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ABSTRACT 

Introduction: Circulating insulin concentrations mediate vascular-inflammatory and prothrombotic 

factors. However, whether interindividual differences in circulating insulin levels are associated with 

different inflammatory and prothrombotic profiles in type 1 diabetes (T1D) is unknown. We applied an 

unsupervised, machine-learning approach to assess whether interindividual differences in rapid-acting 

insulin levels associate with parameters of vascular health in T1D patients. 

Methods: We reanalysed baseline pre-treatment meal-tolerance test data from two randomised control 

trials in which 32 patients consumed a mixed-macronutrient meal and self-administered a single dose 

of rapid-acting insulin individualised by carbohydrate-counting. Postprandial serum insulin, tumour 

necrosis factor alpha (TNFα), plasma fibrinogen, human tissue factor (HTF activity) and plasminogen-

activator inhibitor-1 (PAI-1) were measured. Two-step clustering categorised individuals based on 

shared clinical characteristics. For analyses, insulin pharmacokinetic summary statistics were 

normalised, allowing standardised intra-individual comparisons. 

Results: Despite standardisation of insulin dose, individuals exhibited marked interpersonal variability 

in peak insulin concentrations (48.63%), time to peak (64.95%), and insulin incremental area under the 

curve (60.34%). Two clusters were computed: cluster 1 (n=14) representing increased serum insulin 

concentrations; cluster 2 (n=18) representing reduced serum insulin concentrations (cluster 1: 

389.50±177.10 vs. cluster 2: 164.29±;41.91 pmol/L.IU.hr-1; P<0.001). Cluster 2 was characterised by 

increased fibrinogen, PAI-1, TNFα levels, higher HTF activity, higher HbA1c, BMI, and lower eGDR 

(increased insulin resistance), older age, and longer diabetes duration (P<0.05 for all analyses). 

Conclusions: Reduced serum insulin concentrations are associated with insulin resistance and a 

prothrombotic milieu in individuals with T1D, and may, therefore, be a marker of adverse vascular 

outcome. 
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INTRODUCTION 1 

Basal-bolus insulin therapy, consisting of modern insulin analogues delivered through multiple daily 2 

injections or by continuous subcutaneous insulin infusion, is the first-line choice for achieving good 3 

glycaemic control in patients with type 1 diabetes (T1D)1. The pharmacokinetics and 4 

pharmacodynamics of the insulin analogues aspart and lispro have been well-characterised2 and their 5 

relatively rapid and short action-time profiles make these preparations suitable mealtime insulin 6 

replacements3. Despite their small degree of within-subject variability, both analogues display similarly 7 

large between-subject variability in insulin kinetics following subcutaneous injection2, 4. For example, 8 

even under controlled experimental conditions in diabetes-naïve individuals, the interindividual 9 

coefficient of variation (CV) of certain pharmacokinetic summary measures has been reported to range 10 

between 20-45% for different preperations4. Further, work from our group has previously shown the 11 

interindividual CV of subcutaneously injected rapid-acting insulin analogues to be ~55% in well-12 

controlled patients with T1D, even when dose is individualised to a standardised meal using the 13 

carbohydrate-counting method and when patients achieve 2-hour post-meal target glucose5, 6.  14 

 15 

Insulin has potent effects on vascular tone and endothelial inflammation, and temporal differences in 16 

the appearance of circulating insulin following subcutaneous injection are known to influence vascular-17 

inflammatory and prothrombotic factors7. For example, insulin exhibits a class effect with different 18 

preparations, differing by pharmacokinetics and pharmacodynamics, eliciting divergent responses in 19 

proinflammatory cytokines, adhesion molecules, and thrombin formation7. However, whether 20 

interindividual differences in circulating insulin concentrations, resulting from the subcutaneous injection 21 

of comparable insulin preparations, is associated with different inflammatory and prothrombotic profiles 22 

is unknown.  23 

 24 

To the best our knowledge, no study has aimed to assess whether individual patients can be classified 25 

on the basis of similar mealtime rapid-acting insulin responses, and whether and how such 26 

classifications cluster with parameters of vascular health. The classification of patients on the basis of 27 

their mealtime rapid-acting insulin response and shared clinical characteristics may enable better 28 

individualised treatment regimens to reduce the unpredictability associated with current insulin dosing 29 

strategies and heterogeneity in the risk of developing vascular complications. With this aim, we applied 30 
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an unsupervised, machine learning approach to data from two RCTs5, 8 characterising individual 31 

mealtime insulin responses following subcutaneous injection of rapid-acting insulin in patients with T1D 32 

treated on multiple daily injections. We used this approach to establish a novel classification of patients 33 

on the basis of rapid-acting insulin responses and assessed whether differences in response were 34 

associated with parameters of vascular health. 35 

 36 

METHODS 37 

We used data from two previously published RCTs5, 8 (Clinical trial registration: clinicaltrials.gov 38 

