interestingness of a web page to a given user (Kabir et al., 2012; Wei et al., 

2015). For each web page visited by a user, the corresponding weight is 

determined taking into account the amount of time spent and how often the 

page is visited. Finding the weight of a web page aids in keeping a user profile 

relevant by identifying web pages that reflect varying user interests. The 

weight is determined by the degree of the user’s interest in the 𝑘𝑡ℎ web page 

in 𝑖𝑡ℎ session, as defined in equation (7): 
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𝑊𝑘𝑖

𝑗
= ∑

𝑇𝑘𝑖

𝑗
 ∗  𝐹𝑟𝑒𝑞𝑘𝑖

𝑗
 

            

𝐽

𝑗=1   

                       (7) 

 
 Where   𝑊𝑘𝑖

𝑗= weight of 𝑘𝑡ℎweb page in 𝑖𝑡ℎ session for the 𝑗𝑡ℎ user 
 𝑇𝑘𝑖

𝑗 = page visit duration on 𝑘𝑡ℎweb page by the  𝑗𝑡ℎ user in 𝑖𝑡ℎ session 
 𝐹𝑟𝑒𝑞𝑘𝑖

𝑗 = frequency of the 𝑗𝑡ℎ user visits to 𝑘𝑡ℎ web page in 𝑖𝑡ℎ session 
 

Therefore, interest is calculated by the ratio of the total amount of time spent 

on a page to the number of times a page was visited by the 𝑗𝑡ℎ user in 𝑖𝑡ℎ 

session.  

 

4.2.3. Influence of Time and Frequency of Web Page Visits on Noise 

Elimination  

Current research acknowledges that frequency and duration of page visits are 

two major indicators of user’s interest levels on a web page (Nanda et al., 

2014; Kabir et al., 2012; Liu and Kešelj, 2007). However, the influence of these 

two measures in determining the interestingness of web data varies; for 

example, Hofgesang (2006) believes that the frequency of a visit to a web 

page is a much more relevant indicator of user interest, while Kim and Chan 

(2016) and Gauch et al. (2012) argue that the interest of a user in a web page 

is better reflected by the amount of time said user spends on the page. Kabir 

et al. (2012) and Holub and Bielikova (2010) suggest that time and frequency 

measures have equal importance in learning the interestingness of a web 

page. 

For example, in Table 5 URL_ID 1 was visited five times, but the average time 

duration is lower than that of URL_ID 20, which was visited once. This is due 

to the structure of a web page where a user’s landing page is the home page 

prior to visiting interest pages. Therefore, a quick move to another page from 

the entry/landing page reflects its interestingness to a user.  
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Table 5: Time Duration versus Frequency of User Visit 

URL_ID Frequency Visit_Duration 
56 5 4.19 
1 5 1.24 
55 4 7.71 
53 4 3.5 
54 3 6.5 
20 1 10.52 

 
URL_ID 1 in Table 5 is the homepage or user entry page to a website, which 

is thus traversed more often than the intermediate pages that are more likely 

to be of user interest. The frequency of a user visit to a web page will influence 

the interest level of a web page. The proposed research observes the 

following: (1) a user has no option other than to use the land page to get to 

the interest page; (2) a user frequently visits a page with the expectation of 

finding useful information. 

Despite the influence of time and frequency measures in learning the 

interestingness of web data, the proposed research points out some 

challenges associated with these measures. Firstly, it is recognised that the 

more time a user spends on a web page, the more interesting the page is (Tan 

et al., 2012; Umamaheswar and Srivatsa, 2014). The amount of time a user 

spends on a web page varies from one user to another, mainly due to 

familiarity with the website and reading speeds. A user struggling to find 

information of interest may also take longer on a web page, or they may attend 

to other activities outside the page. Secondly, web pages visited within a 

session can either be auxiliary or content pages (Munk et al., 2015). Auxiliary 

pages help a user to find web pages that are of interest; they act as a visiting 

path to a user ‘destination’. The frequency of this type of page will be high, but 

the duration of the visit will be low, which therefore suggests that frequency 

on its own may fail to determine the interestingness of a web page. Content 

pages, as defined in chapters 1 and 2, are pages where a user can find useful 

information.  

The proposed research argues that relying solely on frequency and time 

duration is inadequate in determining the user interest level of a web page. As 
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a result, it is difficult to identify and eliminate noise web data based on duration 

and frequency of page visit. In order to address the above challenges, the 

proposed research introduces additional measures to learn user interest 

levels on web pages prior to noise elimination. These include: 

1. Depth of user visit, i.e. the path taken to find information of interest. The 

sequence of page visits by a user is positively related to his/her interest 

(Rebon et al., 2015; Sambhanthan and Good, 2013). However, very 

often, a user’s visiting path is influenced by the structure and layout of 

a website, which means that some web page act as a link to interesting 

pages. Auxiliary pages can either be noise or useful subject to time and 

changes in user interests. The goal of analysing a user path is to 

understand varying user interests on the web, how layout and structure 

of the web influence the interestingness of its data and, more 

particularly, the impact of user visiting path on the identification of noise 

web data. 

2. Interest category of a web page – a web page category is defined as a 

set of related web pages in a website (Mishra et al., 2012). As the web 

evolves, new web pages emerge with no history of user interest (Hu et 

al., 2007). It is therefore possible to consider useful information as 

noise due to a lack of previous interest from users. In order minimise 

the loss of useful information otherwise considered noise, the proposed 

research work learns its interestingness based on user’s category of 

interest.  

 

4.2.4. Learning User Interest Based on Depth of User Visit 

The journey a user takes on the web is represented as a path (Singh et al., 

2013; Joshila Grace et al., 2011), a route used to navigate through a website 

in order to find the page of interest. Generally, all the web pages a user visits, 

whether they are content or auxiliary pages, represent information a user 

might be interested in, but it is up to the user’s judgment to determine to what 

extent the information is of interest (Gasparetti et al., 2014). Given that this 

perception is mainly dependent on the layout and structure of a website, the 

interestingness of a web page can be misinterpreted, especially where 
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frequency of visits is given weight; hence it is difficult to identify noise from 

user interest data (Hofgesang, 2006). Besides time and frequency of a user 

visit to a web page, this thesis thus proposes depth of a user visit to learn the 

interestingness of web data. Jansen et al. (2009) and Lagun and Lalmas 

(2016) define depth of a user visit as the average number of web pages 

requested by a user during a single session.  

A user visit to a website is presented as a path, a sequence of web pages 

requested by a user in a session.  𝑠𝑖=( 𝑢𝑟𝑙1,  𝑢𝑟𝑙2, …  𝑢𝑟𝑙𝑘), for 𝑘>2, where any 

ordered pair of   𝑘𝑡ℎ web page represents the  𝑗𝑡ℎ user visiting path. A user’s 

visiting path, which defines the depth of visit, is shown in Figure 4.2.  

 

 

Figure 4.2: Depth of a user visit to a website 

 

In most cases, users tend to visit a web page through the home page. 
However, this will require a user to visit more pages further down from the 

home page in order to find interesting web pages. Throughout this process a 

number of pages have been requested and the duration of every page visit is 

recorded. Therefore, if the interest level of a web page is determined by the 

average number of pages viewed in a user session, the interestingness of a 

web page will be misinterpreted. 

Depth of a user visit specifically measures the level of user interest while 

visiting a specific website. It shows how far a user can go on a website before 
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finding a page of interest, and points out where a user drops by exiting the 

website. Unlike time and frequency measures, depth of a user visit reveals 

something more about a web user. For example, based on depth of a user 

visit to a given website, it can be ascertained whether: (1) a user is actively 

interested in specific content occasionally or regularly; (2) a visit to a specific 

page influences the interestingness of the subsequent page. Thus, depth of a 

user visit to a web page plays a critical role in understanding varying user 

interests on a specific website. The proposed algorithm 3 defines a user’s 

visiting path in order to differentiate noise from useful web pages, not only 

using auxiliary or content type web pages, but based on the interest levels of 

a user. 

 

The proposed research considers depth of the 𝑗𝑡ℎ user visit not only in terms 

of number of page views, but also the path a user takes to traverse a website. 

For example, users can hit the home page of the site and, after few seconds, 

proceed to a sub-section of the home page, i.e. blogs. After spending some 

time on the page, a user will either move to another page or exit the website. 

Even though the 𝑗𝑡ℎ user is likely to visit other web pages to get to the 

information of interest, it is difficult to suggest that every page visit is of user 

interest unless measures such as time duration and frequency of visits over a 

number of sessions are jointly considered. Therefore, the path taken by the 

Algorithm 3: Depth of User Visit 

Input:   Extracted web user logs 
Output: A set of web pages visited by the  𝑗𝑡ℎ user  
1.  Define the 𝑗𝑡ℎ user profile  

2.   For each web page in the 𝑖𝑡ℎ for the jthe user profile 
3.   Find the web page category 
4.    If two web pages from the same category are both included in 𝑖𝑡ℎsession 
5.     flag_Link = True; //a link between two web page from the same 

category is found 
6.    Else 
7.     flag_Link = False; //no link between the two web pages 
8.    Else if (flag_Link = =True)  
9.     out_List.put (url1:  url2) ; // web pages visited by the  𝑗𝑡ℎ user  are 

connected  
10.   End if 
11.   End For 
12.  End 
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𝑗𝑡ℎ user from entry to exit page and the weight associated with each 𝑘𝑡ℎ web 

page are critical to determining the interestingness of a web page.  

Depth of user visit: its significance to the user interest learning process:  

A user visit to a website is usually random with no logical procedure (Booth 

and Jansen, 2009). For example, a user can enter a website through the home 

page or directly visit a specific web page via a URL. In order to learn user 

interests, the path taken by a user from one page to another immediately 

following each web page plays a critical role in the process. Some user interest 

indicators can be considered more important than others. For example, the 

depth of a user visit may be more significant than the frequency. Even though 

the user may visit one specific web page more frequently, this does not mean 

they are interested (Kim and Chan, 2013). Therefore, analysing the path taken 

by a user to get to the information of interest aids in learning the 

interestingness of each web page a user visits. The depth of a user visit 

considered by the proposed research aims to contribute to noise web data 

reduction in the following ways: 

i. Discovering the user visiting path contributes to developing dynamic 

websites where only user interest content is made available to a user 

without necessarily considering how the website is structured. 

ii. Identifying and determining user visiting paths can result in a better 

understanding of how users visit a website; it identifies users with 

similar information needs and can also aid in predicting how frequently 

user interests change. 

In summary, if a website has a high page depth in a relatively unimportant part 

of the site, this may suggest that a user is finding it difficult to locate the 

information he/she is interested in. To identify and determine user interest 

levels based on the depth of visit, it is also important to also consider user 

interest based on web page category. This is due to the fact that the layout 

and structure of the web is based on relationships between content, in the 

sense that information on the web is grouped into categories. The following 

sub-section of this chapter explores web page category and its significance to 

learning noise in web data.  
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4.2.5. Interestingness of a Web Page Based on User Interest Category  

Web users can spend a considerable amount of time looking for information 

of interest, but in some cases they may fail to find something that specifically 

fits their interest. Understanding how long a user spends on a specific 

category of a web page, rather than a specific web page, aids in learning user 

interests as well as the interestingness of web data. Learning user interests 

specifically from URLs accessed by a user can be limited by the fact that only 

visited web pages are considered (Lavanya and Vardhini, 2014; Poo et al., 

2003). As the web evolves, new information in the form of web pages is added 

to a website. During the web usage mining process, such web pages are likely 

to either be identified as noise, thus eliminated, or suggested to a user without 

any learning to determine a user’s interestingness.  

In order to address this challenge, a learning approach based on a user 

interest category is proposed in this thesis. The proposed research argues 

that learning user interest based on the category of a web page aids in 

understanding the user’s potential areas of interest. This is due to the fact that 

if a user regularly visits web pages within a given category, it is possible that 

he/she will find other topics within the specified category that meet their 

interests. For example, a computer student regularly visits pages containing 

information about ‘programming in R’, but they have not shown any interest in 

‘Adobe analytics’. Even though both subjects are within the data science 

category, ‘programming in R’ will be more interesting than ‘Adobe Analytics’. 

Therefore, the interestingness of a web page category is important as it 

implies the significance of the web page to a user’s interest (Nanda et al., 

2014). The proposed research considers category as a set of web pages, 

whereas a web page is the internal representation of a category. For example, 

Figure 4.3 shows an example of a category of web pages in an ecommerce 

website.  
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Figure 4.3: Categories of web pages 

Source: https://www.kilimall.co.ke/ accessed on 26/4/2017 

 

User visits to a web page category over time signifies the interest level of a 

user. However, as user interests change over time, user interest categories 

also change. For example, from the Football World Cup, to summer shopping, 

to Christmas and winter shopping, etc. Therefore, in order to learn the 

interestingness of web data in line with a change of user interests, it is 

important to identify information from the web that has not only been visited 

by a user, but within a category of web pages. The proposed research 

considers the following criteria when defining the interest category of a web 

page: 

i. Visiting frequency: the number of times a user visits a web page 

category within a specific period of time. For example, the number of 

web pages within the sports category visited by a user over a specified 

period of time. 

ii. Length of visit: the duration of a user visit to a web page category. For 

example, if the amount of time a user spends on a given web page 

category is above a specified threshold, the category is considered 

interesting. 

A user profile, as defined in the previous chapter, plays a key role in finding 

user interest information prior to learning the level of interest. For instance, 

user interest information, such as number of page views, duration of page 

visits and sequence of page visits, which is defined by the depth of visit, are 

https://www.kilimall.co.ke/
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key to learning the interestingness of a web page. The previous sections of 

this chapter examine how duration and frequency of visits to a web page 

influence the interestingness of a web page. This section further explores the 

interest category of a web page and ways in which user interest levels are 

influenced by the category of web pages. 

