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• A multi-scale feature partitioning method is proposed to improve lesion
recognition.

• A label-guided alignment method is designed to enhance visual-semantic
consistency.

• An attribute-aware graph method is proposed to better capture label
dependencies.
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Abstract

Multi-label Chest X-Ray classification is crucial for intelligent diagnosis, yet
existing algorithms usually ignore lesion-scale heterogeneity and attribute-
conditioned label dependencies, limiting their clinical generalizability. To
address these issues, this paper proposes MSASG, a multi-label Chest X-
Ray image classification algorithm based on Multi-Scale and Attribute-aware
Semantic Graph which enhances discriminative power and semantic consis-
tency. Firstly, a Multi-scale Feature Partitioning and Reconstruction method
is proposed to capture lesion patterns at different scales. Secondly, a Label-
guided Multi-scale Semantic Alignment method is proposed to improve vi-
sual–semantic alignment by integrating label embeddings into feature extrac-
tion and using a Transformer to model high-order cross-modal dependencies.
Finally, an Attribute-aware Graph Convolutional Network method is pro-
posed to construct attribute-specific label co-occurrence matrices and dy-
namically select relevant structures during inference, enabling personalized
characterization of label dependencies. Experiments on ChestX-ray14 and
CheXpert show that MSASG outperforms state-of-the-art methods in recog-
nizing complex lesion co-occurrence and adapting to heterogeneous popula-
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tions.
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1. Introduction

Chest X-Ray (CXR) is a widely used medical imaging technique due to
its efficiency, low cost, and minimal radiation exposure. It plays a crucial
role in the early detection and diagnosis of various thoracic diseases, such
as nodules, cardiomegaly, and edema. The frequent co-occurrence of mul-
tiple abnormalities in CXR images has rendered multi-label classification
one of the core tasks in intelligent CXR image interpretation. In recent
years, deep learning has achieved remarkable progress in this field. A no-
table milestone is CheXNet (Rajpurkar et al., 2017), a DenseNet121-based
algorithm that achieved radiologist-level pneumonia detection performance,
significantly promoting the widespread application of convolutional neural
networks in CXR multi-label classification (Huang et al.; He et al., 2017;
2016). Subsequently, researchers have persistently optimized network archi-
tectures. For instance, Chowdary et al. (Chowdary and Kanhangad, 2022)
proposed a dual-branch structure that integrates global and local features to
facilitate richer semantic representations. Similarly, Xu et al. (Xu and Duan,
2024) incorporated both image-level and lesion-level attention mechanisms
to improve the detection of small-scale lesions. Meanwhile, the Transformer
architecture, with its global representation capabilities, has been progres-
sively incorporated into this task to address the limitations of convolutional
neural networks in constructing long-range dependencies (Jiang et al., 2024).
Furthermore, to capture semantic dependencies among disease labels, Lee et
al. (Lee et al., 2022) introduced a label graph structure powered by graph
neural networks. Although the classification performance has been improved,
most existing algorithms still rely heavily on visual features, which limit s
their generalizability across varying lesion scales and diverse patient popula-
tions.

In clinical practice, thoracic diseases exhibit substantial variation in le-
sion scale, diverse semantic characteristics, and label co-occurrence patterns
shaped by patient-specific attributes such as age and gender. These factors
pose significant challenges for automated diagnosis, as they affect both visual

2



representation learning and label prediction. While existing algorithms have
made progress in visual backbone design and in capturing label-level cor-
relations, they often fall short of addressing these complex, interdependent
factors in the context of real-world chest X-ray interpretation.

Notably, current multi-label CXR image classification still faces three
key challenges: (1) Insufficient representation of spatial-scale heterogeneity
in lesion regions. Thoracic abnormalities exhibit considerable variation in
spatial scale, ranging from small nodules to extensive diffuse opacities. Tra-
ditional Convolutional Neural Networks(CNNs) often fail to capture such
large-scale variations, thereby limiting their effectiveness in lesion localiza-
tion and recognition (Wang et al., 2021). (2) Inadequate cross-modal align-
ment between visual and semantic information. Label semantics are typically
introduced only at the prediction stage, offering limited guidance during fea-
ture extraction. The weak associations under multi-scale fusion ultimately
compromise the discriminative effectiveness of the classification system (Zhao
et al., 2021). (3)Weak personalized learning of label semantic dependencies.
The co-occurrence structure among labels is strongly influenced by attributes
such as age and gender. However, existing static graph methods fail to cap-
ture such population heterogeneity and lack mechanisms for attribute-aware
adaptation, ultimately limiting their generalization in complex clinical sce-
narios (Chen et al., 2021a).

In response to the key challenges, a multi-label CXR image classification
algorithm based on Multi-Scale and Attribute-aware Semantic Graph(MSASG)
is proposed. Firstly, a Multi-scale Feature Partitioning and Reconstruction
(MFPR) method is designed to integrate fine-grained local details and global
contextual information through local partitioning and spatial reconstruction,
thereby enhancing the ability to capture lesion scale heterogeneity. Secondly,
the Label-guided Multi-scale Semantic Alignment (LMSA) method is intro-
duced, in which label embeddings are incorporated into a Transformer-based
structure as semantic priors to improve visual–semantic alignment. Finally,
an Attribute-aware Graph Convolutional Network (A-GCN) is proposed to
construct a conditional label co-occurrence matrix based on individual at-
tributes, thereby improving generalization across heterogeneous populations.
While the proposed algorithm is designed for chest X-ray interpretation, it
possesses strong generalizability and can be effectively applied to other multi-
label medical imaging tasks, such as fundus images for detecting diabetic
retinopathy and glaucoma, and skin lesion images for identifying co-existing
dermatological conditions like melanoma and seborrheic keratosis. The prin-
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cipal contributions are summarized as follows:

• Considering the spatial-scale heterogeneity of lesions, a multi-scale fea-
ture partitioning and reconstruction method is introduced to extract
local features at multiple scales, thereby enhancing lesion recognition
across diverse spatial patterns.

• Considering the importance of aligning label semantics with visual
features, a label-guided multi-scale semantic alignment method is de-
signed, where label embeddings are incorporated into the visual feature
extraction process to improve visual-semantic alignment.

• Considering the population heterogeneity in semantic dependencies,
an attribute-aware graph convolutional network is constructed, where
attributes are integrated into both label co-occurrence construction and
the graph propagation process to better capture label dependencies.

2. Related Work

Multi-label CXR image classification has become a pivotal task in in-
telligent medical image analysis, garnering increasing attention due to its
significance in screening, diagnosis, and clinical decision-making. The emer-
gence of large-scale public datasets such as ChestX-ray14 (Wang et al., 2017)
and CheXpert (Irvin et al., 2019) has greatly accelerated the adoption of deep
neural networks in this domain, laying a solid foundation for automated le-
sion recognition and multi-label prediction.

