Al-Romaimi, Khamis, Baglee, David and Dixon, Derek (2024) Strategic Asset Management Health Index for Predicting Power Transformer Health Conditions. Int. J. of Strategic Engineering Asset Management. ISSN 1759-9741 (In Press)

Downloaded from: http://sure.sunderland.ac.uk/id/eprint/17340/

Usage guidelines
Please refer to the usage guidelines at http://sure.sunderland.ac.uk/policies.html or alternatively contact sure@sunderland.ac.uk.
Strategic Asset Management Health Index for Predicting Power Transformer Health Conditions

Khamis Al-Romaimi, David Baglee, Derek Dixon

Faculty of Technology, University of Sunderland

Abstract: Asset Management assists in operating electrical utilities at high performance and low cost. The Power Transformer Health Index (PTHI) is considered a good health condition evaluation and decision-making tool. PTHI is used to prioritize maintenance decisions, drive maintenance strategy, manage failure impact before it occurs, asset lifecycle planning, deferral big capitals, manage spare parts plan, and extend power transformer life. This paper presents the PTHI models' investigation which was conducted on 4324 transformer records using various Artificial Intelligent Machine Learning (ML) algorithms: Artificial Neural Network (ANN), Support Vector Machine (SVM), Naïve Bayes (NB), Decision Tree (DT), Random Forest (RF) and k-Nearest Neighbours (KNN) in R programming language. Several evaluation metrics present comparable analyses using accuracy, sensitivity, specificity, and F1 score. According to the results, the SVM model was found applicable to local electrical utility transformers' health condition assessment. The paper addressed integrating international best practices and AM into the HI model.

Keywords: Power Transformer; Asset Management; Health Index; Electrical Utility; Decision Making; Strategic Investment Planning; R Programming Language; Machine Learning
1. Introduction

Asset management is described in (ISO55001, 2014) as “systematic and coordinated activities that linked together to achieve the common business strategy, vision, and mission”. Power transformers are considered as one of the important, reliable, and expensive assets in electricity networks, this asset is assumed to remain in service for at least 30-40 years (Hillary et al., 2017).

Over the past decade, the Power Transformer Health Index (PTHI) has been considered a reliable health condition assessment tool to classify the power transformer health condition based on the Health Index (HI) model results. PTHI is considered a building block in the overall AM process (Deloitte, 2014). The best performer among the electrical utilities is the ones that operate their power system network on high service and low cost (ITOMS, 2019; ISO55001, 2014). PTHI objectives must be defined in the asset maintenance strategy (Jardine and Tsang, 2021). In this paper the power transformer health condition categorised into the following five classes: very good, good, moderate, bad, and very bad.

Artificial Intelligence (AI) is becoming an innovative solution to improve actual data accuracy for PTHI calculations. Over the last few years, AI has become the best tool for designing PTHI due to rapid development in computer science, and data processing technology has gained rapid development too. One of the important research area and applications for AI using machine learning is investigating the health condition of the electrical transformers. A need to enable a predictive maintenance plan that forecasts the probability of power transformer breakdown and warrants performing the required quality of service since AM is all about a good quality of service ISO55001 (2014). Also, to enable preventing advance
repair and earlier breakdown as some transformer downtime is very costly for electrical utilities due to its critical importance and strategic location of this unit within the electrical power supply network. Therefore, using AI is important to automate the decision-making for the required action.

The paper aims to promote the integration of the computational science of artificial intelligence and the engineering process of PTHI into an overall asset management framework as a strategic solution for the electrical utility. The contribution of improving business knowledge and introducing AM culture is challenging to support effective decision-making, especially within noisy data and diverse decision-making situations for the categorised assets based on a good understanding of AM Standard ISO55001 framework as strategic solutions. The AM technical and strategic solutions must be considered in practice to enable good maintenance decisions and lifecycle planning for the power transformers through a good PTHI condition assessment.

While research on the theoretical aspects of health index-based maintenance planning for transformers does exist, however, there is limited research in terms of real-world case studies and practical implementation practices on big datasets as practical studies are particularly important to deliver valuable insights and benefits of implementing AM practice within electrical utilities.