If we define web page category as 𝑀 = (𝑐𝑡1, 𝑐𝑡2, …  𝑐𝑡𝑚), where 𝑚 € 𝑀 is the 

total number of categories of web page. A category visiting path 𝐶𝑡𝑘𝑖

𝑗
= a 

sequence of 𝑚𝑡ℎ category visited by the 𝑗𝑡ℎ user during 𝑖𝑡ℎ session. For 

example, the browsing path of 𝑗𝑡ℎ user is 

{𝑐𝑡1,(𝑢𝑟𝑙1, 𝑢𝑟𝑙2,. . , 𝑢𝑟𝑙𝑘), 𝑐𝑡2(𝑢𝑟𝑙1, 𝑢𝑟𝑙2, … 𝑢𝑟𝑙𝑘),.., 𝑐𝑡𝑚(𝑢𝑟𝑙1, 𝑢𝑟𝑙2, … 𝑢𝑟𝑙𝑘}; this 

represents that the  𝑗𝑡ℎ user visits  𝑐𝑎𝑡𝑚, then visits  𝑢𝑟𝑙𝑘 which belongs to 

 𝑐𝑎𝑡𝑚.  

The proposed research aim is to determine the interestingness of a web page 

based on the following: 

 The frequency of the 𝑗𝑡ℎ user visit to 𝑚𝑡ℎ category.  

 The time spent by the 𝑗𝑡ℎ user on 𝑚𝑡ℎ category.  

Interest category based on frequency of user visits: Frequency of visits to 

a web page category presented as 𝐹𝑟𝑒𝑞𝑚𝑖

𝑗  is the number of times the 𝑗𝑡ℎ user 

visits the 𝑚𝑡ℎ web page category during 𝑖𝑡ℎ session. Each visit to 𝑘𝑡ℎ web 

page is accumulated to the respective 𝑚𝑡ℎ category. Interestingness of a web 

category based on frequency of user visit is therefore defined using equation 

(8). 

𝐹𝑟𝑒𝑞𝑚𝑖

𝑗
=  

∑ 𝐾𝑚
𝑖  

𝐾𝐽

𝑗=1   

𝐾𝑖
𝑗
 

                                    (8) 

where,  
 𝐹𝑟𝑒𝑞𝑚𝑖

𝑗 = the frequency of 𝑚𝑡ℎ web page category in  𝑖𝑡ℎ session for the 
jth user. 

 ∑ 𝐾𝑚
𝑖   

            

𝐾𝐽

𝑗=1   
 = number of 𝑘𝑡ℎ  web page of  𝑚𝑡ℎ category for the  𝑗𝑡ℎ user in  

𝑖𝑡ℎ  session. 
 𝐾𝑖

𝑗 = total number of  𝑘𝑡ℎ  web pages visited by 𝑗𝑡ℎ user in 𝑖𝑡ℎ session. 
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Illustrative example: The proposed research examines the relationship 

between a user and the category of a web page based on frequency of visits. 

For illustrative purposes, consider 𝑀 the total number of categories visited by 

the 𝑗𝑡ℎ user and 𝑓𝑟𝑒𝑞𝑚
𝑗  the number of times the 𝑗𝑡ℎ user visits the 𝑚𝑡ℎ category. 

When the 𝑗𝑡ℎ user visits the 𝑚𝑡ℎ category, its frequency is determined by the 

number of associated 𝑘𝑡ℎ web pages, as shown in Figure 4.4.  

 

 
Figure 4.4: Frequency of visits to a web page category 

Figure 4.4: Frequency of visits to a web page category. The values shown in this 
figure are the sum of the number of times a user requested a web page that belongs 
to the specified web category. Frequency interest is therefore defined by the ratio of 
number of 𝑘𝑡ℎ web page of 𝑚𝑡ℎ category for the 𝑗𝑡ℎ user in 𝑖𝑡ℎ session to the total 
number of web pages requested by 𝑗𝑡ℎ user in 𝑖𝑡ℎ session. Frequency of a user visit 
to a web page category provides an in-depth insight into interest in the category. 

Chitraa and Thanamani (2013) argue that frequency of a user visit to a specific 

web page signifies the interestingness of the requested web page. Unlike 

frequency of visit to the 𝑘𝑡ℎ web page, as defined in equation (4), frequency 

of visit to a web page category measures the interestingness of a web page 

category to a specific user. The goal is to ensure that website 

owners/developers understand the type of information a user is likely to be 

interested in at any given time. This also aids in understanding the 

interestingness of a web category based on requested web pages that relate 

to the category of interest.  
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As shown in Figure 4.4, the number of visits to the home page is high, but it 

is difficult to determine whether a user is really interested in this category 

without finding the total amount of time spent on this category. Therefore, the 

length of visit to a web page category is key to determining the interestingness 

of a web page category and thus eliminating any web pages that seem 

irrelevant to a user. 

Interest category based on length of user visit: The amount of time the 𝑗𝑡ℎ 

user spends on 𝑚𝑡ℎ category of a web page reflects its interestingness to a 

user. The duration of each 𝑘𝑡ℎ web page visit by the 𝑗𝑡ℎ user is accumulated 

for its respective 𝑚𝑡ℎ category, which is presented as 𝑇𝑚𝑖

𝑗 . The interestingness 

of 𝑚𝑡ℎ category based on time is defined as the ratio of visit duration to the 

category by the 𝑗𝑡ℎ user in 𝑖𝑡ℎ session, as defined in equation (9): 

 

𝐿𝑚𝑖

𝑗
 =  

∑ 𝑇𝑚𝑖

𝑗
 

𝐾𝐽

𝑗=1   
 

𝑇
𝑖
𝑗

 
    (9) 

where 

𝐿𝑚𝑖

𝑗 = length of time spent by the 𝑗𝑡ℎ  user on the  𝑚𝑡ℎ web page category. 
𝑇𝑚𝑖

𝑗
= visit duration to 𝑚𝑡ℎ category by the 𝑗𝑡ℎ user in 𝑖𝑡ℎ session. 

𝑇𝑖
𝑗 = the total time spent by the 𝑗𝑡ℎ user in 𝑖𝑡ℎ session.  

  

Defining the interest category of a web page based on length of user visit aids 

in describing the relationship between the category of a web page and users 

who visit such categories within a specified time. Length of access time for 

each web page is accumulated in its category, as shown in Table 6. This is a 

representation of the visit duration for the 𝑗𝑡ℎ user in the corresponding 

category.  
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Table 6: Length of visit to a web page category 

Web Page Categories 

URL _ID 
1 20 53 54 55 56 

Computers & 
Accessories   17.61    
Home 0.98      
Office Products    26.76   
Phones & Accessories     33.81  

Shoes      23.75 

Sports  10.52     
 

Defining user interest category: discussion of critical aspects: The 

proposed research’s viewpoint is that user interest level is better defined by 

interest category than the requested web pages. The advantages of this 

approach to learning user interests include: (1) ability to understand changes 

in user interests and allowing website owners/developers to manage such 

changes, thus address noisiness in a user profile; (2) justifying the proposed 

research’s viewpoint that the number of times a user visits a web page does 

not reflect its interestingness. This also addresses the impact of duration of a 

user visit to a web page, where a user spends more time on a web page, but 

fails to find information of interest. Therefore, it is important to consider how 

long a user spends on a given web page category rather than on a specific 

web page. 

Figure 4.5 presents a comparison between frequency and length of visit to 

𝑚𝑡ℎ category of a web page. It can be observed that where only one measure 

is considered in determining how useful a web page category is to a user, the 

outcome can be misleading in web page classification. Classification of web 

pages without learning their interestingness leads to noisiness in a user 

profile. 
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Figure 4.5: Frequency versus visit to a web page category 

Figure 4.5: Frequency versus visit to a web page category. The home page shows 
minimal length of time compared to the sports category. In contrast, the frequency of 
visit to home page shown in Figure 4.4 are higher than the sports category. Therefore, 
both frequency and time of visit to a web page category are key in determining the 
interestingness of a web page category. 

The web page category weighting denoted as 𝑊𝑚𝑖

𝑗  is defined based on the 

frequency and length of a user visit to a web page category, as shown in 

equation (10). The objective of defining the interest category weighting is to 

understand the interestingness 𝑚𝑡ℎ category in line with a user’s change of 

interests.  

𝑊𝑚𝑖

𝑗
 =  𝐹𝑟𝑒𝑞𝑚𝑖

𝑗  * 𝐿𝑚𝑖

𝑗    (10) 

where, 𝑊𝑚𝑖

𝑗  is the weight of 𝑚𝑡ℎ category in the 𝑖𝑡ℎ session for the 𝑗𝑡ℎ user,  

In summary, the user interest category based on frequency and length of time 

plays a critical role in finding useful information otherwise considered as noise, 

where user interest cannot be directly determined. The interest category of a 

web page reflects its interestingness to a user. It also signifies how 

identification of noise web data can be influenced by the interest category of 

a web page. Some information can be seasonal or recur at a given time; hence 

interest will also vary over time. Since the interest level changes dynamically, 

a user profile is expected to adjust to changes, as well as to ensure any new 

web page added is not eliminated as noise but also considered. 
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4.3. Addressing Dynamic Change in User Interests  
The existing research acknowledges that user interests tend to change over 

a period of time (Ko and Jiamthapthaksin, 2014; Jiang and Sha, 2015). For 

example, the entire set of user interests can include interests that are relevant 

to a wedding and thereafter it may change to shopping for a new baby. 

Therefore, a user profile will contain web pages visited by a user within a given 

period of time. Thus, if the user’s interests were to change over time, the 

profile would reflect these changes by adding web pages to categories 

recently viewed and removing web pages from categories no longer found 

interesting. It is important to note that user interests in web data can change 

quickly, while others can change gradually over time. Therefore, learning 

changes in user interest aids in understanding how interesting the requested 

web pages are to a user. The following are some of the critical aspects 

examined in this section: 

 Last date of visit to a web page category: even though a user may 

frequently request web pages from a specific category, how long is it 

since the last request? 

 Frequency of change in user interest: it is important to understand how 

often user interests change over time. Therefore, defining change 

frequency for requested web page aids in looking into factors that 

trigger such changes. For example, if the requested information is 

seasonal. 

The proposed research aims to explore the recency measure, which is 

considered critical to determining the interestingness of web data. Recency in 

web data mining is the time within which information on the web is considered 

relevant to the needs/interests of a user (Dong et al., 2010; Aly et al., 2013; 

Chakraborty et al., 2017). In other words, recency is measured by the 

‘freshness’ of web data i.e., the time information on the web is interestingness 

to a specific user which is defined by how recent was a user visit to the web 

page. 
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4.3.1. Interestingness of a Web Page Based on Recency of Visit  

In the previous sections of this chapter, frequency of user visit to a website 

has been broadly discussed. Learning how frequently a user visits a web page 

allows website owners/developers to understand user interest level in order to 

ensure only relevant information is suggested. It is equally important to 

examine how long it is since a user requested a specific page. The aim of this 

is to ascertain whether the interest of a user in such web page or its category 

has changed. The proposed research considers the recency measure to 

reveal how recently a web page was visited as compared to how frequently it 

is requested by a user.  

Recency is defined as the time period since the last user visit to a web page 

(Chakraborty et al., 2017). The best way to capture the interestingness of a 

web page based on its recency is by determining the number of days since 

the last occurrence of 𝑘𝑡ℎ web page in the 𝑗𝑡ℎ user profile. For example, if x 

number of days have passed since the last time a user visited the ‘home and 

living’ web page category, then it might indicate that though the user was 

interested before, this may not be the case any longer; the user might have 

already acquired what he/she was looking for. Instead of setting a fixed time 

that determines the interestingness of a web page in a user profile, learning 

interestingness of a web page gradually over time is considered ideal. For 

instance, a user may have recently visited a specific category of a web page, 

but the frequency and time spent on the category is gradually decreasing. 

Even though website owners/developers will continue suggesting relevant 

information, the time will come when a user will no longer be interested, hence 

such information becomes noise.  

The proposed research considers the interest forgetting function to determine 

the rate at which user interests change over time. Hawalah and Fasli (2015) 

and Wu et al. (2015) applied the interest forgetting function to remove data 

that is outdated from a user profile. A gradual forgetting function determines 

the weight of the web page category based on the time of its occurrence. The 

weight is dynamically adjusted each time a user visits the associated web 

page; thus the interestingness of a web page category is measured based on 

its appearance in a user profile over time. The concept behind this function is 
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that interestingness of web data diminishes gradually with time. Therefore, the 

most recent web page visits in a user profile are considered more interesting 

than the old ones (Schwab et al., 2001; Huang and Yu, 2014).  

To ensure gradual changes in user interests are managed, a half-life of 

interest, denoted as ℎ𝑙 , is defined. The half-life span of interest is the rate at 

which user interests change over a period of time (Suksawatchon et al., 2015; 

Tavakolian et al., 2012). The half-life span is key in learning the 

interestingness of web pages in a user profile over time, taking into account 

user interests as they change; it defines the average rate at which a web page 

within a user profile becomes noise. Existing research argues that user 

interest reduces to half in a week (Gu et al., 2014; Sugiyama et al., 2004). 

However, it is important to define a half-life value that reflects the significant 

change in user interests. In the proposed research, the recency measure 

based on time of visit is determined using equation (11). 