However, lesion regions in CXR images exhibit substantial heterogeneity
in scale, morphology, and location, ranging from small pulmonary nodules
to extensive cardiomegaly. Owing to the fixed receptive fields, traditional
CNNs (Jin et al.; Wang et al., 2023; 2024) struggle to simultaneously capture
both local details and global semantic context, thereby limiting their effec-
tiveness in recognizing lesions across diverse scales. To enhance attention to
critical regions, Chen et al.(Chen et al., 2019a) introduced lesion location in-
formation to provide spatial guidance, while Kamal et al.(Kamal et al., 2022)
integrated anatomical structure priors to guide the feature extraction pro-
cess toward potential lesion areas. Nonetheless, such methods still primarily
rely on local perception mechanisms, making it difficult to capture long-
range dependencies that are spatially distant but semantically related. The
widespread adoption of the Transformer architecture (Vaswani et al., 2017) in
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computer vision tasks (Dosovitskiy et al.; Yuan et al., 2020; 2021) has intro-
duced a new paradigm for CXR multi-label classification by effectively cap-
turing long-range dependencies. Wang et al.(Wang et al., 2021) introduced
the Vision Transformer (ViT) into this task, achieving notable improvements
in capturing complex structural patterns. Building upon this, PCAN(Zhu
et al., 2022) enhanced lesion-related semantic representations through chan-
nel attention, while STERN (Rocha et al., 2024) employed multi-scale spatial
attention to emphasize discriminative regions. Ding et al. (Ding et al., 2023)
proposed a detection framework that integrates convolutional block atten-
tion module(CBAM), deformable convolution network(DCN), and multiscale
feature encoding(MSFE) to address the need for multi-scale target model-
ing in medical images, providing a new perspective for scale adaptation.
In addition, Zhang et al. (Zhang et al., 2023) combined attention mecha-
nisms with contrastive learning to further improve region-level recognition
accuracy. These algorithms substantially improve the perception of complex
lesion structures from multiple perspectives, such as channel, spatial, and
contrastive dimensions, thereby enhancing multi-label classification perfor-
mance. Despite these advances, most Transformer-based algorithms adopt
fixed-size patch partitioning, which limits the capacity to address structural
heterogeneity and fuzzy lesion boundaries in medical images, and often fail
to preserve spatial continuity.

On the other hand, multi-label classification requires not only image-level
discriminative capability but also precise alignment between semantic labels
and corresponding image regions. Early methods (Chen et al.; Pham et al.,
2019b; 2021) perform classification as a separate step after feature extrac-
tion, without establishing explicit links between semantic labels and spatial
regions. This limits their capacity for region-level semantic interpretation.
To enhance semantic alignment, Wang et al. (Wang et al., 2018) proposed
the TieNet algorithm, which performs cross-modal representation learning
by integrating image and text embeddings, thereby improving the alignment
between image regions and semantic labels. Ding et al. (Ding et al., 2025b)
employed modality-invariant representation and progressive registration to
achieve cross-modal alignment, suggesting that modality-invariant feature
spaces can improve semantic stability. However, most existing algorithms
still lack semantic guidance during the early stages of visual feature encod-
ing. In particular, the correspondence between visual regions and semantic
concepts remains ambiguous during multi-scale feature extraction. This lim-
itation weakens the discriminative consistency and generalization capability
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in complex multi-label classification scenarios.
Moreover, in multi-label CXR image classification, disease labels typically

exhibit complex semantic co-occurrence patterns and hierarchical dependen-
cies. Effectively constructing these label dependencies is crucial for improv-
ing prediction accuracy. The introduction of graph convolutional networks
(GCNs) (Kipf and Welling, 2016) has established a robust paradigm for cap-
turing label dependencies. Chen et al. (Chen et al., 2021a) constructed a
static label co-occurrence graph based on empirical co-occurrence statistics
and utilized GCNs to enable collaborative label reasoning, thereby pioneer-
ing the integration of graph-based methods in CXR multi-label classification.
Subsequent advancements have extended this foundation. Zhao et al. (Mao
et al., 2022) proposed ImageGCN, which incorporated cross-instance graph
structures to enhance the semantic richness of label representations. Zhou
et al. (Yang et al., 2021) employed graph gating and attention mechanisms
to adaptively update the label graph structure. To further strengthen the
expressiveness and reliability of label graph construction, anatomical pri-
ors (Lian et al., 2021) and hierarchical label taxonomies (Chen et al., 2021b)
have been integrated, promoting structural validity and label consistency.
Ding et al. (Ding et al., 2025a) integrated high-frequency prior informa-
tion with local class-regional label guidance in diffusion models to enhance
cross-modality image translation, highlighting the importance of structural
priors and label constraints in complex scene modeling. Despite these pro-
gresses, many existing algorithms still rely on global co-occurrence patterns
and static relationships, without accounting for patient-specific factors that
modulate label dependencies. Although several studies have investigated dy-
namic graph construction (Zhu et al.; Hu et al., 2023; 2023), the influence
of individual attributes such as age and gender on disease co-occurrence re-
mains largely underexplored. This omission restricts the adaptability and
generalization capacity of current algorithms in clinically diverse and demo-
graphically heterogeneous populations.

In summary, existing algorithms still face limitations in scale-aware recog-
nition, semantic alignment, and personalized label reasoning. To address
these challenges, a multi-label CXR image classification algorithm based on
multi-scale and attribute-aware semantic graph is proposed, incorporating
multi-scale perception, semantic alignment, and attribute-aware dependency
learning.
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Table 1: List of notations used in the paper

Notation Description
xn The n-th input CXR image
yn The label of xn

an The attribute vector of xn

Fi The spatial feature map at scale i
Ti The visual token sequence after splitting at scale i
Ei The semantic embedding at scale i
Hl The label embedding at the l-th GCN layer
R The set of attributes
V (r) The value set of attribute r
D(r)(v) The subset of samples where attribute r takes the value v
N(r)(v) The co-occurrence frequency matrix
A(r)(v) The attribute-aware label co-occurrence matrix

3. The Proposed Algorithm

To enhance disease recognition in multi-label CXR image classification,
this paper proposes an algorithm based on the multi-scale and attribute-
aware semantic graph. As illustrated in Fig. 1, MSASG consists of four
main components. Firstly, in the multi-scale feature partitioning and recon-
struction method, multi-scale visual features are extracted through iterative
spatial partitioning and reconstruction. Secondly, in the label-guided multi-
scale semantic alignment method, label embeddings are integrated as seman-
tic priors to explicitly align visual and semantic features across scales. Then,
in the attribute-aware semantic graph method, label co-occurrence depen-
dencies are constructed by incorporating patient-specific attributes. Finally,
to support multi-label prediction, the entire algorithm is trained end-to-end
using a joint loss function. The notations used are summarized in Table 1.