2. Literature Review

2.1 Health Index Identifying Transformers Condition

HI is a tool that merges all maintenance strategy condition monitoring information into a single value (Jahromi, 2009). To ensure HI represents the overall power transformer health condition, it requires incorporating field
inspections and laboratory testing, historical maintenance, and load profile records which are clearly defined within the maintenance strategy (Taengko and Damrongkulkamjorn, 2013). Hence, each maintenance strategy is supported by the justified purposes of the HI assessment tool (CIGRE 761, 2019).

HI works by aggregating and processing available real data from the electrical utility which is collected from various locations and different work orders into an overall condition evaluation system that serves the implementation of the maintenance strategy (PAS55-1, 2008).

A conventional weighted sum is the most used method to calculate the HI of the power transformers (Nadrian et al., 2008; Jahromi et al., 2009; Kadim et al., 2018; Singh and Swanson, 2018). The approach starts by comparing each parameter to a scoring table and then weighting each parameter based on its importance. The individual scores are combined into a single index that reveals the overall health condition of the transformers.

Figure 1 indicates the main condition factors which are utilized in this analysis collectively including the related scoring and weighting factors for PTHI assessment.
Figure 1 Health Index scoring calculation approach for power transformer.

Several transformer asset management strategies have been suggested in (Naderian et al., 2008). Standardization of maintenance strategy and HI for a certain country, utility or region is essential to ensure capturing the whole required data and process based on one agreed practice and standard even if it is for different assets and networks (ITOMS, 2019; Annex NGET A14.04, 2019). Mastering these data to one master dataset (asset register) will serve the whole electrical networks within the related region or country, which includes generation, transmission, and distribution networks. The maintenance strategy works based on regular updates based on the results of the HI as well the changes that can occur on HI design for power transformer health condition.
ML models have been used widely in the literature in recent years and have shown good and acceptable results in assessing power transformer health conditions. The HI model has been studied in (Arshad & Islam, 2014) to support optimum and reliable transformer strategic asset management decision-making that includes replacement, refurbishment, and relocation. Benhmed et al. (2018) investigated an approach based on feature selection and classification techniques to reduce assessment complexities of power transformer assessment. The investigation asserted the importance of the feature selection process in producing effective health index diagnoses of power transformers. It was found that water content, acidity, Breakdown Voltage (BDV) and Furfuraldehyde (FFA) to be the most important features to estimate the transformer HI. The accuracy achieved was 91.81% using RF and 91.81% with KNN with the K value equal to three.

Alqudsi & El-Hag (2019) also demonstrated the usefulness of using ML for HI problems using varies ML algorithms. The ML models in the experiments achieved high accuracy scores on both all features and reduced features experiments with three training/testing scenarios, NB (94.4%), ANN (95.1%), SVM (92.1%), KNN (95.6%), and RF (96.6%).

Ahmad et al. (2022) also studied the performance of the DT classifier and RF classifier, as the models were trained on a total of 213 data samples power transformers using the Python ML scikit-learn library. DT achieved an accuracy of 96.3%, whereas RF achieved an accuracy of 94.4%.

Rediansyah et al. (2021) also investigated multiple AI-based HI models. The result obtained in this study shows the RF classifier as the best condition classifier with an accuracy percentage of (97.3%). while other classifiers are DT (96.0%), ANN (91.3%), SVM (89.3%), NB (70.7%), and KNN (70.0%).
2.2 Asset Management Practice Supporting HI Aim

AM process is constrained by the principles of capabilities, level assurance, output focus, and learning organization. This section describes the importance of AM as a practice, AM standard as a framework, and the benefits of implementing AM roadmap. HI is considered as a building block for the holistic big picture of the AM process (Deloitte, 2014), and it covers all asset types (Tang & Wu, 2011).

AM standard covers strategic and technical practices that consider every asset as a valuable asset including human, physical assets, intangible assets, money, and information (Asset Management Anatomy, 2015). Efforts are required from electrical utilities to be aware of the value of practicing good AM best practices and sustain with the required continuous improvement level which is difficult and costly to manage over their long service that drives the electrical utility network at a high service and low cost.

