
Danso,  S a m u el  O,  P r a t tip a ti,  Sin d h u,  Alqa t a w n e h,  Ib r a hi m  a n d  
N t ailianis,  Geo r gios  (2024)  Explor a tion  of  M a c hin e  Le a r nin g  
a n d  De e p  Lea r ning  Archit ec t u r e s  for  De m e n ti a  Risk  P r e dic tion  
Bas e d  on  ATN  F r a m e w o rk.  In:  2 0 2 4  2 9 t h  In t e r n a tion al  
Confe r e nc e  on  Auto m a tion  a n d  Co m p u tin g.  IEEE,  p p.  1-7.  ISBN  
9 7 9-8-3 5 0 3-6 0 8 8-2  

Downloa d e d  fro m: h t t p://su r e . s u n d e rl a n d. ac.uk/id/e p rin t /17 9 8 9/

U s a g e  g u i d e l i n e s

Ple a s e  r ef e r  to  t h e  u s a g e  g uid elines  a t  
h t t p://su r e . s u n d e rl a n d. ac.uk/policies.h t ml  o r  al t e r n a tively  con t ac t  



s u r e@s u n d e rl a n d. ac.uk.



Exploration of Machine Learning and Deep
Learning Architectures for Dementia Risk

Prediction Based on ATN Framework
Samuel O. Danso

School of Computer Science
University of Sunderland, United Kingdom.

Centre for Clinical Brain Sciences, University of Edinburgh. UK
sam.danso@sunderland.ac.uk

Sindhu Prattipati
School of Informatics

University of Edinburgh, United Kingdom
sindhuprattipati@yahoo.com

Ibrahim Alqatawneh
School of Computer Science

University of Sunderland, United Kingdom.

Georgios Ntailianis
Centre for Clinical Brain Sciences

University of Edinburgh, United Kingdom

Abstract—Despite the high incidence of Alzheimer’s disease
(AD), there is no cure for AD yet. Therefore, early identification
of individuals at higher risk of developing AD becomes critical,
as this may provide a window of opportunity to adopt lifestyle
changes to prevent or delay the onset of the disease. We propose
a novel approach to developing prediction models using Feed
forward Deep Neural Networks. Our models are built using
the EPAD LCS v.IMI dataset. We extract a combination of
brain imaging, genetics, cognitive and lifestyle features from the
dataset to build the prediction models. The prediction is based
on the ATN classification framework, with prediction categories
of Healthy, Suspected Non-Alzheimer’s Pathology (SNAP), and
Dementia due to AD continuum. We built a total of 6 prediction
models, of which 4 are based on classic Machine Learning (ML)
and 2 are Deep Learning (DP) approaches. The best DP model
outperforms the classic ML model by F1 score of 14% and AUC
score of 13%. We have demonstrated that our Deep Learning-
based model has the potential to be deployed as a screening
model to predict dementia risk at early stage of the disease.
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I. INTRODUCTION

Alzheimer’s disease (AD) is a neurodegenerative disease
and is the most common form of dementia. It is clinically
characterized by cognitive impairment and memory loss. AD
causes individuals to gradually lose their cognitive abilities,
and thus affects their regular life and their relationships.
AD brings about behavioural changes and causes cognitive
decline to the extent where the individual becomes completely
dependent on others for performing regular tasks. Additionally,
AD affects the wider society because people with dementia
also require health and social care and this has high costs
associated with it [1].

AD remains the most prevalent of all types of dementia,
accounting for over 60 % of dementia cases [2]. Therefore,
finding disease-modifying therapies for AD remains an
international priority. The most effective approach may

be to slow or prevent AD progression prior to dementia.
Secondary prevention strategies aim to identify individuals
with evidence of AD pathology but who have not (yet)
developed symptoms, that is, at a preclinical stage. To
provide a reference framework, an update on the biological
definition of AD has been published, describing the disease
solely in terms of biomarkers [3].