3.1. Multi-scale Feature Partitioning and Reconstruction

To enable multi-scale visual representation learning, a MFPR method is
introduced. It adopts a recursive strategy of feature partitioning and spatial
reconstruction to progressively extract and integrate image representations
at varying scales. By capturing both local structures and global contextual
information, MFPR facilitates accurate perception of lesion regions with di-
verse spatial distributions.
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Figure 1: Overview of the proposed MSASG algorithm

Feature Partitioning. Given an input spatial feature map Fi ∈ Rh×w×c,
where h, w, and c denote the height, width, and number of channels respec-
tively, a soft partitioning strategy is adopted to partition Fi into multiple
overlapping local patches. Each patch is of size k × k, extracted with stride
s and zero-padding p to preserve spatial coverage. The total number of local
patches, denoted as li, is calculated as:

li = ⌊(h + 2p− k)/(k − s) + 1⌋ × ⌊(w + 2p− k)/(k − s) + 1⌋ (1)

After flattening, each local patch is linearly projected into a d-dimensional
feature vector, forming a visual token sequence Ti ∈ Rli×d.

Feature Reconstruction. After interaction with label semantic embed-
dings, the token sequence Ti is updated to T′

i. To restore the spatial struc-
ture and preserve local positional information, a reconstruction operation is
performed to map the sequence back into a spatial feature map:

Fi+1 = Reshape(T′
i) (2)

where T′
i ∈ Rli×d represents the updated token sequence, and the recon-

structed feature map is Fi+1 ∈ Rh′×w′×d, with li = h′ × w′. Here, h′, w′,
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Figure 2: Illustration of Multi-scale Feature Partitioning and Spatial Reconstruction

and d denote the height, width, and number of channels in the reconstructed
feature map, respectively.

This partitioning and reconstruction process can be recursively applied
to form the core pathway of the MFPR method. As illustrated in Figure 2,
MFPR initially partitions the input feature map F1 into a token sequence
T1, which is subsequently fused with label semantics and reconstructed into
F2. In each following iteration, the feature map Fi is partitioned into a token
sequence Ti, updated through semantic interaction, and then reconstructed
into Fi+1. Through this recursive “partitioning→ interaction→ reconstruc-
tion” mechanism, MFPR progressively extracts and integrates multi-scale se-
mantic information, thereby improving the accuracy and structural integrity
of lesion region representation.

3.2. Label-guided Multi-scale Semantic Alignment

To enhance the semantic perception of lesion regions and capture intri-
cate cross-modal dependencies between visual features and label semantics,
a LMSA method is introduced. Built upon the multi-scale visual represen-
tations extracted by the MFPR module, LMSA integrates label semantic
embeddings to establish a unified cross-modal representational space. Fur-
thermore, explicit alignment between visual features and label semantics is
achieved at multiple scales through a Transformer encoder, enabling more
accurate and comprehensive understanding of the lesion regions.

Specifically, let the multi-label set be denoted as L = {l1, l2, . . . , lC},
where C represents the total number of categories. A pretrained word embed-
ding algorithm (e.g., GloVe) is utilized to encode each label into a semantic
vector, resulting in the initial label embedding matrix:

E = {e1, e2, . . . , eC}, E ∈ RC×d (3)
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where ej ∈ Rd denotes the embedding vector of the j-th label, and d is the
embedding dimension.

At the i-th scale level, a sequence of visual tokens Ti ∈ Rli×d are ex-
tracted by MFPR method. To enable cross-modal semantic interaction, the
visual token sequence is concatenated with the corresponding label embed-
ding matrix Ei ∈ RC×d, where E1 is initialized as E at the initial scale level,
yielding the cross-modal input sequence:

Zi = [Ti;Ei], Zi ∈ R(li+C)×d (4)

Then, a Transformer encoder is adopted to model the cross-modal se-
quence Zi. Its multi-head self-attention mechanism jointly captures high-
order interactions among visual tokens, label embeddings, and their semantic
associations. To this end, the input sequence Zi is first linearly projected to
query, key, and value representations, and the scaled dot-product attention
is computed as:

Attention(Q,K,V) = softmax
(
QK⊤/

√
d
)
V (5)

where Q = ZiWQ, K = ZiWK , and V = ZiWV , with WQ,WK ,WV ∈
Rd×d denoting the learnable weight matrices.

By aggregating outputs from multi-heads, the updated visual and seman-
tic representations are obtained:

[T′
i ∈ Rli×d, E′

i ∈ RC×d] = Attention(Zi) (6)

here, T′
i denotes the visual features enriched with semantic context, while E′

i

represents the label embeddings enhanced with visual information. To enable
dynamic semantic propagation across scales, the E′

i is linearly transformed
to generate the label embeddings for the next scale:

Ei+1 = E′
iWe (7)

By recursively applying the above process across multiple scales, the
LMSA method facilitates the fusion of semantic information within the vi-
sual feature space, ultimately generating a global label representation Efinal .
To further guide the learning process, a multi-label alignment loss Lalign is
introduced, providing explicit supervision for learning semantically consis-
tent and discriminative label embeddings. As a result, the performance of
multi-label recognition in complex scenes is improved.
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3.3. Attribute-aware Graph Convolutional Network

To improve the capture of multi-label semantic dependencies, an A-GCN
is introduced. A-GCN integrates attribute-conditioned mechanisms into both
the construction of label dependencies and the graph propagation process.
Specifically, it constructs attribute-conditioned label co-occurrence matrices
and dynamically selects graph structures in accordance with instance-specific
attributes. The overall process is shown in Algorithm 1.

3.3.1. Construction of Attribute-conditioned Label Co-occurrence Matrices

Label co-occurrence is a common phenomenon in CXR images. However,
such co-occurrence is heavily influenced by individual attributes (e.g., gender,
age), leading to structural variations across different subgroups. To capture
these attribute-driven differences, an attribute-conditioned construction of
label co-occurrence matrices is proposed, which explicitly constructs label
dependencies within distinct attribute contexts.

The attribute space is composed of m discrete dimensions, denoted as
R = {r1, r2, . . . , rm}. Each attribute r is associated with a set of dis-

crete values V (r) = {v(r)1 , v
(r)
2 , . . . }. For example, gender corresponds to

{male, female}, and age is represented as {child, young,middle-aged, elderly}.
For any attribute-value pair (r, v), the training set is partitioned into sub-
sets D(r)(v) where attribute r takes the value v . Within each subset, the
co-occurrence frequency of label pairs (yi, yj) is computed as:

N
(r)
ij (v) = count(yi = 1 ∧ yj = 1 | r = v) (8)

then the co-occurrence frequency matrix N
(r)
ij (v) is normalized to obtain the

attribute-conditioned label co-occurrence matrix :

A
(r)
ij (v) = N

(r)
ij (v)/N

(r)
i (v) (9)

where N
(r)
i (v) =

∑
j N

(r)
ij (v). Specifically, A

(r)
ij (v) denotes the probability

of label yj co-occurring with label yi, conditioned on attribute r taking the
value v.

To reduce noise from low-frequency co-occurrence, a confidence threshold
τ is used to sparsify entries with probabilities below τ :

A
(r,v)
ij =

{
N

(r)
ij (v)/N

(r)
i (v), if N

(r)
ij (v)/N

(r)
i (v) ≥ τ

0, otherwise
(10)
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By filtering out non-significant label relationships, this strategy enhances
both the structural integrity and robustness of the co-occurrence matrix. For
each attribute r, a set of conditional co-occurrence matrices {A(r)(v) | v ∈
V (r)} is constructed. During the graph convolution process, these matrices
are dynamically selected based on the attribute values of each sample, en-
abling personalized semantic propagation and improving the context adapt-
ability of label embeddings.