AM has its standards which were introduced in 2014 (ISO 55000 series, 2014). AM also has its philosophy, journey, and culture that not every electrical utility is considered as AM utility based on the best performer (ITOMS, 2019). AM was not known until the 1980s when the term AM started to be used in the private and public sectors concerning physical assets in various parts of the world (ISO 55000 series, 2014).

AM strategic standard role is important with it is technical field experience role which is the latest considered as a well-known practice by each utility. Integrating the two roles is the key improvement process because it will provide useful information from a large amount of redundant dirty data, and improve, and speed up decision-making based on the quality of provided information to/by the HI.

Technically, it is a challenge for AM electrical utility to develop a dependable HI process using AI and machine learning algorithms as a
Strategic Asset Management Health Index for Predicting Power Transformer Health Conditions

strong reliable condition monitoring control system against bad data management practices because a good AM means it is all about integrating the whole business to work together from the highest to the bottom hierarchy of the organization in terms of better HI decision making that reflect the required action, time scale and the required budget or hierarchy in terms of asset register level that record all processes and provide useable and useful data portfolio.

In addition to the earlier definition, AM defined as “systematic and coordinated activities and practices through which an organization optimally and sustainably manages its assets and asset systems, their associated performance, risks and expenditures over their life cycles for the purpose of achieving its organizational strategic plan” in (Asset Management an anatomy, 2015 & PASS55, 2008).

AM aids electrical utilities to appreciate the value from their assets in the accomplishment of its organizational business objectives though it needs to balance all the financial, environmental, and social costs, risk, quality of service and performance associated with assets (Theiam.org., 2022). The benefits are achieved and grounded on developing a good AM implementation roadmap that incorporates AM standards clauses and subclauses. This is a long-term journey that begins by presenting AM culture before achieving the mature and AM certification level (Theiam.org., 2022) that improves the quality of the actual dataset for the HI power transformer health condition investigation.

2.2 Health Index Driving Maintenance Strategy.

The maintenance strategy improves the secure operation and maintenance of the power transformer and decreases its operating expenditures. The achievement of these two targets leads to the
development and implementation of a good HI as a condition appraisal tool that can be used for an AM power transformer that serves electrical utilities in any investment decision-making. The desirable improvement of HI results will require an action for the estimated power transformer health condition which should be estimated as accurately as possible like giving accurate medication by doctors to patients. If the conditions are incorrectly diagnosed, the cost savings might vanish, additional costs emerge, and time normalisation utilising best labours and resources complications.

3. Research Methodology

This paper focuses on developing power transformer HI based on the recent development of AI ML approaches using various academic literatures, a good understanding of AM principles, and utilizing maintenance strategy practice.

In addition, the AI ML models are developed using real data to reflect it is important and overcome the HI issues in terms of high dependency on expert judgment and missing data challenges (Kadim, 2018).
3.1 R Programming Language for Developing HI Machine Learning Models

R programming language is a popular free and purpose-specific language constructed to accelerate statistical analysis and machine learning. This language enables to perform machine learning models and statistical analysis easily using tons of packages (Nwanganga & Chapple, 2020).

4. Case Study Design Using Artificial Intelligence Health Index’s

In this case study, a real dataset initially 969 power transformers under 69kV voltage was planned to be used to build multiple AI ML models to predict power transformer health conditions as a multi-class classification problem in R programming language. However, during data analysis, a data imbalance problem is very clear as shown in the PTHI condition data distribution shown in Figure 3.

Figure 3 PTHI Condition data distribution.