NCT02595658; ISRCTN registration ISRCTN40811115). Both studies received ethical approval from 39 

local National Health Service Research Ethics Committees (REC reference 14/NE/1183; REC 40 

reference 17/NE/0244) and all participants gave written informed consent.  41 

 42 

Detailed information regarding each study has been published previously5, 8 but summarised here. In 43 

the original study by Campbell et al5 patients were exposed to four experimental conditions consisting 44 

of the consumption of mixed-meal tolerance tests differing in macronutrient composition and rapid-45 

acting insulin bolus dose and timing. We used data from a single arm in this RCT featuring a meal-46 

tolerance test with self-administration of a single dose of rapid-acting insulin individualised to each 47 

patients’ carbohydrate-counting requirements. In the original study by O’Mahoney et al8 participants 48 

were randomised to a dietary supplementation intervention or placebo control for 6-months, with meal 49 

tolerance tests administered at baseline, 3-months, 6-months, and 9-months. In response to the meal 50 

tolerance test, participants self-administered rapid-acting insulin individualised to their carbohydrate-51 

counting requirements. We used across both esarms from this RCT. In both studies, the carbohydrate 52 

content of each meal tolerance test was standardised and individualised to 1 g of carbohydrate per kg 53 

of body mass. Similarly, rapid-acting insulin was administered immediately before consumption of each 54 

meal tolerance test with the site of injection standardised between participants using prominent 55 

anatomical landmarks (equidistant from the most medial portion of the iliac crest and navel) with dose 56 

based on individual carbohydrate-counting requirements (dose per 10g: 0.9±0.3 IU); no patient received 57 

any further corrective dose of insulin during the postprandial observation window. All testing procedures 58 

were conducted during a single morning-time laboratory visit. Prior to each visit, patients adopted an 59 
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overnight fast (>10-hours), and avoided strenuous physical activity, caffeine, and alcohol in the 48-60 

hours prior to arrival.  61 

 62 

On each visit, venous blood samples were obtained via an indwelling catheter placed into the 63 

antecubital vein of the non-dominate arm. Blood samples were retrospectively analysed for serum 64 

insulin (Invitron insulin; Invitron, Monmouth, UK), tumour necrosis factor alpha (TNFα) (Human TNF-α 65 

Quantikine ELISA; R&D Systems, Roche Diagnostics, UK), plasma fibrinogen (ab108842, Fibrinogen 66 

Human ELISA Kit; Abcam, Japan), human tissue factor activity (HTF; HTF activity ab108906; Abcam, 67 

UK) and plasminogen-activator inhibitor-1 (PAI-1; Human PAI-1/serpin ELISA Kit DSE100; R&D 68 

systems, UK) using methods previously described9; the intra-assay coefficient of variation was <10% 69 

for all biochemical analysis. Further blood samples were obtained at 30-minute intervals for a total 70 

duration of 6-hours post-meal and analysed for serum insulin. In addition, we obtained the following 71 

physiological characteristics (age, T1D duration, HbA1c, BMI, and blood pressure). Blood pressure was 72 

assessed via an automated oscillometric device (Intellisense HEM-907XL, Omron, Japan) with 73 

participants categorised as normotensive (<140/90mmHG) or hypertensive (≥140/90mmHG)10. 74 

Estimated glucose disposal rate (eGDR) was calculated using a composite of BMI, HbA1c and 75 

hypertensive status using the following formulae: eGDR = 19.02 – (0.22 X BMI [kg/m2) – (3.26 X HTN) 76 