𝑅𝑒𝑐𝑚
𝑗

=
𝑙𝑜𝑔2

ℎ𝑙
 (𝑡𝑑0  −  𝑡𝑑𝑛)     (11)  

where 𝑅𝑒𝑐𝑚
𝑗  = the recency adjustment weight of 𝑚𝑡ℎ category for the 𝑗𝑡ℎ user, 𝑡𝑑0 = 

the current date and 𝑡𝑑𝑛 = the date of the last occurrence of  𝑘𝑡ℎ web page in the 𝑗𝑡ℎ 

user profile, ℎ𝑙 user is the half-life (in days). 

 

4.3.2. Dynamic Threshold Values  

The objective of using the support threshold is to find a single point, which is 

used to determine the interestingness of a web page. Existing research works 

in the web usage mining process are based on either the standard/uniform 

support threshold or the dynamic support threshold (Ou et al., 2008). The 

standard/uniform support threshold is static and thus does not take into 

consideration a number of key aspects, such as change of user interests 

during classification of web page based on user interest levels. User interest 

information collected explicitly usually relies on a standard threshold value to 

measure the level of user interest in requested web pages. A number of critical 

issues arise when using standard threshold support. For instance, Hawalah 

and Fasli (2015) and Kavitha and Kalpana (2017) argue that the threshold 

support value remains the same and does not learn change of user interests; 
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where a low threshold value is assigned, it may lead to a high level of noisy 

web pages identified as useful and vice-versa. 

To overcome challenges associated with uniform threshold, a dynamic 

threshold support is considered in order to ensure changes in user interests 

are adequately addressed. Ying et al. (2012) and Wei et al. (2014) observe 

that the dynamic threshold support value is mainly used to determine a range 

of user activities in relation to various measures used to learn user interests, 

for example time and frequency of a user visit to a web page. Based on these 

measures, it is possible to determine the interestingness of web data in 

relation to varying user interests when the threshold value is dynamically 

defined. Dynamic threshold support plays a critical role in ensuring dynamic 

changes of user interests are considered during the identification and 

subsequent removal of noise in web data. Instead of setting a standard 

threshold value based on the weight of a web page, the proposed research 

makes use of dynamic threshold value. Hawalah and Fasli (2014) proposed a 

mechanism to calculate a threshold value that reflects changes in users’ 

browsing behaviour; their mechanism is based on frequency of user interest 

in a given web page category. The proposed research considers a similar 

approach to Hawalah and Fasli, but instead of using frequency, interest 

category weight, which incorporates both frequency and length of visit to a 

web page category, is used. This is to ensure the interestingness of web 

pages in a user profile reflect the time and number of visits.  Recency 

adjustment measure is considered mainly to learn changes in user interests. 

Subsequently, the process of identifying noise web data is managed taking 

into account changes in user interests. The following key issues are 

considered:  

 A web user profile contains all web pages that are perceived as 

interesting to a given user, but whose degree of interest varies. 

 Generally, useful information on the web is assigned high weight, unlike 

noise data, which is assigned low weight. 
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 The threshold support to determine the interestingness of a web page 

is defined based on the interest weight of a web page category 

(equation 9), as well as the recency adjustment weight (equation 10). 

The recency adjustment measure is first defined, as in equation (12), then the 

standard deviation (α) of  𝑘𝑡ℎ web page for the  𝑗𝑡ℎ user. 

α = √ 
1

𝑁
∑ (𝑊𝑚𝑖

𝑗
− 𝑅𝑒𝑐𝑚

𝑗
)

𝐾

𝑖=1

2

    (12) 

where α is the standard deviation, K is the total number of web pages in  ith 

user session, 𝑊𝑚𝑖

𝑗  is the interest weight of 𝑚𝑡ℎ category in  𝑖𝑡ℎ session for the 

 𝑗𝑡ℎ user, and 𝑅𝑒𝑐𝑚
𝑗  is the recency adjustment weight of 𝑚𝑡ℎ category for the 

𝑗𝑡ℎ user. The threshold value is defined using equation (13). 

𝑇ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 =  𝛼 + ( 
∑ 𝑊𝑚𝑖

𝑗
𝐾

𝑖=1

𝐾
 )   (13) 

where ∑ 𝑊𝑚𝑖

𝑗
𝐾

𝑖=1
 is the interest weight of 𝑚𝑡ℎ category in  𝑖𝑡ℎ session for the 

 𝑗𝑡ℎ user 

 

The dynamic threshold value not only possesses the ability to manage a 

change of user interests, but also ensures useful information is not lost as a 

result of uniform threshold value. In view of this, dynamic threshold support is 

key to determining user interest level in a visited web page prior to noise data 

elimination. This is due to the fact that user interests evolve over a given 

period of time. Therefore, in order to determine a dynamic support threshold 

value, the evolving nature of web data, as well as user interest, should be 

considered.  

Some critical issues justify considering dynamic threshold measure in the 

noise web data reduction process. (1) A web page with lower frequency and 

time of visit will be considered irrelevant to a given user profile. Where a 

threshold value is set too high, interest pages with lower threshold values will 

not be found. On the other hand, where the threshold value is set low, a lot of 

irrelevant web pages will be considered useful. (2) Interestingness of 
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information on the web varies. Seasonal web data tends to attract more 

attention than general information that is accessed on a daily basis. For 

example, the 2018 Football World Cup tournament will attract more traffic than 

the ongoing Brexit news. It is therefore important to understand the nature of 

web data and the interest a user expresses. This is because the threshold 

value set for these two types of information will vary.  

In summary, dynamic threshold values in web data classification play a critical 

role in ensuring dynamic changes in user interests are considered during the 

noise web data reduction process. Where a standard threshold value is 

applied in the web usage mining process, it will be difficult to obtain results 

that conform to a user change in interests. For example, a high threshold 

support value will yield less useful information and a low threshold support 

value will yield too many results. Dynamic threshold values are defined by 

learning previous user interest in a requested web page. As user interests 

change over time, the dynamic values also change. Second, it is important to 

acknowledge that noisy data can be potentially useful in future. User interests 

change and therefore so does the interestingness of web data. Using static 

thresholds will impact the quality of information available to a user given the 

fact that current interest data can be noise in future and vice-versa. In the 

proposed research, dynamic threshold values are used in the following 

scenarios: (1) implicit learning of user interests, i.e. when users do not directly 

reflect the interestingness of a web page, but instead their activities on the 

web determine the importance of a web page; (2) during classification of a 

web page, it is subject to change of interest. 

4.4. Learning Noise Web Data by Classification 

Classification is one of the key processes in web usage mining and it has a 

significant impact on addressing problems with noise web data (Nanda et al., 

2014). Classification takes an object and assigns a class label to it based on 

its attributes. Traditionally, classification aids in the creation of a user profile 

based on the user’s level of interest in web pages requested. Tang et al. 

(2010) argue that user profiling is usually seen as a data classification problem 

because the interests of a user with regard to a given web page change over 
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time. The objective of carrying out classification is to determine the target class 

of each record in a web log file based on varying user interests. Existing 

researches have proposed various algorithms to address data classification 

problems. For example, Santra and Jayasudha (2012) proposed an algorithm 

to find interested and not interested users.  

Web page classification can be divided into binary or multiclass classification 

(Qi and Davison, 2009; Waegeman et al., 2011). Binary classification defines 

data into two classes; based on user interest level, a web page can either be 

noise or useful. Multiple classification problems arise when data does not 

simply belong to one particular class, however. For example, a web page can 

be useful, noise or useful and noise. The proposed research recognises that 

determining the interestingness of a web page as either interest or noise 

opens up some critical issues in the web data reduction process. Given that 

user interest varies and the web evolves, there is a need to learn a web page 

taking into account user interest prior to determining its classification. When 

addressing classification problems, such as incorrect classification of web 

pages due to varying user interests, a set of web pages and a class label are 

provided. For example, if the weight of a web page requested by a user meets 

a specified threshold, it will be considered interesting and otherwise it is noise. 

The class label ‘interesting’ and ‘noise’ are specified to allow for the 

classification of web pages.  

Defining class labels: The objective of defining a class is to learn whether 

each page visit meets the set criteria. For example, 𝑘𝑡ℎ web page in the 𝑗𝑡ℎ 

user profile is assigned to a class based on the level of user interest. A class 

is a label whose value can be described based on varying levels of user 

interest in visited web pages. For example, each page visit by a user can be 

of interest, potential noise or noise. For each of the weighted web pages, a 

classifier is defined that reflects the interest levels of a user in relation to the 

corresponding web pages, which is later used for the classification process. 

Even though all web pages in a user profile can be considered useful with 

varying interest levels, not all are of interest. Moreover, the user is not directly 

involved in determining the interestingness of a web page. The proposed 

research therefore considers the measures discussed in this chapter, for 
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example time and frequency of page visit, user visit depth and frequency of a 

web page category, to learn user interest levels. In this thesis, three classes 

are defined: interest, potential noise and noise data. Once classes have been 

defined, web pages are assigned to a class based on user interest level: 

Interest Class: Web pages whose interest level meets the threshold value are 

assigned to the interest class. In order to ensure the interestingness of a web 

page reflects the user interest, the threshold value is dynamically defined so 

as to avoid low or high threshold value, as in the case of standard or uniform 

threshold values. 

Potential Noise Class: As the web evolves, new information emerges that a 

user is likely to not have visited. With no interestingness identified, such web 

pages will be identified as noise and subsequently eliminated. In order to avoid 

this, a potential noise class is defined that will consider the interest category 

of a web page to learn its interestingness. 

Noise Class: Noise web pages are determined by the interestingness of a web 

page taking into account all interest measures defined in this chapter; for 

example, duration and frequency of user visits to a web page. Given that the 

interests of a user change, what is noise today can be useful a different time, 

and for this reason dynamic threshold values protect against loss of useful 

information, as well as ensuring minimise noise levels.  

Consider a class label 𝐶𝐿= (𝑐𝑙1, 𝑐𝑙2, … 𝑐𝑙𝑛, … 𝑐𝑙𝑁) where 𝑁 is the maximum 

number of predefined classes. For illustrative purposes, the following classes 

are considered: 𝑐𝑙1 = interest class, 𝑐𝑙2 = potential noise class and 𝑐𝑙3 = noise 

class.  
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In summary, the proposed research identifies and classifies a web page based 

on time, frequency and depth of a user visit to this web page. If the interest 

level cannot be determined for a specific web page, web page category 

interest is used to determine whether a user has previously shown interest in 

the related category. The holistic approach to learning noise in web data 

taking into account all specified measures is critical to finding useful 

information that is specific to a user. 

4.5. Noise Web Data Learning: its Significance to Web Usage 
Mining 

The noise web data learning approach identifies different types of web data 

and determines their interestingness to a user by taking into account a number 

of measures, i.e. time and frequency, depth of a user visit to a web page and 

interest category of a web page prior to elimination. Unlike existing research 

works where noise in web data is identified and eliminated based on the 

relationship with the main content, the proposed approach considers a web 

user a key character in determining the interestingness of web data. The 

Algorithm 4: Learn noise web data 
Input:  Weighted urlk for the 𝑗𝑡ℎ user 
Output: Class label based on level of user interest 

1. Define the 𝑗𝑡ℎ user profile 
2. for each 𝑘𝑡ℎ web page in jth user profile do 
3.      Determine the weight of 𝑘𝑡ℎ web page using eq.5 
4.    if urlkj

weight > threshold set then 
5.       assign to 𝑐𝑙1 
6.      else 
7.          assign to 𝑐𝑙2 
8.   end if 
9. End for 
10. for 𝑐𝑙2  do 
11.     Create a simple page link to the 𝑗𝑡ℎ user profile  
12.      Determine interest category using Eq.10 
13.       Determine interestingness of 𝑘𝑡ℎ web page using Eq.11 
14.       if Freqm

j
 < threshold set then 

15.     assign to 𝑐𝑙3 
16.    else 
17.     update 𝑐𝑙1 
18.    End else 
19.   End If 
20.  End for 
21. End 
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proposed research argues that the importance of web data is mainly 

dependent on what is interesting to a user at a given period of time. Therefore, 

web data can be irrelevant or noisy if it does not satisfy the interests of a user. 

A user profile that reflects the interests of a user subject to time is one of the 

key aspects that can significantly improve elimination of noise in web data with 

minimal loss of useful information. User interests evolve and so does web 

data, therefore, the evolution of a user profile and its adaptation to emerging 

data sources and associated web data reflects how user interests change over 

time (Mezghani et al., 2014). In order to ensure the user profile reflects 

changes in user interests, it is important to understand the interestingness of 

web data taking into account key measures, such as frequency and depth of 

a user visit to a web page.  

Learning noise in web data also reflects the following critical aspects 

discussed above in this thesis: 

1. Weighted web pages based on time and frequency of page visit – 

weighted 𝑘𝑡ℎ web pages are based on dynamic user session 

identification, which not only allows for dynamism in user interests, but 

also ensures all web pages visited by a user are considered. 

2. Web page category interest – the proposed research mainly considers 

this approach to minimise the loss of useful information where the 

interests of a user with regard to a specific web page cannot be defined. 

3. Dynamic threshold value – user interest change as web data evolves; 

where a uniform threshold value is set, it is difficult to determine the 

interestingness of a web page. Therefore, with dynamic threshold 

support, classification of web pages will vary as user interest change, 

thus minimising the loss of useful information, especially when 

threshold values are either set high or low. 

4.6. Chapter Summary 

In this chapter, a number of machine learning algorithms are proposed to 

address problems with noise in web data by learning user interests prior to 

elimination. One of the objectives the proposed research examines is how 

change in user interests influences the interestingness of web data. The 
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approach to learning noise web data proposed in this thesis is based on the 

fact that the interestingness of web data is influenced by the user. This is to 

ensure noise levels in web data are minimised without any loss of useful 

information. The proposed algorithms will contribute to addressing the 

problems with noise web data identified in chapter 1 of this thesis. Learning 

user interests and how changes in user interests influence the interestingness 

of web data helps to overcome challenges such as incorrect classification of 

web data, hence noisiness.   

