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We report a series of tranylcypromine analogues containing a fluorine in the cyclopropyl ring. A 

number of compounds with additional m- or p- substitution of the aryl ring were micromolar 

inhibitors of the LSD1 enzyme. In cellular assays, the compounds inhibited the proliferation of 

acute myeloid leukemia cell lines. Increased levels of the biomarkers H3K4me2 and CD86 were 

consistent with LSD1 target engagement.  
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The methylation of lysine residues is an important post-
translational modification that occurs in histone proteins in the 

nucleosome as well as in non-histone proteins. The process is 

dynamically reversible through the action of lysine demethylases  

(KDMs), a family of enzymes that are further subdivided into 
the lysine-specific demethylases (KDM1, two human isoforms 

LSD1  and LSD2) and the Jumonji C demethylases (KDM2-7, 

over twenty human isoforms).
1
 Historically, LSD1 was the first 

demethylase to be discovered and is recruited to the nucleosome 
as a component of diverse multi-protein complexes. Depending 

on the context and splice variant, LSD1 can exert either an 

activating or repressive effect on gene transcription by the 
demethylation of histone H3K4, H3K9 or H4K20 lysine 

residues.
2-4

  

Although LSD1 is essential for normal function, its 
dysregulation in cancer, CNS disorders and viral infection has 

propelled interest in LSD1 as a drug discovery target. LSD1 

shares a mechanistic homology with monoamine oxidase (MAO) 

as both enzymes cleave a substrate C-N bond to give the 
dealkylated amine and an aldehyde using FAD as an oxidizing 

cofactor (Fig 1). A number of diverse small molecule leads 

targeting LSD1 have been reported.
5,6

 Some well-established 

MAO inhibitors also inhibit LSD1 among which the approved 
antidepressant tranylcypromine 1 (Fig 2) is the best 

characterized, acting as a suicide substrate that undergoes ring 
opening to iminium radical 2 that covalently modifies and 

inactivates the FAD cofactor. 

 

 

Fig. 1. Oxidative C-N cleavage by MAO and LSD enzymes. 

 

Through LSD1 inhibition, tranylcypromine promotes 

differentiation in acute myeloid leukemia (AML) cells to 

overcome their resistance to all-trans-retinoic acid (ATRA).7  

Consequently, the drug is undergoing repositioning as an 

anticancer agent and clinical trials in combination with ATRA 
are underway.

 
Meanwhile, as tranylcypromine itself is relatively 

modest in LSD1 inhibition (IC50 ~ 25 µM), medicinal chemistry 

efforts have focused on second-generation analogues with higher 

potency.
8–20

 
 

 

 
Fig. 2. Mechanism of MAO and LSD inactivation by tranylcypromine. 

 

Despite the mechanistic similarity between amine oxidases, the 

structure-activity relationships among tranylcypromine 
analogues is distinct for MAOs versus LSD1. For example, we 

found that a cyclopropylamine bearing an alkoxy substituent in 

lieu of the aromatic ring in 1 was a nanomolar MAO inhibitor 

but inactive against LSD1.
21

 In the present study, we were 

interested in the feasibility of incorporating cyclopropyl ring 

fluorination in tranylcypromines. While selected examples were 

previously reported as MAO inhibitors,
22,23 

this type of 

substitution pattern had not been explored for LSD1 inhibition. 

 In preliminary experiments, we examined the N-benzyl 

derivative 3 (Fig 3) of monofluorinated tranylcypromine and 

homologated analogues 4 and 5 that contain a spacer between 

the amine and the cyclopropyl ring. In a fluorescence-based 
LSD1 enzyme assay that monitors H2O2, the product of FAD 

turnover, through its reaction with Amplex Red,12 these 

compounds did not significantly inhibit LSD1 at a concentration 

of 25 µM (the IC50 of tranylcypromine). The results are 

consistent with earlier studies by Burger and Haufe where 3-5 or 

their non-fluorinated congeners were inactive against MAOs.22,24 

Interestingly, the diphenyl analogue 6 was more potent than 

tranylcypromine with an IC50 2.1 ± 0.8 µM. Moreover, this is an 

increase by an order of magnitude compared to the activity 

against MAO A (IC50 18 ± 3 µM) or MAO B (IC50 37 ± 2 µM).23 

Overall, the experiments suggested that fluorination can be 

tolerated in the tranylcypromine scaffold for LSD1 inhibition. 
Since many analogues with a higher level of activity than the 

parent drug feature aromatic ring substitution, we next turned to 

compounds that contained additional functionalization of the 

benzene ring.
 

 
Fig. 3. Structures of initial tranylcypromine analogues investigated. All 

compounds are racemates. 

 

We investigated a series of twenty-seven fluorinated 

tranylcypromines 7-10 (Fig 4) in which the phenyl ring 

contained electron donating or electron withdrawing substituents 
in the para or meta-position. Compounds 7-10 were prepared 

from the corresponding α-fluorostyrenes through a four step 

procedure (details in the Supporting Material) involving Cu(I)-

catalyzed cyclopropanation with diazoacetates, ester 



  

saponification to the acids, Curtius rearrangement of the acids to 

Boc-amines and deprotection of the Boc group.
22,23,25 

For the 
majority of compounds, two diastereomers were tested with the 

phenyl group located in either a trans (7, 9) or cis (8, 10) 

relationship with respect to the amine. 

 
 

Fig. 4. Structures of fluorinated tranylcypromines with m- or p-aryl 

substitution. All compounds are racemates. 