In 2011, the National Institute on Ageing and Alzheimer’s
Association created separate diagnostic recommendations for
the preclinical, mild cognitive impairment, and dementia
stages of Alzheimer’s disease. [3] This recommendation led
to the development of a framework that allows Alzheimer’s
disease (AD) to be defined by its underlying pathological pro-
cesses, which can be documented by examination or in vivo by
biomarkers. The diagnosis is therefore based on the biological
construct (i.e., biomarkers) instead of clinical manifestations
(i.e., symptoms/signs), and this is important for early detection.
Biomarkers are grouped into those of Aβ amyloid deposition
(A), pathological tau (T), and neurodegeneration(N), which
is therefore known as the ATN framework for classification
of dementia. The ATN classification system seeks to create
a unified framework with which researchers can generate
and test hypotheses about the interactions among different
biomarkers and cognitive symptoms [13]. The framework
enabled us to define three groups of participants as:

• AD continuum - suggesting positive amyloid with posi-
tive tau pathology and negative neurodegeneration.

• Suspected non-Alzheimer’s Pathology (SNAP) - suggest-
ing a negative amyloid with positive tau pathology and/
or positive neurodegeneration.

• Healthy - suggesting negative biomarkers.

In the last few years, improvements in medical imaging,



exponential increase in computational power of affordable
computing platforms, and greater availability of medical data
sets have increased opportunities to develop machine learning
approaches to automate detection,classification, and quantifi-
cation of diseases. [8] Machine Learning (ML) and Deep
learning (DL) are being successfully employed in Healthcare
for accurate diagnosis of diseases. There is a lot of scope to
apply ML for AD prediction as well. Numerous attempts have
been made to develop ML models to predict dementia risk
[5] [6]. Similarly, DL learning approaches have shown to be
capable of predicting dementia risk with reasonable accuracy
[7] [8]. In particular, DL approaches such as Deep Neural Net-
works(DNNs) are increasingly being employed to develop risk
prediction models for dementia, but have primarily focused on
imaging data and other biomarkers frequently [7] [8] [11].

In this paper, we examine the advantage of employing
ML and DL in dementia risk prediction based on the ATN
framework. To the best of our knowledge this is the first
paper to explore and compare the performance of ML and DL
models developed using a combination of on a combination
of brain imaging, cognitive and genetics as well as lifestyle
factors to predict AD risk based on the ATN framework for
dementia classification.

II. MATERIALS AND METHODS

A. Dataset Description

We used the ’EPAD LCS v.IMI’ dataset, which is the final
dataset in the European Prevention of Alzheimer’s Dementia
Longitudinal Cohort Study (EPAD LCS) [4]. The EPAD LCS,
remains one of the largest multi-site dementia studies in the
world, with participants from 39 research sites across Europe
to serve as platform for research into Alzheimer’s disease
and to facilitate discovery of new preventative treatments.
It contained a total of 2,096 participants, collecting a wide
range of cognitive, clinical, neuroimaging and biomarker data
to help understand the early stages of Alzheimer’s disease.
It is a longitional study with visits for the participants we
scheduled for follow-up visits in 6 months ,1 year, 2 years, 3
years, as shown in Table 1. Data collection included: cognition,
neuroimaging, fluid biomarkers, genetics, lifestyle, clinical and
psychiatric assessment, neuropsychiatric symptoms, function
and basic demography.

TABLE I
SUMMARY OF NUMBER OF RECORDS PER VISIT.

Visit Frequency

Baseline (Visit 1) 2096

6 months (Visit 2) 1596

1 year (Visit 3) 1225

2 years (Visit 4) 421

3 years (Visit 5) 121

B. ATN Framework-based Class Definition

Earlier work by Calvin et al. [5] proposed cut-off values
based on the EPAD LCS dataset. The proposed cut-off values
range from 880 to 1100 pg/mL for cerebrospinal fluid (CSF)
Aβ1-42, and from 19 to 27 pg/mL for CSF phosphorylated tau
(p-tau). Average Medial Temporal Atrophy (MTA) was used
as a neurodegenerative factor (N) with values > 1 considered
to be positive otherwise it is negative as summarised in Table
1 below. It was therefore logical to generate class labels
based on these cut-offs with their respective classes as shown
in Table 2: Healthy, AD Continuum 3 and SNAP (suspected
Non-Alzheimer’s pathology)

TABLE II
DEFINING BIOMARKERS USING CUT-OFFS

Biomarker Positive Negative

Amyloid Aβ1-42(A) A <= 1000 pg/mL A > 1000 pg/mL

P-tau (T) T > 27 pg/mL T <= 27 pg/mL

Average Medial Temporal Atrophy MTA (N) N > 1 N <= 1

TABLE III
DEFINING CLASS LABELS BASED ON ABOVE CUT-OFFS

Amyloid status
(A)

Tau values (T) Neurodegenerative
values (N)

Class

Negative Negative Negative Healthy

Positive Positive Negative AD Continuum

Negative Either one or both Positive SNAP(suspected
non-Alzheimer’s
pathology)

We then applied these categories to the dataset and obtained
class distribution as contained in the data. Figure 1 shows the
distribution with the Healthy group representing the majority
of 53.31%, followed by the AD Continuum group which have
33.45%. The SNAP is the least represented containing 13.24%
of the data.