3.3.2. Attribute-Aware Graph Convolution

Graph Convolutional Network (GCN) is a classical graph neural network
that aggregates and propagates node features based on the adjacency struc-
ture. It has been widely adopted in structured semantic tasks due to its
effectiveness in capturing topological dependencies through iterative mes-
sage passing. Let C denote the number of labels, A ∈ RC×C the adjacency
matrix, and I the identity matrix. To incorporate self-loops, the adjacency
matrix is augmented as Ã = A + I. The corresponding degree matrix is
defined as D̃ii =

∑
j Ãij. The normalized adjacency matrix is then given by:

Â = D̃−1/2ÃD̃−1/2 (11)

The node features at the l-th layer are denoted as H(l) ∈ RC×dl , where
C is the number of nodes and dl is the feature dimension at layer l. The
corresponding trainable weight matrix is represented by W(l) ∈ Rdl×dl+1 .
The standard forward propagation rule in GCN is formulated as:

H(l+1) = σ(ÂH
(l)
W(l)) (12)

However, in multi-label CXR image classification, using a fixed graph
structure for feature propagation cannot fully capture the semantic differ-
ences of label relationships in different attribute contexts. To address this
issue, this paper proposes an A-GCN method that dynamically updates la-
bel embeddings by incorporating sample-level attribute information. Each
graph convolutional layer in A-GCN is conditioned on a specific attribute
dimension r. For a given sample with attribute value v ∈ V (r), the cor-
responding attribute-specific adjacency matrix A(r)(v) is selected to guide
feature propagation. The output of the LMSA method serves as the initial
label representation, denoted by H(0) = Efinal . The layer-wise propagation
at layer l is defined as:
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H(l+1) = σ(Â(r)(v)H(l)W(l)) (13)

where Â(r)(v) is the normalized form of A(r)(v), and σ(·) denotes a non-linear
activation function.

By stacking multiple layers of graph convolutions based on different at-
tribute dimensions, the MSASG algorithm can integrate the dynamic corre-
lation structure between labels in the multi-attribute context layer by layer,
enabling personalized label representation in the attribute space.

3.4. Multi-Label Classification Loss Function

In multi-label CXR image classification, each image is associated with
a binary vector y = [y1, y2, . . . , yC ],where yi = 1 indicates the presence of
the i-th disease label. To capture spatial and semantic dependencies, the
algorithm integrates the semantic representation Efinal with the attribute-
enriched embedding H(L). The fused vector Z is then processed by a sigmoid
function to produce the final prediction probabilities:

ŷ = σ (Z) (14)

Owing to the inherent class imbalance, where the majority of disease la-
bels are negative, a class-aware weighted binary cross-entropy loss is adopted
in both branches to improve recognition of minority classes. Specifically, for
each label, If yi = 1, the positive loss term is scaled by a factor of Nn/Np,
where Np and Nn denote the numbers of positive and negative samples for
each label within the current batch, respectively. The weighted binary cross-
entropy loss is defined as:

Lbce = −
∑
yi=1

(Nn/Np) log(ŷi)−
∑
yi=0

log(1− ŷi) (15)

the overall objective integrates both classification and alignment losses:

Ltotal = Lcls + λLalign (16)

where λ ∈ [0, 1] is a trade-off coefficient that balances the contribution of
each component.
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Algorithm 1 Attribute-aware Graph Convolution

1: Input: Multi-label dataset D = {(xn, yn, an)}Nn=1; Attribute dimensions
R = {r1, r2, . . . , rm}; Discrete values V (r) for each r ∈ R; Threshold τ ;
Number of GCN layers L.

2: Output: Final label embedding H(L) for each sample.

3: Phase 1: Constructing Attribute-aware Co-occurrence Matrices
4: for all r ∈ R do
5: for all v ∈ V (r) do
6: D(r)(v)← {(x, y) ∈ D | ar = v}
7: Initialize N

(r)
ij (v) ∈ RC×C

8: for all (x, y) ∈ D(r,v) do
9: for all (i, j) such that yi = yj = 1 do

10: N
(r)
ij (v)← N

(r)
ij (v) + 1

11: end for
12: end for
13: A

(r)
ij (v)← N

(r)
ij (v)/

∑
j N

(r)
ij (v)

14: if A
(r)
ij (v) < τ then

15: A
(r)
ij (v)← 0

16: end if
17: end for
18: end for

19: Phase 2: Performing Attribute-aware Graph Convolution
20: H(0) ← Efinal

21: for l = 0 to L− 1 do
22: Select attribute rl for layer l
23: Determine attribute value vl for current sample
24: Â(rl)(vl)← normalized A(rl)(vl)

25: H(l+1) ← σ
(
Â(rl)(vl)H

(l)W(l) + b(l)
)

26: end for
27: return H(L)
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3.5. Theoretical Justification

To theoretically validate the proposed multi-scale semantic alignment,
a geometric analysis of the discriminative structure of label embeddings is
conducted, accompanied by a formal proof of the enhanced discriminative
capacity achieved through multi-scale fusion.
Proposition. Let E = {e1, e2, . . . , eC} ⊂ Rd be the initial label embedding,
and define the average inter-class center distance as:

Dinter(E) = 2/[C(C − 1)]
∑

1≤m<n≤C

∥em − en∥2 (17)

Denote E(i) as the label embedding after interacting with the visual features
from the i-th scale, and let Efinal represent the embedding after full multi-
scale fusion. Then, the inequality holds:

Dinter(E
final) > max

1≤i≤I
Dinter(E

(i)) (18)

Proof. For each scale i, the label embedding is updated via interaction with
the visual features Ti as follows:

E′
i = Attention([Ti;Ei])[C] = Ei + ∆i (19)

where ∆i denotes the semantic perturbation induced by the visual context Ti,
with directionality governed by local features, reflecting class distinctions at
the corresponding scale. Single-scale interaction introduces only a directional
perturbation ∆i, resulting in the updated inter-class distance:

Dinter(E
(i)) = Dinter(Ei + ∆i) (20)

Since perturbations from different scales are complementary in the semantic
space, the relation holds:

Span({∆final}) ⊋ Span(∆i), ∀i (21)

Therefore, the geometric tension of the fused embedding structure exceeds
that of any single scale:

∥efinalm − efinaln ∥2 > ∥e(i)m − e(i)n ∥2, ∀m ̸= n, ∀i (22)

Consequently, it follows that:

Dinter(E
final) > max

i
Dinter(E

(i)) (23)

This indicates that the multi-scale alignment mechanism theoretically leads
to a label embedding structure with stronger inter-class separability.
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4. Experiments

A systematic evaluation is conducted to assess the effectiveness, robust-
ness, and generalization of the proposed MSASG algorithm. Two large-scale
public datasets are used, accompanied by detailed descriptions of their an-
notation protocols, data distributions, and demographic profiles. To ensure
reproducibility and statistical rigor, experimental configurations and evalu-
ation metrics are clearly specified. Based on this setup, a series of analyses
is performed, including algorithm analysis, comparative experiments, and
ablation studies. Additionally, qualitative visualizations provide intuitive
evidence supporting the feasibility of attribute representation and its effec-
tiveness in multi-label prediction.