It is important to note that each proposed algorithm contributes towards the 

main research objective, i.e. learning noise in web data prior to elimination. 

For example:  

1. Duration of page visit based on dynamic user session identification: 

ensures all web pages requested by a user are considered when 

determining user interest level, thus minimising loss of useful 

information. 

2. Depth of a user visit: identifies web pages that lead a user to interesting 

pages, i.e. eliminates auxiliary pages from influencing interestingness 

of a web page. This is due to the fact that the time and frequency of a 

user visit to a web page are measures widely used to determine the 

level of user interest. 

3. Interest category of a web page: the proposed research uses web page 

categories to learn the interests of a user and their dynamic change of 

web data. Web page category provides a clear picture of where a user 

passes through to find information of interest. As user interests change, 

the web evolves and new information emerges. Therefore, determining 

user interest based on web page category opens up the opportunity to 

identify useful information that would otherwise be classed as noise. 

This chapter attempts to answer the second research question outlined in 

chapter 1:  

What are the key indicators of learning user interests and how interests 
of a user could influence the identification of noise web data? 
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Findings: Where the interests of a user change, noise in web data also 

changes. Where user interests are seasonal, interestingness of available 

information varies as well. In essence, the web should be able to cope with 

dynamic changes in a user subject to time of interest. This, therefore, 

demonstrates that it is difficult to rely on existing noise web data patterns that 

are determined based on previous user activities. In order to identify and 

understand how dynamic changes in user interests impact the identification of 

noise in web data, the depth of user visit, as well as the use of dynamic 

threshold value, plays a critical role. This is in addition to measures such as 

time and frequency of user visit that are widely used by current research to 

learn the interestingness of web data.  

In the following chapter, an experimental design setup is presented to validate 

the proposed algorithms in relation to the performance of the existing machine 

learning tools. A number of different experimental directions are introduced in 

order to evaluate the performance of the proposed algorithms compared to 

existing tools used to identify and eliminate noise web data. 
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Chapter 5:  Experimental Design Setup 
Chapter one this thesis defines problems with noise web data, explore 

contribution made by current research to address such problems and more 

importantly the gap in research which the proposed research aims to address. 

A critical analysis and evaluation of current and relevant research justify a 

need to propose a new approach that will attempt to bridge the gap. A user 

profiling approach introduced in chapter 3 identifies key aspects that 

contribute towards learning user interests and their changes over time, thus 

the ability to effectively learn noise web data. In order to ensure noise web 

data is eliminated with consideration to the user’s change of interests, a 

number of machine learning algorithms are proposed in chapter 4. The 

proposed algorithms take into account key indicators such as duration, 

frequency and depth of user visit to measure interestingness of a web data in 

relation to user interests. In order to find out if the proposed research 

contribute to addressing the defined research gap, it is important to validate 

the performance of the proposed algorithms against the existing tools. 

Performance is measured in terms of how well the proposed algorithms 

address problems with noise web data, for example, identification and 

classification of noise web data in relation to user needs and interests as they 

change over time. 

This chapter is organised into the following sections: Section 5.1 revisits the 

proposed research aims as well as the question this chapter attempts to 

answer. Section 5.2 provides a description of the dataset used in conducting 

experiments. Section 5.3 introduces a number of experiments based on the 

proposed research objectives, the algorithms as well as the experimental 

data. Section 5.4 summarises the chapter.  
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5.1. Introduction 

The proposed research is inspired by the gap in research defined after a 

crucial review and analysis of current research work that addresses problems 

with noise web data. Some of the key aspects the proposed research explore 

is ways in which existing research define and identify noise web data if user 

interest influences the process of identifying and eliminating noise web data. 

Even though existing research has made a significant contribution to 

addressing defined problems as discussed in chapter 1, a number of critical 

issues are still open to investigation. For instance, existing research proposes 

a number of machine learning tools to identify and eliminate noise web data, 

however, change of user interests over time prove to be critical towards 

interestingness of web data. Based on current literature, it is not clear how 

noise web data is currently addressed in relation to change o user interests. 

The proposed research seeks to find out how a change of user interests over 

a time influence the interestingness of web data. In essence, the viewpoint of 

this research is that the process of identifying and eliminating noise web data 

is dependent on the user’s change of interests and not the structure or layout 

of the website. Subsequently, the research question which this chapter aims 

to answer is, how learning noise web data could minimise the loss of 
useful information without affecting its quality and interestingness?  

A number of experiments are conducted in order to answer the above 

question. The key aspects discussed in this chapter are derived from the 

proposed algorithms. For example, (1) Demonstrate how page visit duration 

that considers time on the exit page impacts a user’s level of interest on a web 

page. (2) To present using real-life data how a dynamic change of user 

interests influence the interestingness of web data. (3) To evaluate the overall 

performance of noise web data learning approach against current tools used 

to address noise web data problems. 
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5.2. Experimental Data Preparation 
The main source of data used by the proposed research is anonymised web 

user access logs from a web server. Data extracted from web servers in form 

of web user logs is considered as the most suitable dataset used in the 

discovery of useful information based on user interests (Munka and Drlíka, 

2011; Adeniyi et al., 2016). The experiments are conducted using two 

datasets as shown in Appendix IV, each of the datasets is user access logs 

extracted from a web server. 

 

Dataset 1: User logs extracted web an e-commerce web server are used. The 

extracted web logs contain (User_ID, Page_ID Time_Stamp, Category,). The 

IP address which identifies a user has been anonymized and User_ID 

introduced in its place. The extracted logs cover a period of 90 days, the date 

range considered is reasonable enough to provide an insight into user 

interests as well as demonstrate any dynamic changes within the specified 

period. The proposed tool keeps track of what a user is interested in, the level 

of interest in relation to time, frequency and depth of visit, as well as change 

of interest within the specified period.  

 

Dataset 2:  The second dataset is an extract of web visitor interests available 

at Kaggle dataset store https://www.kaggle.com/uciml/identifying-interesting-

web-pages. Dataset 2 was extracted to generate a training and testing set. 

The training set is used to learn the proposed algorithms, which is then used 

to generate input to the proposed NWDL. The test set was retained as the 

validation data for testing, it was also used to evaluate the performance of 

proposed noise web data learning approach 

 

The proposed research aims to demonstrate in a more simplified way how the 

proposed algorithms are implemented using real-life web data. A dimensional 

data model shown in Figure 5.1 is considered for analysing raw web log data 

prior to using it to train the proposed algorithms. Moreover, it brings together 

data from different sources and creates a single and consistent user view, a 

sample dataset is shown in Appendix IV. Given the structure of the extracted 

web log, User, Page and Session Data are the main dimensional tables 

https://www.kaggle.com/uciml/identifying-interesting-web-pages
https://www.kaggle.com/uciml/identifying-interesting-web-pages
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considered in this research. User dimension simply identifies a unique user 

taking into account other attributes, such as browser and operating system. 

Page dimension describes the requested web page and the category the page 

belongs to. Session dimension defines the start and end of a user visit to a 

website, the time and day the user requested the page, the type of a visitor, 

i.e., new or returning. This dimension is critical given that it aids in learning 

user interest level on requested pages. The master table i.e., the measure of 

interest connects all dimensional tables. 

 

Figure 5.1: Database Model 

 

5.3. Experimental Setup  
Experiments conducted in this section are based on the dataset introduced in 

the previous section. In this section, a number of experiments are conducted 

which are based on the proposed algorithms defined in chapter 4. The 

objective is to determine if the proposed algorithms contribute to addressing 

problems with noise web data as defined and analysed in previous chapters. 

Some of the key aspects addressed in this chapter through a number of 

experiments include: 

 To demonstrate by using real-life the influence of user time on the exit 

page in defining interestingness of a web page. 
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 The effect of dynamic change of user interests towards the 

classification of web pages visited by a user. The classification process 

is based on a user’s level of interest thus defining web pages that are 

of user interest or noise.  

 Overall evaluation of noise web data learning approach based on user 

interest. 

The proposed algorithms are independent of a testing platform thus they can 

be implemented and test on any other platform as well as the dataset. 

However, for validation purposes RapidMiner studio and Orange are 

considered, this is open source machine learning platform which has been 

widely used by current research in data mining and knowledge discovery 

(Kasliwal and Katkar, 2015). They provide different machine learning 

algorithms which are used to solve data classification problems. 

In order to initialize and validate the performance of the proposed noise web 

data learning approach, the following steps are considered.  

Step 1: Parsing raw web user access logs – raw web log data is loaded 

into the SQL server after pre-processing.  

Step 2:  Attribute selection i.e. data attributes that are used to learn 

interestingness of web data based on user interest levels. Such 

attributes include a timestamp, page visit duration, URL_Category. 

Step 3:  We then execute our proposed algorithms to identify, 

determine the weights of visited web pages and learn user interest prior 

to the classification of a web page to associated class. 

Step 4:  Train and validate the proposed tool – the output is then 

evaluated against the input using various evaluation metrics. 

 

5.3.1. Interestingness of web page based on exit page user visit duration 

The aim of conducting this experiment is to demonstrate how user session 

identification process influence the interestingness of a web page. Two 

different user sessions are considered; user session defined by fixed time-out 

threshold of 30min and another with a dynamic time-out adjustment value of 
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which the time spent on the exit page is determined using missing value 

imputation technique as defined in equation (4). This experiment used web 

log data generated over 7 days, the choice of the specified time period to 

ensure that the results obtained reflect user interest over time considerable 

enough to learn their interest. 

Web log file
Create sessions 

(Default fixed time-
out threhold

Define page visit 
duration Page Weights

Web log file
Create user session
(dynamic time-out 

threshold value

Define page visit 
duration Page weights

Test Data Compare 
results

 

Figure 5.2: Page visit duration based on fixed vs dynamic time-out session 
identification 

 

Section 4.2.2 defines interestingness of a web page based on duration and 

frequency of a user visit to a web page. Therefore interest of a web page is 

defined by the ratio of the average page visit duration to the number of times 

a page was visited by the 𝑗𝑡ℎ user in 𝑖𝑡ℎ session. The average page visit 

duration consider time spent on exit page as defined in equation (5). Figure 
5.3 shows the significance of page weights where time spent on exit page is 

considered when determining the interestingness of a web page in   𝑖𝑡ℎ 

session for the 𝑗𝑡ℎ user. 
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Figure 5.3: Comparing page weight based on fixed vs dynamic time-out session 
identification. 

Discussion of Results 

The weighted web page based on fixed time-out and dynamic time-out 

threshold value user session identification are presented in Figure 5.3. The 

average page visit duration determined by fixed time-out ignores user’s 

varying time spent on a web page.  A user might spend more or less based 

on time of access, how familiar they are to the website, layout and structure 

of the website, etc. For example, a new user might take longer to find useful 

information on a web page while it might take a returning user less time to find 

a web of his/her interest. Therefore, where a user session and interestingness 

of a web page is determined based on a fixed time-out threshold value, the 

output is likely to impact the process of identifying and eliminating noise in 

web data. It is therefore important to generate a user session that reflects the 

actual time a user spends on a web page. This is because if user sessions 

are not dynamic enough to capture user interest levels, the usefulness of a 

web page present in a web user profile will be compromised.  

 

Unlike page weights determined by visit duration based on fixed time-out user 

sessions and frequency of visit, the exit page visit duration has some 

significant impact on interestingness of a web page. However, the proposed 

research argue that time and frequency measure alone cannot justify user 
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interest level on a web page. This research work further proposes learning 

interestingness of a web page based on the depth of a user visit to a web 

page, user interest category. The weight of a web page category which 

implements depth and user interest category signifies interestingness of a web 

page as defined in equation (10). It is important to understand how change of 

user interest influence interestingness of web data. The proposed research’s 

viewpoint is that as user interest change, the process of identifying and 

eliminating noise web data is also affected. If not managed well, useful 

information can easily be eliminated as well as noise data would be suggested 

to a user. In the next section, the impact of the dynamic change of user 

interests is discussed using a wide range of user access log data.  

5.3.2. Interestingness of Web Data Based On Dynamic Change of User 
Interest 

The objective of this experiment is to investigate whether change of user 

interest influence identification and subsequent elimination of noise web data. 

To illustrate the significance of user’s change of interest in noise web data 

learning process, the proposed research first defines a time period over which 

interest of a user on visited web page is learnt. The experiment conducted 

considered a 90 days’ period. This is to ensure that there is enough gap for 

learning any change of user interest over the specified period. A user profile 

will contain web pages visited by a user within the specified period. If the user 

interests were to change over time, the weight of a web page category will be 

adjusted accordingly. This process takes into account the length of time 

interestingness of a web page is considered for the learning process.  

 

A number of preliminary experiments were conducted to demonstrate how 

each measure, i.e., frequency and length of a user visit to a web page category 

performed on this type of data. The 90 days extracted web user access logs 

data was divided into two parts. The first-month data was used to build a user 

profile and subsequently learn their interest on visited web pages. The second 

part of the data was used to learn changes to user interests in order to define 

the interestingness of visited web pages prior to noise elimination.  
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The experiment is based on the recency adjustment measure defined by 

equation (11). Recency adjustment measure which is based on a forgetting 

function examines how a change of user interest influence interestingness of 

web pages in a user profile. The function does not just eliminate web pages 

as the user stops visiting the page but learns the user’s interest change. 

Changes to user interest affect the weighting of a web page thus its 

classification status, i.e., either interesting or noise. Therefore, it is important 

to ensure a more dynamic and flexible approach to determine the 

interestingness of the page in line with the change of user interests. The goal 

is to ensure that the process of identifying and eliminating noise in web data 

is dynamic enough to reflect the change of user interest.  