Simulating records was considered as a solution to the data imbalance problem. Based on the ranking rule of IEEE for DGA and oil grading method of transformers and fuzzy rules adopted from (Abu-Elanien et al., 2012), a simulation was conducted to obtain transformer data for the missing class of very bad. Also, more data was stimulated for the classes
bad, very good, and moderate to ensure the data were balanced. To ensure the balanced data at the required quality, the simulated data/records were injected into the PTHI conventional mathematical model which is built upon (IEC 60599, 2022; IEC 60505, 2011; IEEE C57.104, 2019; IEEE C57.106,2015) standards to confirm the HI results and the power transformer health condition are correct and since the ML model needs inputs and outputs data. The idea of using the HI mathematical model is to confirm the simulated data are like normal real data as well as balance the dataset records. Therefore, this action balanced the dataset records and obtained a new dataset that is acceptable for all the HI scenarios and beneficial for building ML models. The minority classes were oversampled using the stimulation of more data techniques. To ensure that the predictive model is capable and correctly predicting the cases of the minority group. The datasets for under 69kV transformers include both 66 kV and 33 kV transformer records since both follow the same ranges of the IEC and IEEE standards (Nadrian et al.,2008; Abu-Elanien et al., 2012).

Table 1 Data Before Simulation

<table>
<thead>
<tr>
<th>Condition</th>
<th>Bad</th>
<th>Good</th>
<th>Moderate</th>
<th>Very Bad</th>
<th>Very Good</th>
</tr>
</thead>
<tbody>
<tr>
<td>No of Records</td>
<td>17</td>
<td>769</td>
<td>178</td>
<td>0</td>
<td>5</td>
</tr>
</tbody>
</table>

Table 2 Data After Simulation

<table>
<thead>
<tr>
<th>Condition</th>
<th>Bad</th>
<th>Good</th>
<th>Moderate</th>
<th>Very Bad</th>
<th>Very Good</th>
</tr>
</thead>
<tbody>
<tr>
<td>No of Records</td>
<td>886</td>
<td>858</td>
<td>1022</td>
<td>768</td>
<td>790</td>
</tr>
</tbody>
</table>
4.1 Machine Learning Models

A description of the AI ML algorithms used is given below:

1. Artificial Neural Network (ANN) Algorithm: it is AI algorithm that can be applied for binary classification modelling based on various literatures as the algorithm performs effective results as shown in the research paper presented by (Islam, 2018). An illustration of ANN is presented in Figure 5 below.

Figure 5 Artificial Neural Network model design for the HI to be implemented.
2. Support Vector Machine (SVM): The SVM model positioned a linear boundary between the unlike classes and position input parameters concerning which the boundary is expanded (Samanta et al., 2003). But SVM algorithm struggles to establish a hyperplane for nonlinear datasets. Hence, the Kernel function is the substitute for resolving this issue (Alqudsi & El-Hag, 2019). A presentation of SVM is presented in Figure 6 below.

Figure 6 Drawing of the Support Vector Machines (SVM) method.

3. Naïve Bayes (NB): NB is also called as a probabilistic classifier reliant on Bayes theorem (Mitchell, 2015). It is simpler to understand NB algorithm through describing the ABCs of Bayesian statistics. NB algorithm is reliant on hypothesis which the predictor variable is tentatively independent assumed the category of the statistics model in doubt which means the posterior probability of experiment for specific class granted the predictor variables is calculated applying Bayes theorem (Mitchell, 2015). Application of Bayesian theorem to
power transformer health condition classification is demonstrated in the below figure 7.

Figure 7 Illustration using Bayesian theorem which is the base of NB algorithm.

$$P(\text{Faulty PT} | \text{Healthy PT}) = \frac{P(\text{Healthy PT} | \text{Faulty PT}) \cdot P(\text{Faulty PT})}{P(\text{Healthy PT})}$$

4. Decision Tree (DT): DT algorithm works by calculating the information obtained from the attributes and the maximum normalized information is then employed to split the instances into subsets of the same class label. The same process is repeated with all split subsets as children of a node. Lastly, the tree is trimmed by eliminating the branches that do not assist in classification (Alqudsi and El-Hag, 2019).

Figure 8 Illustration of the Decision Tree (DT) method.
5. Random Forest (RF): Is considered an ensemble algorithm as it consists of multiple decision trees. The result of the algorithm is the vote agreed by most of the decision trees (Alqudsi and El-Hag, 2019). It is stated that RF does not overfit as more trees are added which causes limiting value for the generalization error. With RF, it is easy to measure the relative importance of the input features to the target variables (prasojo et al., 2021).