– (0.61 X Hba1c [%]), whereby HTN is hypertension (1 = yes, 0 = no). Participants were classified as 77 

having increased insulin resistance if  was eGDR ≤811. 78 

 79 

In the present analysis, we included participants meeting the following inclusion criteria: aged 18-50 80 

years; diagnosed with T1D for a minimum of 5-years on enrolment; treated with a stable (>12-months) 81 

basal-bolus insulin regimen consisting of rapid-acting insulin analogues lispro or aspart and basal 82 

insulin glargine delivered through multiple daily injections; familiar with carbohydrate-counting; and free 83 

of diabetes-related complications except for early background retinopathy. 84 

 85 

Statistical analysis 86 

Data were analysed using SPSS (IBM SPSS Statistics 25, IBM Corporation, USA). Descriptive 87 

characteristics of the study population are presented as mean±SD for continuous variables and as 88 

frequency (%) for categorical variables. A one-way ANOVA was performed on time-series data to 89 
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assess temporal changes in serum insulin concentrations, with multiple comparisons adjusted using 90 

Bonferroni correction. The trapezoidal rule was used to calculate individual incremental areas under the 91 

serum insulin concentration curve (iAUC). In order to account for differences in rapid-acting insulin dose, 92 

iAUC was normalised by dose of insulin administered (IU) allowing standardised comparisons between 93 

patients (iAUC/IU). To assess the association between clinical parameters and serum insulin 94 

responses, a Pearson correlation coefficient matrix was employed and interpreted as r > 0.70 = strong 95 

association, r = 0.50 – 0.70 = moderate association, r = 0.30 – 0.49 = weak association, and r < 0.30 = 96 

negligible association. To categorise and group individuals based on shared clinical and biochemical 97 

characteristics, we utilised two-step clustering with complete data available for continuous variables. In 98 

this unsupervised approach the first step estimates the optimal number of clusters on the basis of 99 

silhouette width and the second step is based on Bayesian hierarchical clustering. In this application, 100 

the method uses agglomerative clustering to partition clinical characteristics based on their 101 

abundance/magnitude in the individuals, and partitions individuals based on the abundance/magnitude 102 

of their characteristics. We use standardised Z scores of variables and log-likelihood as a distance 103 

measure and Schwarz’s Bayesian Criterion (BIC) for clustering. BIC is based on the likelihood function 104 

and attempts to resolve overfitting to data models; using this approach 2 clusters were deemed to be 105 

optimal. Only continuous variables were included as the k-means method does not accommodate 106 

binary categorical variables. Cluster labels were assigned by examining cluster variable means. 107 

Differences between dichotomised variables were assessed with independent t-tests. Statistical 108 

significance was set at P<0.05 for all analyses. 109 

 110 

RESULTS 111 

Baseline characteristics of patients included in the present reanalysis are shown in Table 1. In summary, 112 

the 32 T1D patients (male=21) had a mean age of 31±7 years, HbA1c of 58±9 mmol/mol [7.5±0.8%] 113 

and rapid-acting bolus dose requirement of 9±3 IU. On average, rapid-acting insulin peaked at 120-114 

minutes post injection at a concentration of 254±124 pmol/L (P<0.001), before returning to baseline 115 

concentrations at 180-minutes (P=0.063) (Figure 1). Individuals exhibited marked interpersonal 116 

variability in serum insulin concentrations as determined by summary statistics (Figure 1A-C), including 117 

variable peak serum insulin concentrations (CV%: 48.63%; Range: 79 – 546 pmol/L), time to peak 118 
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(CV%: 64.95%; Range 30 – 300-minutes), and serum insulin iAUC following adjustment for individual 119 

rapid-acting insulin dose (iAUC/IU; CV% 60.34% Range: 69 – 934 pmol/L.IU.hr-1). 120 

 121 

Figure 2 shows individual patient clinical profiles ranked by their iAUC/IU. To identify which, and whether 122 

clinical parameters associated with individual serum insulin responses, we applied a Pearson 123 

correlation coefficient matrix across variables (Figure 3). Serum insulin iAUC/IU was negatively 124 

correlated with fibrinogen (r = -0.57; P=0.012), HTF activity (r = -0.45; P=0.010), PAI-1 (r = -0.46; 125 

P=0.008), HbA1c (r = -0.64; P<0.007), age (r = -0.63; P<0.005), diabetes duration (r = -0.63; P<0.008), 126 

BMI (r = -0.62; P<0.012), and positively correlated with eGDR (r = -0.57; P=0.021). Notably, eGDR was 127 

negatively correlated with fibrinogen (r = -0.57; P<0.014), HTF activity (r = -0.41; P=0.020), and PAI-1 128 