 

Figure 5.4: Dynamic change of user interest over 90 days’ period 

 

Discussion of Results  

Figure 5.4, shows varying user interest on web page categories visited over 

90 days period. It can be observed that the interestingness of a web page 

varies with time, for example, user interests in office products declined in a 

week from week 48- 52 but again increased after week 1. Subsequently, 

interest in home and living category decreased after week 52 with no visits for 

the next five weeks. When user interest level on a web page category is 

gradually decreasing, it signifies that a user is no longer interested in the 

category hence its noisiness. Therefore, its classification will be influenced by 
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the threshold value Equation (13) as user interests level change. On the other 

hand, the weight of web page category a user has recently shown interest will 

gradually increase, ultimately the classification will also be affected. The 

advantage of using this measure is that interestingness of a web page is not 

only determined by the duration and frequency of a visit to a web page but 

also over a time interests of a user might change. Without considering the 

dynamic change of user interest, the amount of useful information otherwise 

eliminated a noise is likely to be high. Therefore, the choice of using dynamic 

measures to learn noise web data improves the quality of information in a web 

user profile. As a result, the proposed measures supports the claim that noise 

web data learning approach is user-centric. This takes into account a number 

of factors which outperforms existing machine learning tools applied in the 

noise web data reduction process.  

Dynamic threshold value: In chapter four of this thesis, the proposed 

research explores the impact of defining a threshold value that reflects the 

change of user interests. It is well recognised that interestingness of web page 

is dependent interest level of a user, which implies that the selection of a 

threshold value is a critical aspect in the process. For instance, if the threshold 

value is set low, then the output is likely to contain high noise levels. On the 

other hand, if the threshold is set high, then the chance of eliminating useful 

information is equally high. The dynamic threshold value considered by the 

proposed research take into account the change of user interest over time as 

defined in equation (13) 

The results shown in figures 5.5a and 5.5b are a classification of web pages 

which reflect the change of user interests. The process considers a dynamic 

threshold value which is determined in accordance with the interestingness of 

a web page over a period of time. For example, results shown in figure 5.5a 

are based on user visits within a week, we observe that the visited web pages 

are 43% interest, 34% potential noise and 21% noise. In chapter four, the 

proposed research acknowledges the existing research’s viewpoint that user 

interest reduces to half in a week. However, it is important to consider such 

changes over a period of time and this experiment consider interestingness of 

a web page over 7 weeks. 
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Figure 5.5a: User interest level after one week 

 

The dynamic threshold value is determined based on the recency adjustment 

measure. As time since the last page visit increase, the interestingness of a 

web page decrease thus becoming noise to a specific user. Figure 5.5b the 

experimental results where user interest on visited web page is examined for 

7 weeks, it can be observed that the 78% increase in noise class is due to the 

time since a user expressed interest on web pages previously visited. 

 

Figure 5.5b: User interest level after 7 weeks 
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In summary, the experiment reveals that as user interest change over time, 

interestingness of a web page is affected thus its classification. In essence, 

the level of nosiness in web data will be better managed if a change of user 

interest over time is considered prior to elimination.  The next section present 

a noise web data learning approach taking into account the dynamic change 

of user interests discussed above. The performance of the proposed NWDL 

approach is measured by how well it defines and classify visited web pages 

in line with the level of interest.  

5.3.3. The overall performance of the proposed noise web data learning 
approach 

 

This experiment is based on noise web data learning approach which consists 

of a number of machine learning approach defined in the previous chapter. 

The previous sections of this chapter demonstrate the influence of various 

measures that are based on proposed algorithms. Further, this section 

focuses on the overall performance of the proposed noise web data learning 

approach, the objective is to examine its contribution towards addressing 

problems with noise web data. More particularly problems that lead to 

misclassification of web pages visited by a user hence noisiness. An approach 

to learning noise web data is based on web page classification as discussed 

in chapter 4, section 4.4. The experimental procedure is defined as follows: 

Step 1:  A classifier is built which describes a predefined class label. This is 

also referred to as a training phase where the proposed algorithms define the 

classifier based on various user interest measures 

Step 2: Learn the user interest level.  This is the learning process where the 

training data is examined by the proposed measures. This process includes 

(1) Depth of visit which identifies web pages that are of user interest. (2) User 

interest category which defines the level of user interest on categories 

associated with requested pages (3) Recency adjustment measure which 

learns dynamic change of user interests and adjusts page weights 

accordingly. (4) The dynamic threshold value which assigns a threshold value 

that reflects the interestingness of a web page.  



97 
 

Step 3: Identify to which of the defined class label a weighted web page 

belongs to. The dynamic threshold value is applied in relation to the 

interestingness of a web page.   

Step 4: Validate the performance of proposed noise web data learning 

approach. The test data is used to evaluate how accurate the proposed 

approach is in terms of assigning web pages to a predefined class. 

Classification accuracy (CA) is considered a success when test data is 

correctly classified. Classification accuracy in this experiment is measured 

using a confusion matrix.  

The above steps are presented in a process flow diagram shown in Figure 5.6 

 

Figure 5.6:  Noise Web Data Learning Process Flow Diagram 

 

Experimental Results 

The previous sections of this chapter present the performance of the proposed 

algorithms as well as their contributions to addressing defined problems. For 

example, the influence of the dynamic threshold value to the classification of 

web pages in a user profile prior to noise elimination process. In this section, 

the focus is to evaluate how noise web data learning approach perform on the 

test data provided. In this experiment, the overall performance of the proposed 
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NWDL which integrates the proposed algorithms is presented. The proposed 

NWDL demonstrates how dynamic change in user interest affects the 

elimination of noise in a web user profile. As shown in Figure 5.7, dynamic 

changes in user interests to a specific web page category are obtained using 

equation 3. We observe that the weight of a web page category which takes 

into account measures such as recency is considered a key to determining 

interestingness of a web page. Therefore, the classification accuracy is 

perceived dynamic and user-centric in the sense that the level of a user 

interest a web page affects its classification.  
 

 

Figure 5.7a: Overall Performance of NWDL 

  

Figure 5.7a: Performance Evaluation - NWDL using Confusion Matrix 
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The results shown in figures 5.7a and 5.7b are based on user interest 

indicators explored in chapter 4 of this thesis. These include; duration, 

frequency and interest weight based on a web page category. Page visit 

duration presented in this thesis considers exit page which current research 

exclude in learning user interests. Moreover, this chapter demonstrates the 

significance of the exit page to the learning process and subsequent noise 

web data elimination process. It can be observed that the classification 

accuracy of NWDL is 60%. The potential noise class is introduced to learn 

interestingness of a web page considered noise, mainly due to use of a fixed 

threshold value in web page classification and lack of previous user visit to 

define interestingness of a web page. Therefore, the classification of the web 

page as interest and noise is better presented by learning noisiness using a 

potential class prior to determining if it is useful to a user or noise. The 

proposed research points out that addressing problems with noise web data 

in line with the user needs and interests improves web usage mining process. 

Furthermore, the process of NWDL is aimed at reducing noise levels in a user 

profile but also to minimise the loss of useful information otherwise considered 

as noise. To validate the results presented in this chapter, an evaluation of the 

proposed NWDL against current and relevant tools is presented in the next 

chapter.  
 

5.4. Chapter Summary 

This chapter presents a number of experiments that are conducted for the 

purposes of demonstrating how the proposed algorithms contribute to the 

defined research problem. The experimental results show a significant impact 

on finding useful information from the web when user interests are considered. 

One of the key aspects the proposed research consider critical is the dynamic 

change of user interests, the interest of a user on visited web pages is bound 

to change, but the process of managing such changes is challenging. The 

proposed algorithms through experiments conducted justify the need to 

consider identification and elimination of noise web data as a user-centric 

approach because the importance of web data is better defined when user 

interests are considered. 
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Chapter 6: Evaluating Performance of Proposed 
NWDL  
 

Chapter five introduces a number of experiments to examine the performance 

of the proposed algorithm on the test data provided. However, it is equally 

important to find out how the proposed noise web data learning approach 

perform against existing tools applied in noise web data reduction process as 

critically evaluated in the literature. This chapter demonstrates the overall 

performance of noise web data learning approach with regard to the 

identification of noise web data as compared to existing tools. The evaluation 

process in this thesis involves testing the proposed algorithms using test data, 

this is to simulate the performance of proposed algorithms using a dataset that 

is not part of the training data. The aim of this process is to demonstrate that 

the proposed noise web data learning approach produces better results than 

existing tools. The outcome aims to respond to the research objectives 

defined in chapter one of the thesis, how can learning noise web data better 
address problems with the noisy web in comparison to contributions 
made by the existing research?  
 

6.1. Introduction 
 

Evaluating the performance of a machine learning algorithm is a fundamental 

aspect in examining how efficient the tool performance in addressing a defined 

problem (Amancio et al., 2011). Moreover, the evaluation process aid in 

understanding the how various measures incorporated within the proposed 

measure contribute to the problem domain, as well as refining parameters in 

the iterative process of learning and selecting most appropriate tool over the 

available options. Evaluation measures discussed in the previous chapter 

plays a critical role in comparing the performance  used to learn a given 

dataset (Hossin M and Sulaiman M.N, 2015). Therefore, a selection of suitable 

evaluation metrics in relation to the defined problem is key to evaluating the 

performance of the proposed research work.   
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To ascertain if learning noise web data could improve web usage mining 

process without affecting the quality of user interest information, the following 

directions are considered during the evaluation process. 

1. The first experimental consideration is an assumption that well-known 

analytics tools use machine learning tools to learn user interests in 

order to ensure only useful information is suggested to users. This 

direction is referred to as a black-box approach 

2. Baseline model: First, a number of existing tools are trained using the 

same dataset. The objective is to find the best performance tool under 

the same conditions, which will be used to compare the performance 

of the proposed approach.   

3. Finally, the performance of the proposed approach against the baseline 

model will be evaluated using a dataset which noise data has randomly 

been injected into the dataset. The objective is to find out how the two 

models will learn the dataset given the same constraints and if evaluate 

the output based on classification accuracy. In this scenario, precision, 

recall and F-measure are used. 

 

The rest of this chapter is organised as follows; section 6.2 examines relevant 

metrics applied in evaluating the performance of a machine learning algorithm. 

The metrics selected and applied in this thesis are considered based on the 

proposed research problem defined by this thesis. Section 6.3. present a 

validation process based on a black-box approach, i.e., the machine learning 

tools considered for validation are not specifically defined but could be well 

known, a specific one, or a modification of existing tools. Section 6.4 presents 

a direction that evaluates the performance of the proposed NWDL against a 

baseline model. The baseline selects the best performing machine learning 

tool among the existing ones when trained by a specific dataset under same 

constraints. The selected tool is thereafter used as a baseline against which 

NWDL is evaluated. Section 6.5 evaluates the performance of proposed 

NWDL against the baseline model  using a noise dataset. Finally, section 6.6. 

summarises the chapter. 
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6.2. Evaluation Metrics 
Selecting a suitable evaluation metric is dependent on the problem to be 

addressed. Therefore, it is fair to say that it is difficult to state which metric is 

the most suitable to evaluate a machine learning algorithm without 

understanding the problem to be addressed by the algorithm. Existing 

research as evaluated in the literature argues that the usefulness of web data 

is based on its relationship with the main content of a web page, but the 

proposed research aims to justify that user interest influence importance of 

web data. Therefore, if the classification of web data is based on the layout 

and structure of the web, it can lead to misclassification problems thus 

increase in noise levels. It, therefore, leads this thesis to address a 

misclassification problem, thus evaluation metrics considered to measure the 

performance of proposed algorithms selected based on this concept.  

When addressing web data classification problems, evaluation metrics are 

employed in two critical stages, i.e., training and testing stages (Hossin and 

Sulaiman, 2015). In training stage, evaluation metric is used to find identify 

the best tool with high classification accuracy while in the testing stage, the 

evaluation metric is used to measure the performance of the selected machine 

learning tool over the other. To understand the principles behind measuring 

the performance of a machine learning algorithm, the following key concepts 

should be taken into account: 

 Model output: most of the classification models output a probability 

number for the dataset. 

 Objective: create machine learning algorithms that can determine the 

class a web page is associated with based on its interestingness. 

 Output: Web pages that are identified as interest, noise or potential 

noise. 

 Testing: Comparing the output with actual results 

 Dataset: Web log files with user access logs. 

6.2.1. Confusion Matrix 

Confusion matrix is one of the common metrics used in evaluating the 

performance of a machine learning algorithm in terms of its accuracy and 
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correctness. In general, is used for classification problems where the output 

from a machine learning tool can be assigned to one or more classes. A 

number of existing research consider it important to evaluate the performance 

of a machine learning tool applied in data classification problem using 

confusion matrix. This is due to its ability to easily identify when things go 

wrong when a machine learning algorithm is used in data classification. For 

instance, a new page with no previous user interest can easily be identified as 

either interestingness or noise. It is therefore important to consider a neutral 

class “potential noise” which be used to learn interestingness of a web page 

prior to assigning as noise or interest. Confusion matrix is widely recognised 

and applicable in data classification problems for very simple reasons, i.e., 

based on its ability to determine how well a machine learning algorithm 

performs. Representing outcome from confusion matrix in a more summarised 

way is considered efficient when comparing the performance of different 

algorithms (Ashari et al., 2013). The accuracy of the classifier is given by true 

positive rate, false positive rate, precision, recall and F-measures using 

RapidMiner Studio. The average measure from all the classes has been taken 

to give the overall measure for the classifier. For example, to give the overall 

precision for a classifier for a given dataset, average of precisions of both 

true/false classes is calculated.  