Figure 9 Illustration of the Random Forest (RF) method.

6. k-Nearest Neighours (k-NN): In the featured space, consider three neighbours according to Euclidean distance. The new instance will be allocated to the class with the most neighbours. (Kherif et al., 2021). For example, the new instance in Figure 10 below has three neighbours in the circle drawn and will be allocated to the unhealthy transformer class as shown it has two neighbours of class unhealthy transformer and 1 of class healthy.
Figure 10 Illustration of the K-Nearest Neighbours (KNN) method.

Table 3 Performance metric for PTHI condition classification (Caret: Classification and regression training - the comprehensive R, 2023).

<table>
<thead>
<tr>
<th>Performance metric</th>
<th>Formula</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sensitivity</td>
<td>True Positive/ (True Positive + False Negative)</td>
</tr>
<tr>
<td>Specificity</td>
<td>True Negative / (True Negative + False Positive)</td>
</tr>
<tr>
<td>Prevalence</td>
<td>(True Positive + False Negative)/(True Positive + False Negative + False Positive + True Negative)</td>
</tr>
<tr>
<td>Pos Pred Value</td>
<td>(sensitivityPrevalence)/((sensitivityPrevalence)+((1-specificity)*(1- Prevalence)))</td>
</tr>
<tr>
<td>Neg Pred Value</td>
<td>(specificity*(1-Prevalence))/(((1-specificity)Prevalence)+((specificity)(1- Prevalence)))</td>
</tr>
<tr>
<td>Balanced Accuracy</td>
<td>(sensitivity + specificity)/2</td>
</tr>
<tr>
<td>F1 Score</td>
<td>(1+beta²) * precision * recall/((beta² * precision) + recall)</td>
</tr>
</tbody>
</table>
5. Results

AI machine learning models’ output are examined, and a comparative analysis of the result is performed using the utility dataset available, and the various ML algorithms namely DT, ANN, RF, SVM, and NB models in R programming language. Utilizing performance evaluation metric formula as shown in table 1 above. The classification was done on six input parameters: water, acidity, BDV, DF, DCG & 2-Furfuraldehyde and the results were represented as a range for each predicted condition classification. Expressions of the condition classification can oscillate between five conditions, very good, good, moderate, bad, and very bad. Very good and good is an expression that belongs to the positive concept, if it transmits the user’s satisfaction or gratitude. Bad and very bad are an expression that belongs to the negative concept if it shows dissatisfaction and actions immediately required. The RF and SVM models performed the best with an accuracy of around 93%. While NB performed the least with 87% accuracy.

Secondly, utilizing F1 score which is an accuracy metric that is used to show the percentage of the correct prediction for each class. It is identified as a harmonic means of precision and recall. It was considered for class very bad and very good because if a transformer is bad and the model predicts it wrongly as good, the effect will be catastrophic if it is neglected, and the necessary action is not taken within the time frame which can lead to not including the required budget for the related action in a real practical case. Figure 12 shows:

• For class: Very Bad, SVM, RF, and DT have F1 score of 100% which mean that the model has made no errors in predicting the very bad class.
For class: Very Good, DT performed the best with a score of (99%), followed by SVM, NB, and RF with an F1 score of 98% and KNN performed 97%. Whereas ANN performed the least with a score of 89%.

Figure 11 ML Model's Accuracy.

![ML Model's Accuracy](image)

Figure 12 F1-Score Comparison.

![F1-Score Comparison](image)
In addition, the KPIs of sensitivity, specificity, pos pred value, neg pred value, precision, recall, and F1 score for RF and SVM as shown in Figures 13 and 14.

Figure 13 RF performance Comparison.

Figure 14 SVM performance Comparison.
The specificity measures for class very bad are the highest in all developed models with the values of above 98%, followed by class very good. Where ANN has the highest specificity for class bad, SVM has a good performance as the SVM for classes: bad, good, very bad and very good are above 97.7% as shown in figure 15. Furthermore, sensitivity measures for SVM are equally good for class moderate, very bad and very good which are above 96%.