Fig. 1. Percentage of each class in the dataset

C. Model Development Pipeline

Fig. 2 shows the development pipeline of how we built the
models. We began with exploratory analysis of the dataset to
identify and selected the relevant variables of interest from
the dataset. These variables were pre-processed into feature
vectors employing various techniques. We then moved to
the model development stage where various algorithms were
selected and trained to build the models. Models were further
optimised by turning the parameters to obtain the hyper-
parameters that produced the optimal performance. We discuss
the various steps in detail subsequently.

Fig. 2. Machine Learning Pipeline

1) Pre-processing and Feature Engineering: Earlier re-
search identified risks factors of Dementia [14]. We aligned
our feature selection scheme with this research and selected
these risk factors from the EPAD LCS v.IMI dataset to build
our model. We cleaned the data of outliers and nulls before
encoding the non-numeric features. All categorical features
were converted to numeric [?]. We outline how each feature
was pre-processed and engineered prior to model training:

• Age: age at last visit was computed
• Ethnicity: binary encoded into ’Caucasian / not’ to avoid

problems arising due to high dimensionality (95%, ma-
jority of the participants were Caucasian)

• Gender: binary encoded this feature (data has 2 genders
- male, female)

• Marital status: divided the different categories in this
column (which are ‘married/ cohabiting’, ’single’, ’wid-
owed’, ’divorced’) into ’married/ not’ by grouping the
latter 3 categories into not married and binary encoding
the resultant column.

• Family dementia history: grouped this feature as ‘Parental
diagnosis of AD/ not’. We focused on parental diagnosis
[16] as it is more relevant to the ‘early diagnosis and
prevention’ of Alzheimer’s.

• Medical History of a patient: For our project we consid-
ered the medical conditions that are known risk factors
for Alzheimer’s. These are: 1) aural problems, 2) men-
tal health conditions, 3) Hypertension, 4) Diabetes, 5)
neurological ailments. [14] We used binary encoding on
these columns based on whether/ not each patient has
these condition(s). We did not opt for ordinal encoding
to avoid the problem of label bias in the deep neural
network, which could arise due to incorrect ordering of
data [17].

• Physical activity: The data for each patient had different
categories for physical activity, which were ‘exercises
daily’, ’2-3 times a week’,’ once a week’, ‘2-3 times
a month’, ‘few times a year’, ’never’. We grouped the
latter 3 categories into ‘not physically active’ and rest
into ‘physically active’ and binary encoded the result into
physically active/ not.

• Smoking and alcohol: grouped ’never’, ’past ’, ’current’
as ”smoker” otherwise ”not” and binary encoded this
column to smoker/ not. We similarly grouped categories
on alcohol consumption and binary encoded the column
to alcoholic/ not.

• Drug addiction: binary encoded this column into drug
addict/not.

• Systolic blood pressure and diastolic blood pressure:
computed blood pressure values as (systolic blood pres-
sure/ diastolic blood pressure) [18] over the 5 visits for
each patient and selected the maximum reading as the
final blood pressure. The reason for giving importance
to the maximum reading is due to the relation between
hypertension and AD [1] and also because we wanted
to handle worst-case scenarios and to investigate any
unusual spikes in BP in our framework. We compared the
recorded high blood pressure values with self-reported
hypertension of the participants to generate a binary
variable indicating hypertension.

• BMI: computed for each patient using the formula, BMI
= [weight / (height squared in mts.)] and further grouped
values into 3 categories of BMIs- underweight, normal
and overweight [19] and encoded these categories using
a label encoder, based on our understanding that lower
BMI increases the risk of Dementia in middle age [20]

• Apoe e4: binary encoded to indicate the presence or
absence of apoe e4 allele for each patient as the presence
of this genotype increases the risk of AD [21]



• GDS, PSQI, STAI: removed any outliers and kept the
values intact as they are already numeric.