6.2.2. Accuracy/Error rate 

Accuracy is calculated as the number of instances predicted positively divided 

by the total number of instances. This means accuracy is the percentage of 

the accurately predicted classes among the total classes.  This is the most 

common evaluation metric used in multi-class classification problems (Hossin 

and Sulaiman, 2011; Silva-Palacios et al., 2017; Statnikov, et al., 2004). 

Through accuracy, the performance of a machine learning algorithm is 

measured based on total corrections, i.e., the total number of web pages 

whose class is correctly determined by the algorithm when validated using test 

data.   

 

𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
True Positive +  True Negative

TruePositive + TrueNegative + FalsePositive + FalseNegative
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Identifying and classifying a record to a specific class when it actually belongs 

to another class leads to classification error. Error rate is the measurement 

metric for accuracy which evaluates the output by its percentage of incorrect 

predictions.  

 

𝐸𝑟𝑟𝑜𝑟 𝑟𝑎𝑡𝑒 =
False Positive +  False Negative

TruePositive + TrueNegative + FalsePositive + FalseNegative
 

 

The cost of misclassification error may be higher for one class than the other. 

For example, misclassification or noise page as interest may affect user’s 

interestingness of a given web page category.  The main advantage of error 

rate is as a result of its applicability to multi-class problems as well as easy to 

understand by end users (Hand and Till, 2011). On the other hand, evaluating 

a machine learning algorithm using an accuracy metric has its own limitations. 

For example, it leads to less discriminating when it comes to identifying and 

determining the optimal classifier. Moreover, it is considered powerless in 

terms of informativeness as well as its inclination to minority instances. This 

will be seen to impact the output in terms of classification accuracy thus impact 

noise web data reduction process. 
 

6.2.3. Precision, Recall and F-Measure 

Precision and recall measures are most common and  widely used measures 

in web usage mining process (Aldekhail, 2016; Duwairi and Ammari, 2016). 

They are used to assess prediction capabilities of data classification to a 

predefined class.  In the research work, precision evaluates the ability of the 

proposed approach to identify and classify web pages in a user profile based 

on user interest levels. It is measured by the fraction of extracted data 

instances i.e. web pages that are of a user interest while Recall is the fraction 

of relevant data instances that are present in the dataset. Therefore, high 

precision means that there were more interest results than noise instances 

while high recall means that the tool returned more user interest results.  
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Precision is the number of correct prediction divided by the number of total 

predictions made. Intuitively, a high precision for a class means that if our 

model predicts that class, it is very likely to be true. A high precision model will 

be useful in those situations where we need to have high confidence in our 

prediction. Precision can be calculated separately for each class. Graphically, 

for each row, we take the number on the diagonal, and divide it by the sum of 

all elements in the column. 

Recall: is the number if correct predictions divided by the total number of 

elements present in that class. Graphically, it is the value on the diagonal, 

divided by the sum of the values in the row. If recall is high, it means that our 

model manages to recover most instances of that class. Obtaining high recall 

is very easy, it is sufficient to say that everything matches that class, and you 

can be sure that all the elements are retrieved. While it is widely acknowledged 

that precision and recall for binary classification of straightforward, it is 

confusing for multiclass classification problems (Hempstalk and Frank, 2008).  

F-Measure: F1 score is a binary classification metric that considers both 

binary metrics precision and recall. It is the harmonic mean between precision 

and recall. The range is 0 to 1. A larger value indicates better predictive 

accuracy.  

F1 = 2 (precision * recall) / (precision + recall) = 2TP / (2TP + FP + FN)  
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6.3. First Direction – Black-box Validation Process 

The assumption made using this approach is that various data analytics 

platforms use machine learning tools to understand user needs and interests 

while on the web (Siemens, 2013). However, there is no explicit information 

on the type of machine learning tools used, as in the case of Google Analytics. 

This research considers a ‘black-box’ validation approach because the 

machine learning tools applied could be well known, a specific one, or a 

modification of existing tools. The objective is to find out how user interest 

level is determined based on visited web pages and the type of noise web 

data identified.  

6.3.1. Evaluating Performance of NWDL using a ‘Black Box’ Approach 

The output from the existing tool, i.e., interest and noise data will be used as 

input to the proposed tool for the validation process. The choice of this black-

box approach presents a good platform for validation of the proposed 

algorithms which means that the performance of the proposed algorithms is 

compared with any current and practically used algorithms. Summary of the 

experimental design scheme is presented in Figure 6.0.  

 

Extracted Web 
Log Data

A user 
profile

Proposed Algorithms

Black-Box (current tools)

Interest Noise

NoiseInterest

Validate Results

 

Figure 6.1: Black-Box Validation Process 
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6.3.2. Discussion of the results 

One of the main objectives of the proposed research is to find out how current 

research identify noise in web data and if user interests are considered prior 

to noise elimination. In Figure 6.2, it can be observed that a web page is 

classified as noise or interest based on the level of user interest. However, the 

proposed research work attempts to understand if the user interest level of a 

web page influences its classification. For example, what is the threshold 

support value used to define interestingness of a web page, if a dynamic 

change of user interest influences the weight of a web page and how such 

changes impact classification of a web page to either noise or interest. Taking 

into account this critical issues, the proposed research uses the output from 

Figure 15 in order to learn interestingness of a web page taking into account 

aspects such as dynamic change of user interest and threshold support value 

considered in web page classification. 

 

 

Figure 6.2: The output from black-box approach 

Figure 6.2. The output from black-box approach - used as input to the proposed tool 

Figure 6.2 shows the output obtained from Google Analytics (GA) account. The 

assumptions made is that GA uses various machine learning tools to determine the 

interestingness of a web page present in a web user profile. The output can be 

classified as either interest or noise data.  
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Figure 6.3: The output from the black-box approach 

Figure 6.3. The output from the black-box approach- used as input to the proposed 

tool. It considers the output from Figure 6.2 where interest and noise output results 

are used as input to the proposed noise web data learning approach. The objective 

is to find out what type of noise each process identifies taking into account various 

measures applied in the proposed algorithms. 

 

 

Figure 6.4: Noise output from black-box approach 

Figure 6.4. Noise output from black-box approach is used as input to the proposed 
tool 

The proposed NWDL learn noise out from the black box approach prior to 

classification, the objective is to ensure identification of web pages regarded 

as noise by current tools consider the interest of a user. In previous chapters 

of this thesis, the proposed research acknowledges that user interest 

influence the interestingness of a web page.  
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Figure 6.5: Interest output from black-box approach 

Figure 6.5. Interest output from black-box approach is used as input to the proposed 

tool. This is the output from the proposed tool where weighted web page category 

and depth of interest are considered to determine user interest level. 

An additional class this research work refer to as potential noise is considered. 

Potential noise class defines data instance whose characteristics can neither 

be classified as interest nor noise. For example, where a user interest is below 

the defined support threshold or user interest is unknown. Unknown interests 

are as a result of the web page to a specific web category with no user visits. 

Weighted web page category and depth of visit plays a significant role in the 

identification and classification of web data based on dynamic user interests.  

 

In summary, Figures 6.3-6.5 demonstrate that the proposed algorithms learn 

user interest levels in both noise and interest outputs. Unlike the results 

presented in Figure 6.2, levels of user interest on extracted web log data are 

determined. Therefore, the classification of web data cannot only rely on a 

standard threshold to determine a class, but the use of dynamic thresholds 

improves web data classification performance. Moreover, evaluating the 

performance of the proposed algorithms with existing tools is critical to 

achieving the outline research objectives. The proposed research considers 

factors that should be taken into consideration, for example, if the proposed 

tool can identify interestingness of web pages in a user profile in relation to 

dynamic change of user interests.  
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6.4. Second Direction- Baseline Model 

It is difficult to choose a machine learning algorithm that performs well without 

comparing the performance of others (Doan and Kalita, 2015; Khosla et al., 

2010; Lalor et al., 2017).  In order to ensure the best performing tool is 

selected for the defined problem, a baseline model is considered. A baseline 

provides a point of reference from which to compare other machine learning 

algorithms is considered. Further, it defines a benchmark that all other 

machine learning algorithms must cross to demonstrate their contribution to 

the defined problem (Saad, 2014). Without a baseline, it is difficult to know 

how well the proposed algorithms perform in addressing the defined problem. 

Alligier et al (2015), Taylor and Fenner (2017) argue that it is important to try 

a number of different algorithms and determine what performs best on a 

specific problem. To evaluate the performance of the proposed NWDL 

approach, this thesis considers a baseline model which is based on a number 

of widely used existing tools. The selected tools are used to create predictions 

for the defined dataset, the output is thereafter used to measure the baseline's 

performance taking into account various evaluation metrics. The aim of using 

baseline is to determine the best performing tool among the existing ones 

when trained by a specific dataset under the same constraints.  The following 

steps are considered when building a baseline model: 

Step 1: Load the dataset 

Step 2: Split data into training and test set 

Step 3: Select a number of tools to compare 

Step 4: Compare the models 

Step 5: Evaluate performance with metrics that takes the model and 

testing data 

Step 6: Select the best performing model to compare the performance 

of the proposed NWDL approach 

The proposed research has considered an open source machine learning and 

data mining toolkit to define a baseline model. Orange is a machine learning 

tool-kit which house well-known algorithms applied in data mining (Demšar et 

al., 2004; Podpecan et al., 2012). In this thesis, it has been used mainly for 

validation purposes but the proposed algorithms can be validated using any 
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machine learning platform. Figure 6.6 shows the process built to determine 

how existing tools perform in determining the interestingness of a web page 

prior to noise elimination. The best performing algorithm will then become the 

baseline during the evaluation of the proposed tool.  

Dataset
Selected ML 

Tools

Testing Data

Training 
Data

Test & Score

Validate 
Results

Select a number of well known machine learning 
tools widely used in addressing problems with 
noise web data

Spitting the dataset to test and training data helps to 
validate performance of selected machine learning 
tools

The results are validated using lift curve and 
confusion matrix

Life curve, Confusion Matrix

 

Figure 6.6: Defining a Baseline Model 

 

The performance of machine learning tools selected in Figure 6.6 is 

measured using the lift curve. It measures the performance of the selected 

machine learning tools in terms of classification accuracy. Classification 

accuracy is based on how correctly a tool will determine if a web page is  

interesting or noise based on user interest level.  The web page is 

subsequently assigned to a predefined class, i.e., interest or noise class.  
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Figure 6.7a. Lift curve of the selected machine learning tools used in the 

classification of web pages in a user profile. The defined target class here is 

Interest class. It is observed that random forest has the highest classification 

accuracy. 

 

 

Figure 6.7b. The lift curve shows how the selected machine learning tools 

perform on the specified dataset in terms in terms of classification accuracy. 

The output results show that random forest has the highest classification 

accuracy. The target class is Noise class.  



113 
 

Based on output results shown in Figures 6.7a and 6.7b, it is observed that 

random forest performs better than rest. Further results based on the 

performance of the selected tools are presented in Appendix V. Therefore, 

the performance random forest is set as a baseline model to which NWDL is 

evaluated against. 

6.4.1. Evaluating the performance of NWDL against the Baseline Model  

The experimental results from the baseline model process form the basis for 

evaluating the proposed NWDL. The key aspects of this validation process 

aim to demonstrate include (1) using outcome from the evaluation process, 

the impact of the dynamic change of user interests towards defining 

interestingness of web data. (2) Influence of proposed noise web data learning 

approach in the classification of web pages prior to noise identification and 

elimination. These aspects are considered critical to the research 

contributions outlined in the thesis. Subsequently addressing noise in web 

data with a key focus on the user’s change of interest over time justifies the 

need to learn noise web data prior to elimination. To demonstrate the 

performance of proposed NWDL over the existing tool (baseline model), a 

confusion matrix is used to demonstrate the classification accuracy of web 

pages is a user profile. In this section, we analyse the experimental results of 

the proposed algorithm in terms of classification accuracy.  Accuracy is the 

fraction of correct classification out of total possible data classification in a web 

user profile. The following are the steps  

1. Load data 

2. Train the classifier with labelled data. 

3. The training phase generates a model as output which will be used in 

the validation.  

4. During validation use test data to evaluate the performance of the 

model. 

5. After the evaluation of the classifier, the results will be displayed in a 

confusion matrix. 
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Figure 6.8: Baseline vs NWDL – A validation process. 

 

The performance of the baseline model is measured using confusion matrix 

as shown in figure 6.9. The results are presented in form of a confusion matrix 

which shows the actual vs the predicted data instances for the defined 

classes. The figure shows the number of correct and incorrectly classified web 

pages in each predefined classes.  

 

Figure 6.9: Performance evaluation using Confusion Matrix 

 

6.4.2. Discussion of the results  

The overall performance of the proposed NWDL is presented in the previous 

chapter, Figure 5.6. This section now compares the performance of the 
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proposed NWDL against a baseline model whose results are shown in Figure 
6.9. The confusion matrix shows different results when comparing the 

performance of the proposed algorithm against the baseline model.  In Table 
7, Process 1 shows results from the baseline model while process 2 shows 

results obtained from the proposed NWDL algorithm. Results from figure 5.6 

show an increase in potential noise but a decrease in noise given the fact that 

web pages with no known user interest but whose category are known have 

been considered as potential noise. The accuracy is the sum of all the 

numbers on the diagonal divided by the sum of all numbers. The larger the 

number on the diagonal line, the better the classification performance. In this 

experiment, the results obtained are defined as the set of predefined classes 

with weighted web pages.  