Figure 15 Specificity measure for ANN, NB, KNN, SVM, DT, RF per condition class.
Strategic Asset Management Health Index for Predicting Power Transformer Health Conditions

Figure 16 Sensitivity measure for ANN, NB, KNN, SVM, DT, RF per condition class.

Table 4 Machine Learning models performance comparison for identifying transformer in very bad condition that needs urgent asset management interventions.
Figure 17 Decision Tree model plot.

Figure 17 shows the results obtained from the DT model that represents the attributes that affect the decision model as Ethylene (C₂H₄) gas, Breakdown voltage (BDV), and age. The age was found to be one of the most significant features to assess the transformer health condition based on the used dataset. Predicting the real condition of the transformer is found to enable extending the transformer age to an additional 20 years (Foros and Istad, 2020). Hence, deferral of unnecessary costs for transformers it needs sometimes minor actions and avoiding wrong actions for the older transformers aged (+70) years and youngest (-5) years. This also assists in considering the optimum cost value for preventing an increase in operation and maintenance costs which might be higher than the initial project value (Asset Management Anatomy, 2014). Although this will enable new replacements to take place at the required timeframe.

6. Discussion

AI algorithms offer various solutions to overcome the HI issues in terms of the lack of data or the high dependency on expert judgment (Kadim, 2018 and Tang & Wu, 2011). The previous studies agreed that HI assessment focuses on studying the critical, expensive, and reliable assets including
power transformers or overhead lines. AI is considered a solution to overcome the HI method weakness as it is more efficient with applying AI algorithms and machine learning methodology. This is more vital and a further improvement in HI for electrical utilities. AI leads to intelligent HI by developing the required algorithms that work with the required and available dataset. AI is used to solve dataset issues to predict the related numerical missing data and improve data uncertainty. This will improve the HI estimation accuracy, but the dataset will remain as estimated data despite the fact the data is checked using the mathematical conventional model. Nevertheless, it confirms that HI findings are useful for finding faulty transformers in a large fleet of power transformers and considering appropriate actions.

Most asset failures of any power systems including power transformers are seen in electrical active part components, plant control systems (actuators), and sensors, which may cause dangerous situations, high repairable cost, and long downtime (CIGRE. Technical Brochure, 2007).

As a result, there is strong stimulation to improve the operation and maintenance reliability of the HI system by using real-time monitoring, prognosis, and resilient control techniques for the HI tool. This is because there is a large amount of data that shall be expected either recorded via any of the online systems including Supervisory Control and Data Acquisition (SCADA), Enterprise Resources Planning (ERPs) systems, asset register, collected from other data storage and/or obtained through visual site inspection.

Even though in this paper the best model’s accuracy result achieved was 93.7% for RF and 93.5% for SVM, which is less percentage compared to other literature including (Ahmed et al., 2022; Alqudsi & El-Hag, 2019;
Strategic Asset Management Health Index for Predicting Power Transformer Health Conditions

Rediansyah et al., 2021). However, this is assumed to be due to the sample dataset size, type, and data distribution used in the AI ML modeling experiments. Ahmed et al. used a small dataset and didn’t mention the data distribution of the training dataset. Whereas Alqudsi & El-Hag (2019) used an imbalanced dataset as the ratio of bad to good was 1:22 in total as there were 33 transformers in bad condition and 734 in good condition. Also, Rediansyah et al. (2021) didn’t consider the condition distribution issue as the dataset size used was a total of 504 power transformers and the ratio of very bad to very good is equal to 1:17 as in total there are 10 transformers in very bad condition and 174 in very good condition.

Furthermore, the distribution of classes shows data imbalance problems without solving the data imbalance problem which is a must before experimenting/conducting ML modelling. It was found from the literature that a small sample size can result in overfitting of the model, resulting in poor generalization (Pereira et al., 2009). It has been also found that sample size negatively impacts classification accuracy (Arbabshirani et al., 2016; Varoquaux, 2018). Therefore, accuracy is not the right measurement metric for the small, unbalanced dataset, as F1 score metrics are a better choice for such evaluation. The F1 score is a good measure of the ML model’s capability of detecting transformers that need urgent actions including transformers in very bad and bad conditions. The F1 score evaluation was not considered in the previously mentioned papers, but it was considered in this paper and achieved high percentages as shown in Figure 6.