4.1. Datasets

ChestX-ray14 and CheXpert are two large-scale public CXR datasets
widely used in automated diagnosis. Both offer multi-label annotations and
demographic attributes, enabling attribute-aware representation of disease
co-occurrence patterns. As shown in Figure 3, their label distributions ex-
hibit notable imbalance in the proportions of positive, negative, and uncer-
tain samples, which may influence algorithm training and evaluation. To mit-
igate this, each dataset is randomly divided into training (70%), validation
(10%), and test (20%) subsets, with consistent demographic distributions
maintained across splits to ensure experimental stability and fairness.

(1) ChestX-ray14. Released by the National Institutes of Health (NIH), this
dataset contains 112,120 frontal chest X-ray images from 30,805 patients,
accompanied by image-level annotations for 14 common thoracic diseases.
The labels were automatically extracted from radiology reports using natural
language processing, achieving annotation accuracy exceeding 90%. Among
these images, 51,708 present at least one abnormality, while the remainder
are labeled as normal.

(2) CheXpert. Published by the Stanford University School of Medicine, this
dataset contains 224,316 CXR images from 65,240 patients, annotated with
14 categories of thoracic diseases. A key distinction lies in its uncertainty-
aware labeling scheme: each label takes a value of 1 (positive), 0 (negative),
or −1 (uncertain), capturing diagnostic ambiguity and linguistic variability
in clinical reports. Following (Irvin et al., 2019), two label conversion strate-
gies are applied: CheXpert 1s, treating all uncertain labels as positive, and
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(a) Distribution of ChestX-ray14 dataset

(b) Distribution of CheXpert dataset

Figure 3: Distribution of positive, uncertain, and negative samples for each label
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CheXpert 0s, treating them as negative. This enables controlled evaluation
of algorithm robustness under label uncertainty.

4.2. Experimental Settings and Evaluation Metrics

All experiments are conducted on a computing platform equipped with
NVIDIA RTX GPUs using the PyTorch framework. All input images are
center-cropped, resized to 224 × 224 pixels, and normalized based on Im-
ageNet statistics (mean µ = [0.485, 0.456, 0.406], standard deviation σ =
[0.229, 0.224, 0.225]). To ensure reproducibility and avoid bias, no data aug-
mentation is applied during training. The AdamW (Loshchilov and Hutter,
2017) optimizer is employed for algorithm training, with an initial learning
rate of 1 × 10−4 and a weight decay of 1 × 10−5. A learning rate scheduler
dynamically adjusts the learning rate during training, which is conducted
over 50 epochs with a batch size of 64. The Transformer adopts 12 atten-
tion heads to capture global dependencies within the input features. In the
MFPR method, three-level feature partitioning is performed. The parame-
ters for the first, second, and third partitions are set as (k = 7, s = 4, p = 2),
(k = 3, s = 2, p = 1), and (k = 3, s = 2, p = 1), respectively, to progressively
build multi-scale spatial–semantic representations.

To comprehensively evaluate the performance of the proposed MSASG al-
gorithm on multi-label classification tasks, the Area Under the Curve (AUC)
and Receiver Operating Characteristic (ROC) curve are adopted as the pri-
mary evaluation metrics, which are particularly suitable for imbalanced label
distributions in medical image analysis. The ROC curve characterizes the re-
lationship between the false positive rate (FPR) and true positive rate (TPR)
across different decision thresholds, defined as:

TPR = TP/(TP + FN) (24)

FPR = FP/(FP + TN) (25)

where TP , FP , TN , and FN denote the number of true positive, false posi-
tive, true negative, and false negative samples, respectively. AUC represents
the area under the ROC curve; a higher value (closer to 1) indicates stronger
discriminative capability. AUC is computed independently for each label, and
the macro-average is reported to reflect the overall algorithm performance.

4.3. Algorithm Analysis

The impact of key architectural configurations is analyzed to evaluate
their influence on algorithm performance, with a particular focus on feature
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partitioning, partitioning parameter combinations, age discretization strate-
gies, and the confidence threshold τ .

4.3.1. Impact of the Number of Feature Partitioning Iterations

To evaluate the impact of iterative feature partitioning, experiments are
conducted on the ChestX-ray14, CheXpert 1s, and CheXpert 0s datasets,
with the number of partitioning iterations ranging from 1 to 4. As shown
in Figure 4, the performance of the MSASG algorithm consistently improves
as the number of partitioning iterations increases, reaching its peak with
a three-iteration feature partitioning configuration, where average AUCs of
84.2%, 83.3%, and 83.8% are achieved on the respective datasets. These
results confirm that multi-scale partitioning enhances semantic feature ex-
traction and facilitates effective fusion of local and global information, which
is crucial for addressing lesion size variability. However, further increasing
the number of iterations leads to performance saturation or slight degrada-
tion, indicating that excessive partitioning may introduce redundancy and
reduce discriminative capability. Therefore, a three-iteration feature parti-
tioning configuration is adopted as the default to strike a balance between
performance and computational complexity.

Figure 4: Mean AUC under different numbers of feature partitioning iterations
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Figure 5: Mean AUC under different feature partitioning parameter configurations

4.3.2. Impact of Feature Partitioning Parameter Combinations

The MFPR method adopts a three-iteration feature partitioning configu-
ration, where each iteration applies patch-wise operations parameterized by
kernel size, stride, and padding, denoted as (k/s/p). To assess the influence
of different parameter choices, three representative configurations are eval-
uated: A (9/5/2 → 5/3/1 → 3/2/1), B (7/4/2 → 3/2/1 → 3/2/1), and C
(5/3/1→ 3/2/1→ 3/2/1). Experiments on the ChestX-ray14, CheXpert 1s,
and CheXpert 0s datasets present the results shown in Figure 5. Configura-
tion B consistently achieves the highest average AUCs (84.2%, 83.3%, and
83.8%, respectively), reflecting a better balance between capturing global
contextual information and preserving fine-grained lesion features. Configu-
ration A, while benefiting from a larger receptive field in earlier iterations,
shows limited ability in representing subtle details. In contrast, Configura-
tion C, with enhanced focus on local structures, struggles to retain broader
anatomical information due to its reduced spatial coverage. Overall, Config-
uration B provides the most favorable balance between global context aware-
ness and local detail sensitivity, and thus serves as the default configuration.
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Figure 6: Mean AUC under different age discretization strategies

4.3.3. Impact of Age Discretization Strategies

To evaluate the impact of age discretization strategies on graph con-
struction, three schemes are investigated: a coarse division with a 50-year
threshold, a four-stage division (child, youth, middle-aged, elderly), and a
fine-grained division using 10-year intervals. Comparative experiments are
conducted on the ChestX-ray14, CheXpert 1s, and CheXpert 0s datasets,
with all other graph construction components held constant. The results are
presented in Figure 6. The four-stage division consistently achieves the high-
est average AUCs across datasets (84.2%, 83.3%, and 83.8%, respectively),
indicating a favorable balance among semantic clarity, sample distribution,
and structural stability. In contrast, the coarse strategy lacks age-specific
representation, while the fine-grained strategy suffers from data sparsity and
fragmented graph connectivity. Considering both accuracy and structural
robustness, the four-stage discretization is adopted as the default age dis-
cretization strategy.