Table 7: Performance Comparison NWDL vs Baseline Model 

Model CA 
Baseline Model 50.77% 
NWDL 60% 

 

This thesis notes that the proposed tool performs better than the baseline 

model with a high number of correctly predicted web pages that belong to the 

positive class. Moreover, the proposed tool is able to identify web pages that 

potentially interest which existing tool eliminate as noise. The proposed 

research considers a scenario where a standard threshold value is set to 

identify web pages in a user profile that are useful or noise. There is a high 

likelihood that a given a predefined class will have a high number of noise or 

interest based on the support threshold determined. This will result in high 

classification accuracy. For this reason, this experiment considers web pages 

with varying user interest levels. Using a dynamic threshold value, the results 

will be compared to actual test data. Generally, the evaluation measures used 

to identify noise web pages are defined from a matrix with a number of web 

pages correctly and incorrectly classified based on predefined classes. For 

example, this research considers confusion matrix to evaluate the 

performance of proposed noise web data learning process.  
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In summary, a key focus is to evaluate key measures that have been proposed 

by this research. For example, how dynamic threshold values influence the 

classification of web pages in a user profile and subsequent identification and 

reduction of noise. The results obtained suggest that the proposed tool 

perform better than existing tools. To address problems with noise web data 

as a result of misclassification, the performance of the proposed NWDL is 

measured in terms of error rate, this is the % of incorrectly classified web 

pages in a user profile. However, the proposed NWDL aim to learn noise web 

data prior to classification hence the consideration of a potential noise class 

to classify new web pages. The focus here is to measure the performance of 

the proposed NWDL on web pages regarded as noise by existing tools 

 

6.5. Evaluating the performance of the proposed NWDL approach 
using a noise dataset 

The objective of this experimental direction is to determine how existing tools 

perform in a noisy dataset. For example, what type of web data they identify 

as noise when compared to the proposed NWDL. In order to evaluate the 

proposed tool under different noise levels, noise data is introduced to the 

training dataset which is randomly generated. For every test data, the 

performance of the proposed tool is evaluated against currently available tools 

(Baseline Model). 

6.5.1. Validation Process 

In order to create a noisy dataset from the original one, the proposed research 

consider a number of aspects, such as, the type of noise which can either be 

web page categories which have not recorded any user visit before, the 

number of folds of the cross-validation used to validate the classifier as in this 

case. The general procedure adopted in this process is as follows: 

1. A level of noise of either class noise or attribute noise is introduced into 

a copy of the full original dataset. 

2. Both datasets, the original one and the noisy copy, are partitioned into 

K equivalent folds, that is, with the same example in each one. 
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3. The training partitions are usually built from the noise data, whereas 

the test partitions are from the actual dataset in the case interest class. 

6.5.2. Discussion of the Results 
 

From the results shown in Figure 6.10, the proposed tool does not consider 

web page category with no previous visit as noise, instead, they are 

considered potential noise, and the rationale is to give room to build user 

interest over a period of time. The confusion matrix shows different results 

when comparing the performance of the proposed algorithm against the 

Baseline model.  Process 1 results from the baseline model while process 2 

shows results obtained from the proposed NWDL. Results from process 2 

show an increase in potential noise but a decrease in noise given the fact that 

web pages with no known user interest but whose category are known have 

been considered as potential noise. The accuracy is the sum of all the 

numbers on the diagonal divided by the sum of all numbers. The larger the 

number on the diagonal line, the better the classification performance. In the 

previous chapters 4 and 5, the proposed research presents recency 

adjustment measure to learn interestingness of a web page. As discussed in 

chapter 4, user interest decline in half by a week based on half-life function. 

Therefore, using a potential class to learn noise web data justifies the fact the 

noise web data is defined by the level of a user interest over a period of time. 
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Figure 6.10: Performance evaluation in noise data set 

 

6.6. Evaluating the performance of the proposed NWDL using 
Open Source Dataset 

6.6.1. Data Description  

The second dataset is an extract of web visitor interests available at Kaggle 

dataset store https://www.kaggle.com/uciml/identifying-interesting-web-

pages. Dataset 2 was extracted to generate a training and testing set. The 

training set is used to learn the proposed algorithms, which is then used to 

generate input to the proposed to the proposed noise web data learning 

approach. 

6.6.2. Validation Process 

The performance of the proposed NWDL approach is validated using the 

process flow presented in Figure 6.8. Unlike the results presented in section 

6.4, this section considers dataset 2. The results from this validation process 

aim to justify that the proposed NWDL is adaptable to different types of data 

and the size of data does not impact its classification performance. The output 

results are distinguished as process 1 which presents results from the 

https://www.kaggle.com/uciml/identifying-interesting-web-pages
https://www.kaggle.com/uciml/identifying-interesting-web-pages
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baseline model while results from the proposed NWDL are presented in 

process 2.  

 

Figure 6.11: Classification Performance of the Baseline Model 

 

Process 1: Baseline Model 

accuracy: 63.10% +/- 3.34% (micro average: 63.10%) 

ConfusionMatrix: 

True: Potential Noise Interest Noise 

Potential Noise: 57 2 1 

Interest: 142 289 86 

Noise: 0 0 49 

classification_error: 36.90% +/- 3.34% (micro average: 36.90%) 

ConfusionMatrix: 

True: Potential Noise Interest Noise 

Potential Noise: 57 2 1 

Interest: 142 289 86 

Noise: 0 0 49 

 

 
Figure 6.11 presents the results obtained from a baseline model using dataset 

2. Performance of the baseline model is evaluated using confusion matrix. 

The output from confusion matrix in a more summarised as shown above. The 

accuracy of the classifier is given by true positive rate, false positive rate, 

precision, recall and F-measures. The average of measure from all the 

classes has been taken to give the overall measure for the classifier which is 

63.1%.  
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Figure 6.12:  Classification Performance of the Proposed NWDL 

Process 2: NWDL 

accuracy: 71.88% +/- 2.86% (micro average: 71.88%) 

Confusion Matrix: 

True: Potential Noise Interest Noise 

Potential Noise: 134 29 16 

Interest: 56 238 46 

Noise: 4 25 78 

classification_error: 28.12% +/- 2.86% (micro average: 28.12%) 

Confusion Matrix: 

True: Potential Noise Interest Noise 

Potential Noise: 134 29 16 

Interest: 56 238 46 

Noise: 4 25 78 

 

 

6.6.3 Discussion of the Results 

After training the classifier, the test data was fed to the selected classifier. The 

best performing classifier was determined based on classification accuracy. 

Figure 6.12 presents results obtained from NWDL using dataset 2, it is 

observed that the proposed approach obtained classification accuracy of 

71.88%. The results presented in this section provide a detailed picture of why 

it is critical to determine the interestingness of web data from a user interest 

perspective. The test results demonstrate that even though any existing 

machine learning tool currently available is capable of addressing problems 

with data classification, noise web data learning approach appears to greatly 

contribute towards loss of useful information and reduction of noise data. The 

results presented in Figure 6.12 provides a benchmark of key measures 
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considered in the NWDL approach and their contributions to the needs and 

interests of web users.  For example, using open source data, the proposed 

NWDL approach demonstrate the influence of dynamic user interests to the 

interestingness of web data. Further, it helps to identify latent information 

available on the web and derives a user profile that reflects ever-changing 

user interests 

6.7. Discussion of critical aspects based on the performance of 
NWDL 

As discussed in chapter 3, the user session identification process plays a 

critical role in learning the interestingness of web data. Even a number of 

existing approach have applied a dynamic time-out session identification 

approach, there is lack of sufficient evidence to demonstrate that the last page 

visit in a session is included. Excluding the last page visit from a user, session 

affect the weighting of a webpage thus a misclassification, either as noise or 

interestingness. In chapter 4, interestingness of a web page visited by a user 

does not only depend on frequency and duration of a user visit, instead, key 

measures such as change of interest over time based on the associated web 

page category are critical. Some existing research, for example, Ma et al., 

tend to overlook varying user interest and instead consider the total amount 

of time and number of visits to captured from a specific user. The proposed 

approach is able to learn user interest as they change over time thus ensuring 

useful information is available to a user only when it is interesting. 

Based on the dataset considered in conducting experiments, it is evident that 

existing tools do not take into account the dynamic change of user interest 

during the noise web data reduction process.  Learning of noise prior to 

elimination reduces the amount of useful information eliminated thus enriching 

a user profile. The results from these experiments contribute to the existing 

research work by understanding how user interest can influence the type of 

web data considered noise or useful. The proposed noise web data learning 

tool incorporates user interests and evolving web data, which means that the 

usefulness of data available on the web is determined by what the user is 

interested in and not the relationship with the website where the data resides. 
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In addition, this experimental direction offers a means of demonstrating a 

user-centric approach with respect to noise web data reduction process 

influenced by changes to user interests. It enables the process of learning 

noise in web data to consider the effects of evolving web data, and if certain 

aspects of time and location of user visit to a web page influence the 

interestingness of available web data. While presenting this direction as one 

way of enriching user profile through reduction of noise as well as decreasing 

the amount of useful information lost, it is also important to point out that the 

interestingness of web data does not only depend on its popularity, frequency 

and duration of visit but it’s relevancy at the time and place of access. 

6.8. Chapter Summary 

This section evaluates how dynamic change of user interest impact the 

interestingness of web data. The experimental results are compared against 

the output from existing techniques using the same dataset. The experiments 

conducted in this section aim to justify the need to learn the interestingness of 

web data prior to noise elimination. The results from the proposed approach 

are compared against existing tools. Based on experiments conducted using 

existing tools, it is not clear how change or user interests are captured during 

the classification of web pages in line with user interest level. The proposed 

approach use weighted web page category based on a forgetting function 

approach to determine how change of user interest impact noise web data. 

The following are the algorithms with based on this approach, they include; 

duration of a user visit based on dynamic time-out adjustment, depth of a user 

visit to a web page and weighted web page category 

Various measures that are used to analyse the degree of interestingness of 

the web page prior to the classification process are evaluated. More 

particularly using noise dataset, the aim was to compare the performance of 

the classifier learned with the original data set with the performance of the 

classifier based on a noise dataset. In addition, it has been observed from an 

experiment conducted in Figure 5.6 that the widely used measures as such 

frequency and duration of a user visit have a very limited impact when it comes 

to learning change of user interests over time. 
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Chapter 7: Conclusion and Future Work 
7.1. Introduction 
This chapter presents a summary of the research this thesis proposes. The 

objective is to ‘close the loop’ i.e. it reflects on how the defined research 

objective has been achieved, evaluate with justification as to why the 

proposed noise web data learning approach is significant to address problems 

with noise web data. This chapter commences by evaluating research 

objectives against the proposed research outcomes. 

7.2. Critical Discussions Based on Research Objectives 
The proposed research commences by defining a problem in existing 

research that needs to be addressed. The defined problem is based on the 

contributions and limitations of existing research work that address problems 

with noise web data. Moreover, the proposed research is motivated by the 

increased usage of web data as well as the volume of data which is rapidly 

growing. As a result, problems with finding useful information that meets the 

interests of a user prove a challenge to the use of existing machine learning 

tools. 

From the existing literature, this thesis establishes how relevant and most 

current research studies address problems associated with noise in web data. 

The proposed research argues that not all data that form part of the main web 

page is relevant to a user’s interest and not every data which can be 

considered noise is actually noise to a given user. Therefore, without learning 

the interestingness of web data based on a user’s interest, the process of 

eliminating noise web data is limited to simply recognising how web data is 

presented and not what users are interested in at any given time.  

In summary, the proposed research’s main focus is to learn to recognise noise 

in web data so as to reduce the loss of useful information otherwise 

considered as noise as well as to decrease noise levels. Rather than isolating 

the main web page content and relying on its layout and content, the proposed 

research aims to focus on how user interest can influence the type of noise 

present in web logs. 



124 
 

The key stages involved in defining a user profile are identified and explored. 

They include; user and session identification stages of pre-processing web log 

data play an important role in finding data on the web data defines a user and 

his/her interests. A session identification algorithm based on the dynamic 

threshold value is considered is used to determine user sessions. The 

rationale for using dynamic threshold value over fixed values in session 

identification is to ensure the interestingness of a web page reflects the level 

of user interests over time. This is due to the fact that user interest change 

over time, a fixed threshold value will not be ideal enough to ensure the 

classification process is dynamic to accommodate varying user interests. 

Subsequently, the process of identifying and elimination noise web data as 

user interest change over time is well managed. 

Learning user interests plays a fundamental role in understanding how useful 

is web data to a user at a given time, thereby improving the process of noise 

web data reduction. It is therefore important to understand how the dynamic 

nature of the web and varying user interests influence the identification of 

noise in web data. In the proposed research work, the focus is on learning the 

interest of a user in relation to available web data with the aim of reducing the 

amount of useful information eliminated as noise. 

Chapters 5-6 have introduced a number of experimental directions and 

discussions of results based on the application of proposed algorithms. From 

the results, it is observed that the proposed algorithms outperform existing 

tools applied in noise web data reduction process. This was measured using 

a number of criteria introduced and defined in previous chapters. This chapter 

evaluates the success of the proposed research work holistically against the 

research objectives as defined in chapter 1. 

7.3. Key Findings Based on the Proposed Research Questions 
This section revisits the research questions outlined in chapter one of this 

thesis. The main objective of this thesis is to identify current problems with 

noise in web data and proposed an approach capable of addressing defined 

problems in relation to web user interests. Therefore, there is a need to find 
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out if this thesis has managed to respond to the research questions outlined 

in the first chapter of this thesis.  

Question 1: In what ways current research works define and address 
noise in web data? 
At the onset, the criteria set to review and evaluate existing literature covered 

the following aspects; definition of noise in web data, tools and techniques 

proposed to identify and eliminate noise data, measures employed by existing 

research to evaluate performance of existing tools, contribution and limitations 

taking into account the defined problems and the current state of the art.  