• Four mountains score- We calculated a cumulative score
based on the participant’s correct responses to the four
mountains questionnaire.

Table 4 below shows a summary of the risk factors rep-
resented as features used to build the models along with the
employed encoding strategy.

TABLE IV
FEATURE SELECTION & PREPROCESSING

Category Features Binary Encoded Fea-
tures

Sociodemographic
features

age, ethnicity, gender, mari-
tal status, years of education

ethnicity, gender, mar-
ital status

Physical exam results medical history - diabetes,
hypertension, hearing dis-
orders, neurological disor-
ders, mental health condi-
tions family history of de-
mentia,reported clinical di-
agnosis

diabetes, hypertension,
hearing disorders,
neurological disorders,
mental health
conditions

lifestyle factors physical activity, smoking,
drug abuse, alcohol con-
sumption

physical activity,
smoking, drug abuse,
alcohol consumption

Vital signs blood pressure, BMI Blood pressure (Hy-
pertension/Normal),
BMI (Obese/normal).

Cognitive assessment GDS (Geriartic Depression
Scale),PSQI (Pittsburgh
Sleep Quality Index), STAI-
40 (State-Trait Anxiety
Inventory), Four mountains
test score

Not encoded

Biomarkers APOE e4 APOE e4

Imaging MTA (Medial Temporal At-
rophy)

Not encoded

2) Model Development: For all the models, we divide the
original dataset into training and test sets. Training set has
80% of data and the test set has 20% of data. We encoded and
scaled based on techniques employed in [15]- [16] to ensure
fast processing, resulting in 20 input feature-set. We then
built a feed-forward, fully connected Deep Neural Networks
for our prediction problem. In a fully connected network,
every node in each layer is connected to every node in the
next layer. The number of input nodes is equal to the number
of input features (equal to 20 in our case) and the number
of output nodes is equal to the number of output classes (3
for our prediction problem). A neural network is a set of
interconnected layers. The inputs are the first layer, and are
connected to an output layer by an acyclic graph composed of
weighted edges and nodes. The hidden layers are between the
input and output layers. As this is a multiclass classification
problem, the outputs are probabilities of the output class.
Therefore, we used SoftMax [23] as the activation for the

output layer. For all other layers we used ’tanh’ activation
[23]. For the optimizer, we chose Adam optimizer [24], a
common gradient descent optimization algorithm. As the
network makes predictions, it aims to reduce the validation
loss, which is our objective. A gradient simply measures the
change in all weights with regard to the change in error.
In every iteration, the error is propagated backwards, from
which the model tweaks the weights of different nodes
to try and minimize the error further. Gradient graphs are
convex and the step size along the gradient graph is called
learning rate. Learning rate is another hyperparameter of the
neural network. The loss function we used is categorical
cross-entropy loss.

Fig. 3. Architecture of Baseline DNN

Fig. 4. Architecture of optimized DNN

We fixed the number of epochs to 100 and batch size to 32.
We tried optimizing the number of hidden layers (between 1
and 5), the nodes in each layer(between 4 and 32) and the
learning rates (in 0.01,0.001,0.0001). Optimizing a neural net
architecture aids in finding an efficient model that could give
the best performance on the data without overfitting. [26]



Our baseline DNN, shown in Fig. 3, has the following
architecture- (12,4,3) nodes, ‘tanh’ activation in the hidden
layer and a softmax activation in the output layer.

Our optimized DNN, shown in Fig. 4, has a 20 node
input layer and a 3 node output layer and 3 hidden layers
with (24,24,8) nodes, has a ’tanh’ activation in the hidden
layers and a softmax activation in the output layer.
The DNNs are trained in 100 epochs and use Mini batch
gradient descent optimization for better generalization. [25]

TABLE V
SUMMARY OF THE EXPERIMENTAL SETUP FOR THE MODEL TRAINING

Model Parameters

Baseline Deep Neural Network Architecture - (12,4,3) nodes in 3 layers
Activations - tanh(hidden layers)
& softmax(output)
Optimizer- Adam
Epochs- 100
Batch-size: 64

Optimized DNN Architecture - (20, 24, 24,8, 3) nodes in 5
layers
Activations - relu (hidden layers), softmax
(output)
Optimizer- Adam
Epochs- 100
Batch-size: 64
Dataset : Original

3) Performance evaluation: We evaluated the performance
of the Deep Neural Network using the metrics- Accuracy,
Precision, Recall, F1 score and visualized using Receiver
Operating characteristic (ROC)-Area under the curve(AUC)
plot. [?]