(r = -0.49; P=0.005), but not TNFα (r = -0.03; P=0.881). Only weak associations were observed between 129 

peak insulin concentrations and fibrinogen, PAI-1, HbA1c, diabetes duration, BMI, and eGDR (P<0.005, 130 

Supplementary Figure 1), whereas time to peak was not associated with any clinical parameters 131 

(P>0.005, Supplementary Figure 2). 132 

 133 

Given the associations between physiological and clinical parameters with serum insulin levels, next 134 

we applied machine learning techniques to classify patients into diabetes subgroups based on their 135 

individual serum insulin response and physiological/clinical parameters. We used a TwoStep clustering 136 

method with complete data available for continuous clustering variables; Figure 4 shows the cluster 137 

characteristics for cluster 1 and 2, with cluster 1 representing increased serum insulin concentrations 138 

and cluster 2 representing reduced serum insulin concentrations; (cluster 1: 389.50±177.10 vs. cluster 139 

2: 164.29±;41.91 pmol/L.IU.hr-1; P<0.001). Cluster 2, including 56% (n=18) of the patients, was 140 

characterised by increased levels of vascular inflammatory proteins: fibrinogen, HTF activity, PAI-1, and 141 

their mediator TNFα, a higher HbA1c, older age, a greater duration of diabetes, and increased BMI, 142 

and increased insulin resistance (lower eGDR), in comparison to cluster 1 which included 44% (n=14) 143 

of the patients. These data imply that patients with low levels of serum insulin following subcutaneous 144 

injection may be associated with increased insulin resistance, age, and diabetes duration, and 145 

concomitantly express raised levels of biomarkers associated with increased thrombosis and adverse 146 

vascular health. To test this hypothesis, we stratified patients according to their cluster allocation and 147 

performed independent t-tests on serum insulin responses and individual clinical parameters (Figure 148 
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5). Notably, cluster 2 elicited significantly higher mean fibrinogen (cluster 1: 1559±689 vs. cluster 2: 149 

3073±1283 μg/mL; P<0.009), HTF activity (cluster 1: 83.01±39.20 vs. cluster 2: 142.24±48.62 pmol/mL; 150 

P<0.007), and PAI-1 (cluster 1: 0.86±0.55 vs. cluster 2: 1.71±0.71 ng/mL; P<0.005), HbA1c 151 

concentrations (cluster 1: 51.76±5.72 vs. cluster 2: 65.96±4.68 mmol/mol; P<0.021). Further, cluster 2, 152 

elicited a significantly higher mean age (cluster 1: 28±5 vs. cluster 2: 35±7 years; P<0.006), a greater 153 

mean duration of diabetes (cluster 1: 10±5 vs. cluster 2: 25±7 years; P<0.014), a higher mean BMI 154 

(cluster 1: 22.68±1.51 vs. cluster 2: 30.34±4.12 kg/m2; P<0.009), a lower mean eGDR (cluster 1: 155 

9.47±1.16 vs. cluster 2: 5.49±2.23; P<0.003). 156 

 157 

CONCLUSIONS 158 

The results in this paper characterise the interaction between interindividual responses in 159 

subcutaneously injected rapid-acting insulin with parameters of vascular health in patients with T1D 160 

treated with multiple daily injections. We applied an unsupervised machine learning approach to 161 

establish a novel classification of patients on the basis of pharmacokinetic summary statistics that 162 

characterise rapid-acting insulin responses and found that an attenuated temporal insulin response 163 

characterised by a lower iAUC, peak concentration, and protracted time to peak, clusters with an 164 

elevated proinflammatory and prothrombotic biomarker profile.  165 

 166 

Our data demonstrate marked interpersonal variability in circulating insulin concentrations following 167 

subcutaneous injection assessed using a range of parameters including peak concentration, time to 168 

peak, and iAUC adjusted for individualised rapid-acting insulin dose. As such, time to peak ranged from 169 

30- to 300-minutes in our sample with a 13-fold difference in insulin exposure between individuals with 170 

the lowest and highest iAUC following adjustment for individualised insulin dose requirements. 171 