4.3.4. Impact of Confidence Threshold τ

To investigate the impact of the confidence threshold τ on attribute-aware
graph construction, experiments are conducted on the ChestX-ray14, CheX-
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Figure 7: Mean AUC under different confidence thresholds τ

pert 1s, and CheXpert 0s datasets, with τ ranging from 0 to 0.4. As shown
in Figure 7, moderate sparsification consistently enhances performance: the
mean AUC increases with higher τ values and peaks around τ = 0.25, achiev-
ing 84.2%, 83.3%, and 83.8% on the three datasets, respectively. This sug-
gests that pruning low-confidence label relations enhances the discriminative
capacity of the graph structure and facilitates more effective message prop-
agation. However, when τ exceeds 0.35, a noticeable performance drop is
observed, indicating that excessive sparsification may compromise seman-
tic connectivity among labels and hinder information flow. Based on these
observations, τ = 0.25 is selected as the default configuration to ensure a
favorable balance between structural clarity and information retention.

Based on the above experimental results, three-iteration feature partition-
ing (7/4/2→3/2/1→3/2/1) and the standard four-stage age discretization
consistently yield the best performance across all datasets, confirming their
effectiveness in balancing representational capacity and structural robust-
ness. To further evaluate overall discriminative performance across datasets,
Figure 8 illustrates ROC curves for different disease categories on the ChestX-
ray14, CheXpert 1s, and CheXpert 0s datasets using the default configura-
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tion.

4.4. Comparative Experiments

To comprehensively evaluate the effectiveness and generalization capa-
bility of the proposed MSASG algorithm for multi-label classification, ex-
tensive comparative experiments are conducted against representative state-
of-the-art algorithms. The baseline algorithms span three major architec-
tural paradigms in current research: CNNs, Transformer-based methods,
and GCNs, thereby covering the dominant methodological families commonly
adopted in multi-label CXR image classification.

(a) ChestX-ray14 (b) CheXpert 1s (c) CheXpert 0s

Figure 8: ROC curves and AUC for each disease label on all datasets

(1) Evaluation on ChestX-ray14. As shown in Table 2, the proposed MSASG
algorithm achieves the highest average AUC of 84.2% across 14 thoracic
disease categories on the ChestX-ray14 dataset, consistently outperforming
all baseline methods. Compared with the CNN-based CheXNet (80.7%),
MSASG shows a 3.5 percentage point gain, highlighting its strength in cap-
turing complex radiographic patterns. Against Transformer-based methods
like LT-ViT (82.8%), MSASG further improves global context understanding
by combining multi-scale feature partitioning with semantic alignment, en-
abling more accurate lesion localization and classification. For graph-based
methods, MSASG outperforms CRAL (81.6%), CheXGCN (82.6%), and Im-
ageGCN (83.2%), with AUC gains of 2.6%, 1.6%, and 1.0%, respectively.
These results confirm the advantage of attribute-guided graph construction in
capturing semantic dependencies and adapting to disease-specific topologies.
At the category level, MSASG achieves notably higher AUCs for diseases
with overlapping semantics and close spatial distribution, such as Effusion

23



(88.0%), Consolidation (81.5%), and Cardiomegaly (93.6%), consistently out-
performing all baselines. In summary, the results highlight the reliability and
effectiveness of MSASG for automated thoracic disease diagnosis.

(2) Evaluation on CheXpert. To evaluate the effectiveness of MSASG under
label uncertainty, experiments are conducted on the CheXpert dataset us-
ing two widely recognized uncertainty-handling protocols: CheXpert 1s and
CheXpert 0s. As reported in Tables 3 and 4, MSASG achieves the highest
overall AUCs under both configurations, reaching 83.3% and 83.8%, respec-
tively, consistently outperforming all baseline methods. Notably, the CheX-
pert 0s configuration demonstrates superior performance. These findings
highlight the strong adaptability and generalization capability of MSASG
in clinically realistic scenarios characterized by uncertain or noisy supervi-
sion.

Table 2: AUC for each label on ChestX-ray14(%)

Algorithm Atel Card Effu Infi Mass Nodu P1 P2 Cons Edem Emph Fibr PT Hern Mean
U-DCNN (Wang et al., 2017) 71.6 80.7 78.4 60.9 70.6 67.1 63.3 80.6 70.8 83.5 81.5 76.9 70.8 76.7 73.8
CheXNet (Rajpurkar et al., 2017) 76.9 88.5 82.5 69.4 82.4 75.9 71.5 85.2 74.5 84.2 90.6 82.1 76.6 90.1 80.7
CRAL (Guan and Huang, 2020) 78.1 88.3 83.1 69.7 83.0 76.4 72.5 86.6 75.8 85.3 91.1 82.6 78.0 91.8 81.6
GWSA-LCD (Xu et al., 2024) 77.0 87.7 82.7 70.1 82.1 79.0 73.2 87.0 74.6 84.7 92.4 83.9 78.2 92.1 81.8
PCAN (Zhu et al., 2022) 78.5 89.9 83.7 70.6 83.4 78.6 73.0 87.1 76.3 85.4 92.1 81.7 79.1 94.3 82.4
LLAGnet (Chen et al., 2019a) 78.3 88.5 83.4 70.3 84.1 79.0 72.9 87.7 75.4 85.1 93.9 83.2 79.8 91.6 82.4
CheXGAT (Lee et al., 2022) 78.6 87.9 83.7 69.9 83.9 79.3 74.1 87.9 75.4 85.1 94.4 84.2 79.4 93.1 82.6
CheXGCN (Chen et al., 2020) 78.6 89.3 83.2 69.9 84.0 80.0 73.9 87.6 75.1 85.0 94.4 83.4 79.5 92.9 82.6
LT-ViT (Marikkar et al., 2023) 80.7 90.6 85.3 72.3 81.1 73.4 74.1 85.6 81.2 88.4 93.0 82.9 78.8 92.8 82.8
TransDD (Jiang et al., 2024) 79.1 88.5 84.2 71.5 83.7 80.3 74.5 88.5 75.3 85.9 94.4 84.9 80.3 92.4 83.1
ImageGCN (Mao et al., 2022) 80.2 89.4 87.4 70.2 84.3 76.8 71.5 90.0 79.6 88.3 91.5 82.5 79.1 94.3 83.2
Ours 78.6 93.6 88.0 71.0 80.0 70.7 81.4 87.9 81.5 91.6 89.1 85.2 82.8 98.2 84.2

Table 3: AUC for each label on CheXpert under the CheXpert 1s setting(%)