Due to limited data and challenges of the actual data, the academia can bring HI researchers to work together with the required team within the electrical utility to develop a better HI tool which can lead to better AM utility implementation since AM is about a good quality of service. The
working process and collaboration among several departments within the electrical utility will enable the development of the culture of a healthy AM environment as considers the value and importance of best practices that integrate HI with the big picture of asset management that enables the use of a better quality of real data.

7. Conclusion

Electrical utilities are keen to control future funding for assets aging challenges, specifically for reliable assets including power transformers while introducing best international practices, AM concepts, standards, and culture are important in terms of achieving the electrical utility strategic goals and reshaping for a better real dataset for HI use. Hence, it became essential to implement a good AM as most electrical utilities are monitored by technical regulatory guidance and compliance policy. This AM monitoring philosophy is part of utility master planning, government obligations, and funding price control strategy.

HI provides rich information about the improvement of operation and maintenance systems on daily decision-making for executing maintenance plans. Therefore, how to use the available data for the HI approach is the monitoring capability, which needs prognosis, and even a resilient control algorithm. AI machine learning algorithms are becoming a great interest in academia as well as in practice. This has received a huge considerable attention in fault diagnosis by the maintenance and asset management team. However, it is very complicated to get auditable useful information from a large amount of redundant imbalanced data. It is also very complicated and challenging to develop reliable monitoring tools which are prognosis, and resilient control algorithms against noisy and even bad data.
During the HI investigation it is important to investigate all the relevant data sources using available failure modes, and how those can be grouped into logical HI assessments score for power transformer and its subsystems. Such sets make sense in terms of user experience on HI assessment. Then this will gain a true value from using the HI for better timely decision making. This means improving the short-, medium-, and long-term asset lifecycle and aligning costs for Operating Expenditures (OPEX) that include operation and maintenance costs. Also, HI can play a role in reducing the Capital Expenditures (CAPEX) and mastering the whole investments into one robust Master Plan which can be named Total Expenditures (TOTEX).

Good data analysis improves HI results and helps in good decision-making. The HI scores indicate the critical of unhealthy transformers that need action from the healthy transformers that do not. These actions are varied and reflect the required optimal decision-making process whether it is routine maintenance that needs small repairs within transformer active parts or even a replacement decision for the whole power transformer. This is to ensure cost-effective decisions while considering controlling power supply interruption and preventing major system outage values that can lead to uneconomical power supply interruption.

In recent years, AI has become the main key player that plays for improving the calculation accuracy of designing and developing an effective and efficient HI. It has been introduced as an alternative super approach to estimate the value for the missing data, or data uncertainty, and for detecting power transformer health conditions.

It is found in this evaluation that for transformers in a very bad condition, SVM, RF, and DT has F1 score of 100% which mean that the models have
made no errors in predicting the transformers that require immediate action. Detecting and handling faults at early phases is a critical key for extending transformers' life to an additional 20 years. In power grid stations, power transformers are the most expensive component, therefore health index ML-based models are necessary to maximize operating the electrical network economically and efficiently and ensure the accuracy of decisions is higher than operating in-service power transformers only efficiently.

Finally, HI plays a good AM technical role in extending transformer life and managing asset lifecycle by regularly improving the AM maintenance strategies decision-making process towards improving all the electrical utility business objective and establishing preventive maintenance system that reduces unnecessary spending. This will advance the role of AM within the organizations, leading to good optimization of the investment maintenance practices, enhance grid reliability, and customer satisfaction focus, and support business efficiency by improving the quality of services and HI results accuracy.

8. References

Caret: Classification and regression training - the comprehensive R (2023), https://cran.r-project.org/web/packages/caret/caret.pdf

Delloitte. Asset Health Indices a utility industry necessity, Canadian electricity association, June 2015.

for Bearing Fault Detection", Engineering Applications of Artificial Intelligence, 16(7–8), pp. 657–665.