 

After screening at a single concentration in the LSD1 enzyme 

inhibition assay, dose-response curves were determined for 

analogues with significant activity (Table 1). The simplest 

analogues 7a and the cis diastereomer 8a feature the addition of 

a fluorine without further modifications. Although 7a and 8a are 

respectively three-fold more active or equipotent to 

tranylcypromine in MAO B inhibition,
22

 a surprising loss of 

activity was observed for LSD1 inhibition. Meanwhile, the 
addition of methoxy, fluoro or trifluoromethyl groups to the 

phenyl ring of tranylcypromine is known to boost LSD1 

inhibition.
14,19,24

 We found that introduction of these substituents 

restored the ability to significantly inhibit LSD in the fluorinated 

analogues 7g, 9a, 9c, 9d and 10d. Finally, tranylcypromine 

analogues containing the Cl, NO2 or SF5 substituents are 

undisclosed as LSD1 inhibitors in the literature. Our results 

indicate all three functional groups are compatible with affinity 

for this target as 7h, 7i, 9b and 9e were micromolar inhibitors. 

Three of the meta-substituted fluorinated analogues 9a-c 

together with a cis diastereomer 10c were selected for further 

evaluation in growth inhibition assays using the acute myeloid 

leukemia (AML) cell lines MV4-11 and THP-1 (Table 2). The 

nitro- substituted analogue 9b was inactive in the tested 
concentration range whereas the methoxy- analogue 9a and both 

fluoro- diastereomers 9c and 10c were micromolar in potency. 

Although 9c differs from tranylcypromine only by the addition 

of two fluorine atoms, it is >100-fold more potent in the cell 

assay. We profiled the effects of 9a on the levels of biomarkers 

in MV4-11 cells to verify that the antiproliferative effect is due 
to the pharmacological suppression of LSD1. The compound 

exhibited a dose-dependent increase in H3K4me2 levels 

consistent with the inhibition of lysine demethylation (Fig 5A). 

In addition, treatment with 9a increased the expression levels of 

CD86 (Fig 5B), a cell surface biomarker recently proposed as a 

surrogate readout for LSD1 inhibition.
26

  

In summary, we have studied the effect of cyclopropyl ring 

fluorination on LSD1 activity within the tranylcypromine class 

of irreversible amine oxidase inhibitors. The addition of a 

fluorine atom to tranylcypromine by itself results in decreased 

LSD1 inhibition (unlike the increase in MAO inhibition). 

However, the introduction of an additional substitution in the 
phenyl ring has yielded a number of fluorinated LSD1 inhibitors 

that are more active than tranylcypromine. Overall, meta-

substitution is preferred to para- as all five meta-analogues 9a-e 

displayed enhanced activity. Nevertheless, with the CF3- or SF5- 

substituents, the para-analogue was more active than its meta-

counterpart. Although the diastereomers that retained 
tranylcypromine’s trans relationship between the aryl group and 

the amine (7 versus 8, 9 versus 10) were generally superior, in 

the case of 9c/10c and 9d/10d the differences were negligible. 

Selected compounds 9a, 9c and 10c inhibited cell proliferation in 

AML cell lines and increased the levels of the biomarkers 

H3K4me2 and CD86, supporting a LSD1-dependent cellular 
mechanism of action. 

 

 

 

 

 

 

Table 1: IC50 of fluorinated tranylcypromines in the LSD1 enzyme assay, ± STD (n=3). The reference compound tranylcypromine (1) has an IC50 of 25.0 ± 9.5 

µM in the assay. 

R Comp. IC50 (µM) Comp. IC50 (µM) Comp. IC50 (µM) Comp. IC50 (µM) 

H 7a >25 8a >25     

Me 7b >25 8b >25     

OMe 7c >25 8c >25 9a 1.2 ± 0.1 10a >50 

OEt 7d >50 8d >50     

NO2 7e >50 8e >50 9b 6.8 ± 1.3 10b >50 

F 7f >25 8f >25 9c 6.7 ± 1.3 10c 4.1 ± 0.03 

CF3 7g 2.1 ± 0.2 8g >25 9d 8.2 ± 0.8 10d 9.2 ± 0.05 

SF5 7h 0.8 ± 0.2 8h >25  9e 8.4 ± 0.3 10e >50 

Cl 7i 6.7 ± 0.5       

 

Table 2. IC50 of fluorinated tranylcypromines in cell growth proliferation assays, (72 h incubation) ± STD (n=5) with tranylcypromine 1 as a reference. 

 

Compound MV4-11 IC50 (µM) THP-1 IC50 (µM)  

1 630 ± 8.4 810 ± 3.9 

9a, R = OMe 1.9 ± 0.1 8.5 ± 0.4 



  

9b, R = NO2 >30 >30 

9c, R = F 4.9 ± 0.4 1.6 ± 0.3 

10c, R = F 8.2 ± 0.4 7.0 ± 0.2 

 

 

Fig.3: (A) Western blot analysis of the methylation state of H3K4 after treatment with compound 9a for 48 h. Blotting membranes were probed for anti-

H3K4me2, H3 (total) and β-actin (loading control). (B) CD86 induction in MV4-11 cells. Bars indicate percentage of cells expressing CD86 upon treatment with 

3 µM of 9a. Statistical significance for CD86 expression determined with Student’s t-test; values are expressed as means ± STD (n=3); ****p < 0.0001.  
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