Algorithm NoFi EnCa Card Lesi Opac Edem Cons P1 Atel P2 Effu Other Frac Devi Mean

U Ones (Irvin et al., 2019) 87.5 67.6 87.3 76.4 79.5 88.0 73.5 79.4 72.2 89.8 90.1 80.5 79.1 89.6 81.5

CheXNet (Rajpurkar et al., 2017) 87.6 67.5 87.2 76.5 79.6 87.9 73.6 79.5 72.3 89.7 90.2 80.6 79.5 89.5 81.6

PCAN (Zhu et al., 2022) 88.0 68.0 86.8 76.5 80.2 87.4 73.4 79.9 72.2 89.1 89.5 81.0 79.6 89.7 81.7

GWSA-LCD (Xu et al., 2024) 88.0 68.0 86.9 76.6 80.0 88.0 73.7 79.7 72.3 89.1 89.6 81.2 80.1 89.8 81.7

LT-ViT (Marikkar et al., 2023) 87.9 67.9 86.9 76.8 79.9 88.6 73.9 79.6 72.3 89.1 89.7 81.3 80.8 89.9 81.9

CRAL (Guan and Huang, 2020) 87.9 67.9 86.5 77.1 80.3 88.2 73.7 79.7 73.2 89.7 89.8 81.3 80.2 90.3 82.2

CheXGAT (Lee et al., 2022) 88.2 68.1 86.7 76.9 79.5 87.9 74.1 80.3 73.2 89.0 90.3 81.1 80.0 88.7 82.2

TransDD (Jiang et al., 2024) 87.9 68.2 86.6 77.1 79.8 88.2 73.8 80.2 73.0 89.1 90.2 80.8 79.8 88.9 82.3

ImageGCN (Mao et al., 2022) 88.1 68.4 86.6 77.3 80.2 88.6 73.5 80.1 72.9 89.2 90.2 80.6 79.6 89.2 82.4

LLAGnet (Chen et al., 2019a) 87.7 68.1 87.2 76.5 82.1 87.8 74.3 80.2 73.1 91.0 90.1 82.1 81.1 89.9 82.4

CheXGCN (Chen et al., 2020) 87.9 68.2 87.6 76.8 82.1 88.4 74.5 80.5 73.1 91.3 90.6 82.3 84.2 90.2 82.7

Ours 86.2 73.3 86.3 78.6 83.5 85.8 79.9 84.9 73.4 90.3 87.1 80.2 84.5 92.1 83.3
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Table 4: AUC for each label on CheXpert under the CheXpert 0s setting(%)

Algorithm NoFi EnCa Card Lesi Opac Edem Cons P1 Atel P2 Effu Other Frac Devi Mean

PCAN (Zhu et al., 2022) 87.7 69.5 87.5 75.3 80.6 88.6 77.7 80.6 73.6 90.4 90.4 81.5 81.7 89.2 81.9

CRAL (Guan and Huang, 2020) 88.4 68.4 88.4 76.4 80.9 88.7 77.3 80.8 73.6 90.4 90.5 80.5 82.7 89.2 82.1

GWSA-LCD (Xu et al., 2024) 88.2 68.5 88.1 76.4 81.0 88.5 78.3 80.7 72.7 90.7 89.8 81.4 82.6 89.2 82.1

LT-ViT (Marikkar et al., 2023) 88.0 68.7 87.8 76.5 81.2 88.4 77.4 80.6 73.8 91.0 89.1 82.4 82.6 89.3 82.2

U Zeros (Irvin et al., 2019) 87.7 69.1 87.6 76.6 80.7 88.1 77.5 80.4 73.0 90.2 90.2 81.5 80.7 89.3 82.3

CheXGAT (Lee et al., 2022) 87.8 69.8 87.8 76.7 80.7 88.1 78.2 81.1 73.2 90.4 91.2 82.0 80.8 90.1 82.4

ImageGCN (Mao et al., 2022) 88.2 70.2 88.9 75.1 81.3 89.0 78.0 80.9 73.2 91.0 91.4 80.7 81.6 89.3 82.6

CheXNet (Mao et al., 2022) 87.9 69.4 87.5 76.4 81.2 88.0 77.5 80.3 73.3 91.1 90.3 81.9 82.7 89.8 82.7

TransDD (Jiang et al., 2024) 87.8 69.4 87.6 76.3 81.6 88.2 77.8 81.8 72.2 91.3 90.6 82.5 82.9 89.7 82.9

LLAGnet (Chen et al., 2019a) 87.6 69.4 87.8 76.3 82.0 88.4 78.2 81.2 73.1 91.5 90.9 83.1 83.1 89.6 83.0

CheXGCN (Chen et al., 2020) 87.9 69.7 87.7 76.8 82.2 88.6 78.4 81.0 73.6 91.7 90.7 83.5 83.3 89.9 83.2

Ours 87.0 72.0 86.4 80.0 83.5 87.2 79.2 83.9 73.0 90.7 89.4 82.2 86.7 92.5 83.8

4.5. Ablation Study

To systematically assess the effectiveness of the key components and
strategies within the MSASG algorithm, two types of ablation experiments
are conducted on the ChestX-ray14 dataset. The first type investigates the
individual contribution of each method, aiming to quantify its necessity and
functional impact within the overall architecture. The second type focuses on
the influence of different attribute categories on the construction of the label
co-occurrence, thereby exploring the role of attribute-specific information in
shaping label dependency structures. To ensure the rigor and comparabil-
ity of the evaluation, all experiments adopt the mean AUC as the primary
evaluation metric.

4.5.1. Analysis of Key Components

To systematically evaluate the individual and combined contributions of
the key components in the MSASG algorithm, a series of ablation stud-
ies are conducted. Specifically, four experimental variants are designed by
selectively disabling the MFPR method, the LMSA method, and A-GCN
method. The experiment are assessed on the ChestX-ray14 dataset, and the
results are summarized in Table 5. The complete MSASG algorithm yields
the highest mean AUC of 84.2%, demonstrating the benefit of integrating
all three method. The exclusion of MFPR results in the most significant
performance drop, with AUC decreasing to 82.6%, underscoring its essen-
tial role in capturing lesion structure and promoting spatial generalization
through multi-scale fusion. When A-GCN is removed, the AUC drops to
83.0%, indicating that structured semantic representation is vital for mod-
eling inter-label dependencies under complex label distributions. Similarly,
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the omission of LMSA results in a moderate decline to 83.6%, suggesting
that semantic alignment enhances attention to discriminative pathological
regions and supports semantic consistency. In summary, MFPR, LMSA, and
A-GCN jointly enhance MSASG performance by addressing spatial represen-
tation, semantic alignment, and label relationship learning.