Research assessing variability in insulin absorption and action so far have focused on variability 172 

between injections of different insulin preparations and injection sites within individuals, and 173 

physiological (i.e., age and gender, adiposity and anthropometry, skin temperature and subcutaneous 174 

blood flow, and presence of complications) and behavioural (smoking, physical activity) factors between 175 

individuals12. Our data extends these findings by showing that the variability in circulating rapid-acting 176 

insulin concentrations is associated with a range of clinical characteristics. The Pearson coefficients 177 

calculated herein show that there are significant associations between circulating administered insulin 178 



 9 

and clinical characteristics (age, diabetes duration, HbA1c, BMI, and eGDR) as well as prothrombotic 179 

vascular biomarkers (fibrinogen, HTF activity, and PAI-1). To explore the strength of these associations 180 

in our study further, we used a data-driven cluster analysis to classify patients into two distinct clusters. 181 

Cluster 1 (increased serum insulin concentrations) was associated with lower levels of thrombotic 182 

parameters, compared to cluster 2 (reduced serum insulin concentrations) which was ubiquitously 183 

associated with a raised prothrombotic milieu. Within our study, more pronounced circulating insulin 184 

levels may represent a heightened level of insulin sensitivity, which, may have acted to better counteract 185 

the increase in post-prandial inflammation and prothrombosis, potentially via increased vasodilation13, 186 

and the suppression of vascular adhesion molecules13, 14 and prothrombotic-profibrinolytic factors 13, 15-187 
18 such as PAI-1 and human tissue factor, by, at least in part, suppressing monocyte chemoattractant 188 

protein-1 (MCP-1) and nuclear factor kappa B(NK-kB)16. Given that the higher-risk cluster was also 189 

characterised by lower eGDR (indicative of increased insulin resistance), it supports the concept that 190 

insulin resistance in T1D is a major driving force in increased vascular risk19. For example, in patients 191 

with type 2 diabetes, as well as non-diabetes individuals with obesity, the impact of insulin on 192 

vasodilation is blunted20, 21, and we have recently shown that in individuals with T1D, insulin resistance 193 

(as measured by eGDR) is associated with an increased risk of vascular complications19. However, 194 

whether decrements in vasodilation and the subsequent downstream inflammatory and/or thrombotic 195 

events is due to insulin resistance or whether insulin resistance is a by-product of reduced skeletal 196 

muscle perfusion and downregulated glucose uptake is not known.   197 

 198 

Irrespective of the mechanisms at play, the results from this preliminary exploratory study demonstrate 199 

a need for more targeted and personalised approaches that seek to address the unpredictability 200 

associated with current insulin dosing strategies seen in routine clinic, which, would seem to interact 201 

with the heterogeneity in vascular risk11. Existing treatment guidelines focus on individualising insulin 202 

dose, adjusting as necessary according to meal composition and the results of regular glucose 203 

monitoring1. However, we suggest that current recommendations are limited in that they do not account 204 

for individual physiological and clinical characteristics which are a known source of heterogeneity in 205 

response to insulin therapy22. It was not our intention to establish distinct subtypes of T1D 206 

representative of different aetiologies, and we do not claim that the clustering applied here is in anyway 207 

an optimal classification for T1D vascular risk. Additionally, whether patients can move between clusters 208 
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needs to be shown in future prospective studies and the exact overlap of weaker association signals 209 

warrant investigation in larger cohorts. Indeed, it may be possible to refine the stratification further 210 

through inclusion of additional cluster variables, such as genotypes, or genetic risk scores. 211 

 212 

In conclusion, this preliminary and exploratory study characterises the interaction between 213 

interindividual responses in subcutaneously injected rapid-acting insulin with parameters of vascular 214 

health in patients with T1D treated with multiple daily injections. Using an unsupervised machine 215 

learning approach to establish a novel classification of patients on the basis of pharmacokinetic 216 

summary statistics that characterise rapid-acting insulin responses, we found that an attenuated 217 

temporal insulin response characterised by a lower iAUC, peak concentration, and protracted time to 218 

peak, clusters with an elevated prothrombotic profile. Future work is planned to interrogate further the 219 

mechanisms underpinning interpersonal variation in insulin concentrations and relationship with 220 

adverse vascular risk profile. 221 
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FIGURES 

 