This thesis found out that although there are a number of tools and techniques 

that identify and eliminate noise web data, there are still unsolved issues 

critical to addressing problems with noise web data. For example, there are 

no tools currently applied to learning noise web data prior to elimination. There 

are no discussions on how existing tools used to eliminate noise in web data 

take into account evolving user interests. The current research work has not 

explicitly defined measures that will aid in understanding the influence of user 

interests and how a change to user interests are modelled to minimise loss of 

useful information.  

Question 2: What are the key indicators for learning user interests and 
how could the interests of a user influence identification of noise web 
data? 

Findings: Where the interests of a user change, noise in web data also 

change, further interestingness of available information vary as well if some 

interests are seasonal to a user. In essence, it is important to learn dynamic 

changes of a user subject to time of interest. This, therefore, demonstrates 

that it is difficult to rely on existing noise web data patterns which are 

determined based on previous user activities. In order to identify and 

understand how dynamic changes in user interests impact identification of 

noise in web data, the depth of user visit, as well as the use of dynamic 

threshold value, plays a critical role. Understanding the interest of users on 

the web and how users navigate through a web page will provide an insight 

into the type of users and their level of knowledge. This is because the level 
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of knowledge demonstrates if a user is interested in available information or 

he/she is actually struggling to find useful information.  

The proposed research considers interest forgetting function to learn change 

in user interests which ultimately improves noise web data reduction process. 

Some of the key aspects the proposed research explores in relation to this 

approach include (1) use of a fixed time to determine if a web page is interest 

or noise to a user. (2) Learning interestingness of a web page gradually over 

time to determine the level at which a user is showing interest or losing interest 

on a given page. For instance, a user may have recently visited a specific 

category of a web page, but the frequency and time spent on the category are 

gradually decreasing. Even though website owners/developers will continue 

suggesting relevant information, the time will come when a user will no longer 

be interested, hence such information becomes noise.  Chapter 4 underlines 

the need for learning interestingness of a web page gradually using forgetting 

function. In chapter 5 the approach is presented in form of an experiment in 

order to justify its contribution to the proposed NWDL. 

Question 3: How can learning noise web data better address problems 
with the noisy web in comparison to contributions made by the existing 
research? 

The process of learning noise web data prior to noise elimination is discussed 

entirely in this thesis. However, chapter 4 underlines a number of measures 

which are considered key to justifying the contribution of NWDL. 

Subsequently, chapter 5 and 6 present a number of experiments to justify how 

NWDL can address problems with noise web data better when compared to 

existing tools. In summary, the proposed NWDL consider dynamic changes of 

user interest while learning interestingness of a web page. The aim is to 

ensure that during the classification of web pages visited by a user, the level 

of user interest as well as the change of interest over time is considered to 

avoid misclassification. From the experiments conducted using real-life data, 

it is evident that existing tools do not take into account the dynamic change of 

user interest during the noise web data reduction process.   
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Learning of noise prior to elimination reduces the amount of useful information 

eliminated thus enriching a user profile. The results from these experiments 

contribute to the existing research work by understanding how user interest 

can influence the type of web data considered noise or useful. The proposed 

noise web data learning tool incorporates user interests and evolving web 

data, which means that the usefulness of data available on the web is 

determined by what the user is interested in and not the relationship with the 

website where the data resides. In addition, this experimental direction offers 

a means of demonstrating a user-centric approach with respect to noise web 

data reduction process influenced by changes to user interests. It enables the 

process of learning noise in web data to consider the effects of evolving web 

data, and if certain aspects of time and location of user visit to a web page 

influence the interestingness of available web data. While presenting this 

direction as one way of enriching user profile through reduction of noise as 

well as decreasing the amount of useful information lost, it is also important to 

point out that the interestingness of web data does not only depend on its 

popularity, frequency and duration of visit but it’s relevancy at the time and 

place of access. 

 

7.4. Research Contribution 
In this thesis, a number of machine learning algorithms have been proposed 

to address problems with noise in web data. They include; session 

identification based on dynamic time-out value, determining user interest level 

on a web page based on depth and category of user visit to a web page, Web 

page classification based on the dynamic threshold value and noise web data 

learning algorithm 

Determining user session based on dynamic threshold values overcome the 

limitations of web page classification based on the duration and frequency of 

user visit. As discussed in chapter 3, the majority of existing research consider 

user session identification based on a fixed time-out value. One of the main 

limitations of this approach is that some web pages a user visit are excluded 

from a session. For example, the time a user exit from a web page cannot be 

determined and therefore unable to determine if the last page is 
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interestingness or noise to a user. In most cases, web pages with no user 

interest or where a user spends less time are considered irrelevant or noise 

and thereby eliminated. With a dynamic session time-out approach, the level 

of noisiness and loss of useful information is managed effectively, simply 

because the time spent on the last page is determined rather than being 

excluded from a user session. 

Dynamic change of user interests plays a fundamental role in learning 

interestingness of a web page. Based on a number of experiments conducted, 

the proposed research justifies the need to consider change of user interest 

over time prior to determining if information on the web is useful or noise. As 

user interests change over time, some information becomes noise as new 

interests emerge, subsequently, previous noise data can be useful as well. 

Therefore, learning user interests based on the dynamic change of user 

interests as proposed in this research makes some contributions to the 

research domain: (1) Improves web usage mining process by acknowledging 

and accommodating the dynamic change of user interests. (2) Minimises loss 

of useful information otherwise considered as noise when interests of a user 

are overlooked. (3) Given that the web is regarded as noisy, the NWDL 

approach contributes to the reduction of noise web data present in a user 

profile. This is achieved by taking into account the aforementioned measures, 

i.e., learning change of user interest prior to noise identification and 

elimination. Overall, the practical application of the proposed NWDL 

contributes towards creating web user profiles that are dynamic enough to 

adapt to the evolving web, thus ensuring only useful information is available 

to a user when required. 

7.5. Future Work 

This proposed research work in this thesis underlines and presents a number 

of machine learning models in an attempt to address problems with noise web 

data. The proposed approach shows the influence change of user interests 

has on the interestingness of web data. It further points out the need to learn 

noise web data with a close consideration of user’s change of interests. 

Despite the results achieved from various experiments conducted as well as 
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the contribution made, this section highlights possible future research 

directions:  

Learning noisiness without prior knowledge of user interests: Even 

though a number of measures have been proposed in this thesis to learn noise 

web data, there are emerging problems as a result of rapid increase of web 

data. For example, predicting user interests without any previous information 

to build an initial profile. In order to address noise web data and minimise 

information loss, there is a need to extend the proposed research taking into 

account existing geo-spatial data to benefit web usage mining process. More 

importantly, future work should accommodate machine learning tools that are 

dependent on the user and geo-spatial data. The logical connection between 

the two research domains can play a significant role in building dynamic 

websites that give web user more power to control what they view on the web. 

This includes dynamic web content that is user-driven as well as machine 

learning models that utilise noise data to learn dynamic change of user 

interests.  

Fighting Fake News: Currently, everyone has joined the battle of combating 

fake news. Fakes news is misleading information which can be used to 

deceive web users (Shu et al., 2017). For example, websites generate a 

significant portion of their revenue through clicks on contents regardless of its 

legitimacy, i.e., fake news or useful information. As defined in chapter 1 of this 

thesis, noise data is irrelevant or meaningless data. Based on these definitions 

and from web data pre-processing perspective, there is a correlation between 

fakes news and noise data and the associated current research challenges. 

The main challenges the current research attempts to address are ways in 

which we can employ machine learning to fight fakes news, minimise the 

amount of misleading information suggested to users who are searching for 

useful information on the web. Addressing problems with fake news is not only 

data-driven but also involves the user. This research proposes a noise web 

data learning approaches that identifies and learn noise data on the web. 

However, there is a need to extend this research using web user profiling 

approach presented in the thesis to identify features most commonly 

associated with fake news. It is important to focus on learning the source of 
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fake news prior to addressing its impact to the society. In order to achieve this, 

a further in-depth analysis of learning from social media networks what 

qualifies as fake news in relation to user’s perception and interests over a 

time.  
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Appendices 
 

Appendix I: Samples of noise web data 
 

 
 

 

Source: http://www.msn.com/en-gb/?ocid=iehp Accessed on 23rd July 2016

http://www.msn.com/en-gb/?ocid=iehp
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Appendix II: Comparative analysis of data mining techniques applied in noise web data reduction 
KNN= K-Nearest Neighbours, NB= Naive Bayesian Classification, SVM= Support Vector Machines, NN=Neural Networks, KM= K-Means Clustering, 

FCM= Fuzzy C-Means Clustering, ARM = Association Rule Mining 

Author Technique Objective Input (Attributes) Findings Evaluation Criteria Output 

Adeniyi and 
Yongquan 
(2016) 

KNN To determine classes of 
unknown data 
instances during 
classification 

News category, feed 
type, news daily 
name 

All neighbouring data 
instance are 
encapsulated and 
assigned to the nearest 
class. 

Evaluated against 
sample testing session 
data in terms of 
accurate 
recommendations 

User interest data 

Vidyapriya and 
Pushpa (2016) 

KNN To identify interest of 
user access pattern 
from web logs 

User IP address, 
Session-id, page 
visits, source 

The k- nearest 
neighbour algorithm 
shows a maximum 
accuracy and minimum 
error rate compared to 
NB 

Evaluated WEKA and 
rapid miner. 

Pattern set generated user access data 

Santra and 
Jayasudha 
(2012  

NB To classify interested 
and non-interested 
users 

No of page views, 
time taken, URL page, 
User IP address 

Consider many 
attributes  irrelevant for 
classification 

Results were evaluated 
based on time take to 
compute maximum 
likelihood of user 
interest against C4.5 

The output has only two possible 
outcomes: interested users or not 
interested users. 

Padmapriya 
and Hemalatha 
(2014)  

NB To Identify data 
instances whose classes 
are unknown 

User IP address, Page 
URL, Session-id, page 
view duration 
 

Classification attributes 
are independent  with 
no relationship 
between them 

Expectation-
maximization 

A pair of tag path 
occurrence user access patterns 

Suchaka and 
Potempa 
(2015) 

SVM Classification of user 
session from web log 
file by eliminating 
irrelevant session and 
predicting buying 
sessions. 

Session duration, No. 
of page views, 
session-id, user 
agent, IP address 

SVM classifier are 
effective both in 
respect of the overall 
predictive accuracy and 
the ability to predict 
user interest i.e. buying 
session 

Evaluated performance 
based on error rate, 
accuracy and sensitivity 

Correctly and incorrectly classified web 
data logs. 

Htwe et al., 
2010  

NN To find noise pattern in 
current Web page by 
matching 

Page URLs from news 
website 

It is difficult to 
determine pure data 
region because data 

Evaluated performance 
of their proposed tool 
by calculating levels of 

Useful web data and Noisy web data 
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similar noise pattern 
kept in Case-Based 

regions of these sites 
are surrounded by 
noise. 

noise eliminated from 
each data region. 

Kaur and Kaur 
(2013) 

FCM To reduce the amount 
of irrelevant data on 
the web and predict 
user interest 

Web log data (User IP 
address,  session 
duration, timestamp, 
User request) 

User interest level 
depends on weight of 
each web page which is 
determined by session 
duration 

Results are session 
oriented and page 
oriented in order to 
determine next page 
request 

A tool capable of determining user next 
page request 

Chandel et al., 
2016 

FCM To discover patterns of 
user activities on a web 
page 

IP address, session-id, 
timestamp 

Efficiency of FCM is 
better than KM 

Efficiency of the 
algorithm compared to 
K-Means  

Web logs with effective usage pattern 

Chitraa and 
Thanamani 
(2012) 

KM To determine only 
relevant logs that the 
user is interested in 

User’s IP address, 
Page duration, user’s 
browser, operating 
system, No of page 
views 

Defined clusters with 
similar intra objects are 
extracted while 
dissimilar inter objects 
are removed 

K-means finds initial 
points and optimize for 
accurate results 

Similar data cluster and Dissimilar data 
cluster 

Ramya and 
Sajeev (2015) 

KM To suggest web pages 
to users based on their 
interest 

IP address, requested 
page, visit duration, 
access method, 
timestamp 

Classification of users is 
not only based on web 
access patterns but also 
on their dynamic 
interest. 

Evaluated against SVM 
classifier to determine 
frequency of visit and 
time duration 

Pattern set generated user access data 

Langhnoja et 
al., 2013 

ARM To find user access 
patterns based on user 
interest 

User IP address, 
timestamp, URL 
requested, URL 
referrer, user agent  

All irrelevant entries are 
removed prior to 
applying ARM 

Results are compared 
with clustered access 
patterns in terms of 
accuracy 

Log Database with effective usage 
pattern 

Malarvizhianan
d 
Sathiyabhama 
(2014) 

ARM To find unwanted pages 
visited by the students 
during a suspected 
duration which 
obviously affects their 
progress 
 

IP address, Session-id,  
Page URL, No. of 
pages views,  

Pages visited only once 
by only one visitor are 
considered irrelevant. 
 

Efficiency and 
execution time  

Weighted association rules 
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Appendix III: Data Modelling: Use Case Diagram 
 

 

Appendix II: Noise Web Data Learning Approach – Use Case Diagram 

  



149 
 

Appendix IV: Sample raw datasets 
 

 

Appendix IV: Raw Data imported to SQL Server  
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Appendix V: Experimental Design Procedures and Validation  
 

 

Appendix V: Baseline Model Process 

 

 

Appendix V: Output from Baseline Model Process 

 

 

 

 