The formulae for the metrics are as below-

Accuracy = (TP + TN)/(FP + TP + FN + TN);

Precision = TP/(TP + FP );

Recall = TP/(TP + FN);

F1− score = 2∗Precision∗Recall/(Precision+Recall);

where FP- False positive, TP- True positive, FN- False negative
and TN-True Negative

III. RESULTS

Below table summarizes the performance of the 6 models.
SVM outperformed all the classic machine learning models,
achieving Accuracy (0.59), Precision (0.55), Recall (0.59), F1
score (0.56) and ROC-AUC (0.64). While the baseline deep
learning model significantly outperformed SVM achieving Ac-
curacy (0.61), Precision (0.63), Recall (0.71), F1 score (0.67)
and ROC-AUC (0.76), the optimised deep learning model

achieved overall best performance with Accuracy (0.62), Pre-
cision (0.64), Recall (0.74), F1 score (0.69) and ROC-AUC
(0.77).

TABLE VI
SUMMARY OF THE MODELS’ PERFORMANCE

Model Accuracy Precision Recall F1 score ROC-AUC

Naive Bayes 0.13 0.02 0.13 0.03 0.49

KNN 0.58 0.55 0.58 0.54 0.62

Decision Tree 0.53 0.50 0.53 0.50 0.59

SVM 0.59 0.55 0.59 0.56 0.64

Baseline DNN 0.61 0.63 0.71 0.67 0.76

Optimized DNN 0.62 0.64 0.74 0.69 0.77

A closer examination between baseline DNN and optimised
show that, while both difference in performance appear to
be very similar, the optimised DNN appear to perform much
better on the Suspected Non-Alzheimer’s pathology (SNAP) -
class. Figure 5 and Figure 6 plots show the class wise ROC-
AUC curves of baseline DNN and optimised DNN models
respectively. Furthermore, to ensure there is no overfitting,
Figure 7 shows the loss function curve showing no evidence
of overfitting suggesting generalisability potential.

Fig. 5. AUC curves of baseline DNN on train vs. test set

Fig. 6. AUC curves of Optimised DNN on train vs test set



Fig. 7. Loss plot of baseline DNN vs optimized DNN

IV. DISCUSSION

While existing machine-learning based risk prediction
models have predominantly focused on various risk profiles
such as the combination of genetic factors and family
history [16]; neurodegeneration plasma biomarkers [29];
cardiovascular risk factors, aging, and incidence of dementia
- CAIDE risk score) [32]; and Framingham risk scores [31],
little has been done with regards to machine learning based
risk prediction based on ATN framework until recently [32],
which focused on classic machine learning methods. Our
work extends this as we explored the performance of classic
machine learning and deep learning based risk prediction
models based on ATN framework. It is worth noting that
ATN based risk prediction models has the additional benefit
of indicating the stage of disease such as the state of
neurodegeneration as well as identifying non amyloid driven
pathology, which makes these models ideal for dementia
screening in populations.

As observed in other works [9] [10], the deep learning-
based models consistently outperformed the classic machine
learning models (Naive Bayes, KNN, Decision Tree and
SVM). This is because Deep neural networks with non-linear
activations can better capture real-world complex interactions
between various predictive factors. Further, our proposed
deep learning model with an optimized architecture performs
better than the baseline deep learning model. This is because
complex models can capture complex interactions between
data better. [33] Nevertheless, the optimized DNN still has
scope for improvement.The optimized DNN had been able to
decently predict ’healthy’ and ’AD Continuum’ groups but
struggled to predict ’Suspected Non-Alzheimer’s pathology
(SNAP)’ as we had very few samples of this particular group.
Possible steps to overcome this problem would be to employ
data augmentation techniques or assign class weights to the
data that is fed to the DNN.

Investigating the impact of choosing an appropriate
activation function on training the DNN models as a way of
improving on detection performance. Also, with the promising
performance of DNN, future work will explore the interaction
of the underlying features responsible for the performance
of the model. For example, we could examine the effect of

sleep, depression, anxiety, age and BMI interactions, apoe
e4, and gender and classes interactions and evaluate the
performance of the models. Therefore, an explainable DNN
would not only enhance our ability to carry out feature set
analysis of the models, but would also improve on the utility
of real world applications of the model.
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