Figure 1. Interindividual responses in serum insulin summary statistics. The distribution of standardised responses 

following subcutaneous administration of rapid-acting insulin presented as (A) iAUC following adjustment for 

individualised rapid-acting insulin dose requirements, (B) %peak concentrations, and (C) Time to peak insulin 

concentrations.  
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Figure 2. Individual patient clinical profiles (y axis) ranked by iAUC responses adjusted for individualised rapid-acting 

insulin dose requirements (normalised data). eGDR, Estimated Glucose Disposal Rate; HTF activity, Human Tissue 

Factor activity; PAI-1, Plasminogen Activator Inhibitor-1; TNFα, Tumour Necrosis Factor alpha. 
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Figure 3. Pearson correlation coefficient matrix illustrating the association between baseline patient characteristics 

and serum insulin iAUC adjusted for individualised rapid-acting insulin dose requirements. Pearson correlation 

coefficients (r) are highlighted in white text. r ≥ 0.70 = strong association; r = 0.50 – 0.70 = moderate association; r = 

0.30 – 0.50 = weak association; r ≤ 0.30 = negligible association. eGDR, Estimated Glucose Disposal Rate; Human 

Tissue Factor activity; PAI-1, Plasminogen Activator Inhibitor-1; TNFα, Tumour Necrosis Factor alpha; HTF activity.  
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Figure 4. Cluster characteristics. Variables are presented as standardised Z scores. eGDR, Estimated Glucose 

Disposal Rate; Human Tissue Factor activity; PAI-1, Plasminogen Activator Inhibitor-1; TNFα, Tumour Necrosis Factor 

alpha; HTF activity. 
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Figure 5. Patient characteristics stratified by cluster allocation. Black circles = cluster 1; white circles = cluster 2. 

Statistically significant differences between clusters calculated using independent t-tests. * denotes P<0.05; ** 
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denotes P<0.01; *** denotes P<0.001. eGDR, Estimated Glucose Disposal Rate; Human Tissue Factor activity; PAI-1, 

Plasminogen Activator Inhibitor-1; TNFα, Tumour Necrosis Factor alpha; HTF activity.  
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TABLES 

Table 1. Baseline characteristics of patients  
Clinical parameters  

n 32 
 Age (years) 31±7 

Male (%) 66 
 BMI (kg/m2) 26.03±4.82 
 eGDR 7.73±2.61 
 Hypertension (%) 31 
 HbA1c (mmol.moL [%]) 57.97±8.85 [7.45±0.81] 
 Diabetes duration (years) 17±9 
 Rapid-acting insulin dose (IU) 9±3 
 Insulin apart users (%) 63 
Vascular and inflammatory parameters  
 TNFα (pg/mL) 4.28±1.05 
 Fibrinogen (μg/mL) 2221±1238 
 HTF activity (pmol/mL) 108.93±52.20 
 PAI-1 (ng/mL) 1.23±0.75 
Metric variables presented as mean±SD; categorical data presented as frequency (%). eGDR, Estimated Glucose 
Disposal Rate; Human Tissue Factor activity; PAI-1, Plasminogen Activator Inhibitor-1; TNFα, Tumour Necrosis 
Factor alpha; HTF activity. 
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Supplementary material 

 
Supplementary Figure 1. Pearson correlation coefficient matrix illustrating the association between baseline patient 
characteristics and serum insulin peak adjusted for individualised rapid-acting insulin dose requirements. Pearson 
correlation coefficients (r) are highlighted in white text. r ≥ 0.70 = strong association; r = 0.50 – 0.70 = moderate 
association; r = 0.30 – 0.50 = weak association; r ≤ 0.30 = negligible association. eGDR, Estimated Glucose Disposal 
Rate; Human Tissue Factor activity; PAI-1, Plasminogen Activator Inhibitor-1; TNFα, Tumour Necrosis Factor alpha; 
HTF activity. 
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Supplementary Figure 2. Pearson correlation coefficient matrix illustrating the association between baseline patient 
characteristics and serum insulin time to peak adjusted for individualised rapid-acting insulin dose requirements. 
Pearson correlation coefficients (r) are highlighted in white text. r ≥ 0.70 = strong association; r = 0.50 – 0.70 = 
moderate association; r = 0.30 – 0.50 = weak association; r ≤ 0.30 = negligible association. eGDR, Estimated Glucose 
Disposal Rate; Human Tissue Factor activity; PAI-1, Plasminogen Activator Inhibitor-1; TNFα, Tumour Necrosis Factor 
alpha; HTF activity. 
 