Table 5: AUC for each label under different key component configurations(%)

Atel Card Effu Infi Mass Nodu Pneu1 Pneu2 Cons Edem Emph Fibr PT Hern Mean

w/o MFPR 78.5 88.3 83.5 70.1 78.1 70.0 80.2 85.6 80.3 90.5 89.0 84.6 81.7 96.1 82.6
w/o A-GCN 78.3 88.6 84.4 71.2 79.9 70.7 80.4 86.3 80.7 90.1 88.5 84.7 82.1 96.7 83.0
w/o LMSA 78.7 92.3 85.9 70.5 79.4 70.6 81.2 86.7 81.1 91.3 88.7 84.4 82.3 97.3 83.6
MSASG 78.6 93.6 88.0 71.0 80.0 70.7 81.4 87.9 81.5 91.6 89.1 85.2 82.8 98.2 84.2

4.5.2. Analysis of Attribute-aware Label Dependency Construction

To assess the influence of attribute information on multi-label CXR im-
age classification, label co-occurrence matrices are constructed under four
configurations: (1) No Relation, (2) Age-based, (3) Gender-based, and (4)
Age + Gender. These configurations aim to reveal how demographic at-
tributes independently and jointly influence the construction of the label
dependency graph. As shown in Table 6, the baseline without attribute
integration achieves a mean AUC of 83.0%. When age information is incor-
porated, the AUC increases to 83.5%, suggesting that age reflects disease
progression trends across patient populations and serves as a valuable prior.
Similarly, when gender information is used, the AUC reaches 83.7%, indicat-
ing that physiological differences between genders affect label dependencies
and semantic co-occurrence patterns. The highest AUC of 84.2% is obtained
when both age and gender are integrated, demonstrating that combining
multiple demographic cues enables more expressive and personalized label
relationships, thereby enhancing both structural representation and classifi-
cation performance. These results underscore the value of attribute-aware
graph construction in capturing latent inter-label correlations. In particu-
lar, the fusion of age and gender offers complementary semantic information,
thereby enhancing the generalization of algorithm and enabling better adap-
tation to patient-specific variability in real-world clinical practice.

4.6. Discussion

This section discusses several critical factors that affect the performance,
reliability, and practical applicability of the proposed algorithm, including la-
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Table 6: AUC for each label under different attribute-aware configurations(%)

Atel Card Effu Infi Mass Nodu Pneu1 Pneu2 Cons Edem Emph Fibr PT Hern Mean

No Relation 78.3 88.6 84.4 71.2 79.9 70.7 80.4 86.3 80.7 90.1 88.5 84.7 82.1 96.7 83.0
Age 78.4 91.1 85.6 71.0 79.8 70.8 80.7 87.2 80.7 91.1 88.9 85.1 82.3 97.3 83.5
Sex 78.5 92.2 86.3 71.1 79.9 70.9 81.1 87.1 80.9 90.4 89.0 84.8 82.2 97.5 83.7
Age+Sex 78.6 93.6 88.0 71.0 80.0 70.7 81.4 87.9 81.5 91.6 89.1 85.2 82.8 98.2 84.2

bel embeddings, loss functions, computational efficiency, attribute flexibility,
and robustness.

4.6.1. Discussion on Label Embedding

To evaluate the sensitivity of the algorithm to the choice of initial label
embeddings, general-domain GloVe embeddings are compared with domain-
specific BioBERT embeddings. As shown in Table 7, both options yield
highly comparable AUC scores, with most label-wise differences within 0.3%.
The largest observed gap is 0.8%, favoring GloVe on the “Edema” label.
This consistency suggests the specific choice of embedding initialization has
limited impact on overall performance. The algorithm demonstrates a strong
capacity to refine semantic representations through multi-scale alignment,
regardless of the initial embedding space. Given its simplicity and lower
computational overhead, GloVe is adopted as the default label embedding
throughout the experiments.

Table 7: AUC for each label with GloVe and BioBERT embeddings(%)

Atel Card Effu Infi Mass Nodu Pneu1 Pneu2 Cons Edem Emph Fibr PT Hern Mean

BioBERT 78.4 93.8 88.1 71.0 79.6 70.4 81.7 88.1 81.6 90.8 89.1 84.7 82.9 97.7 84.1
GloVe 78.6 93.6 88.0 71.0 80.0 70.7 81.4 87.9 81.5 91.6 89.1 85.2 82.8 98.2 84.2

4.6.2. Discussion on Loss Functions

To investigate the impact of loss function selection on multi-label medical
image classification, four widely used loss functions are evaluated on the
ChestX-ray14 dataset: Binary Cross-Entropy (BCE), Class-aware Weighted
BCE (CBCE), Focal Loss (FL), and Asymmetric Loss (ASL). As shown in
Table 8, the choice of loss function notably affects performance, particularly
under class imbalance and label sparsity. CBCE achieves the highest overall
AUC by applying class-specific weights that mitigate the influence of frequent
labels. FL enhances sensitivity to minority and hard samples but introduces
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higher variability across disease categories. ASL slightly improves predictions
for rare classes by reducing negative sample interference, though with less
consistent performance. Among all candidates, CBCE demonstrates the most
robust and balanced results, and is thus adopted as the default loss function.

Table 8: AUC for each label under different loss functions(%)

Atel Card Effu Infi Mass Nodu Pneu1 Pneu2 Cons Edem Emph Fibr PT Hern Mean

BCE 78.3 91.8 87.5 70.7 79.6 70.3 80.3 87.1 80.8 91.1 87.9 84.3 81.5 96.2 83.3
FL 78.6 92.2 87.6 70.7 79.7 70.4 80.9 87.2 81.4 91.3 88.0 84.6 81.7 97.9 83.7
ASL 78.7 92.8 87.7 70.8 79.9 70.9 81.5 87.1 81.2 91.4 88.0 84.7 81.9 98.3 83.9
CBCE 78.6 93.6 88.0 71.0 80.0 70.7 81.4 87.9 81.5 91.6 89.1 85.2 82.8 98.2 84.2

4.6.3. Discussion on Computational Efficiency

The complexity of an algorithm is a crucial factor when considering its
integration into clinical workflows. In this paper, computational efficiency
is evaluated from three perspectives: (1) The number of trainable parame-
ters; (2) Training efficiency, measured by average training time per image;
and (3) Testing efficiency, measured by average testing time per image. All
evaluations are conducted on the ChestX-ray14 dataset under a consistent
computational environment to ensure fairness. As summarized in Table 9,
the proposed algorithm contains the fewest parameters (251M) and exhibits
the fastest training time (45.27 ms/image), while maintaining competitive
testing speed (40.90 ms/image). Compared to existing algorithms such as
U-DCNN, CheXNet, and LLAGnet, the algorithm demonstrates a favorable
trade-off between efficiency and predictive performance, highlighting its suit-
ability for time-sensitive clinical applications.

Table 9: Comparison of parameters, training and testing time

Algorithm Parameters (M) Training Time (ms) Testing Time (ms)

U-DCNN (Wang et al., 2017) 298 56.40 43.40
CheXNet (Rajpurkar et al., 2017) 341 57.40 45.93
LLAGnet (Chen et al., 2019a) 370 71.86 41.71
Ours 251 45.27 40.90
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4.6.4. Discussion on Additional Attributes

Although only age and gender are utilized as attribute dimensions in
the current implementation, the A-GCN method is inherently flexible and
readily extendable to incorporate additional clinical information when avail-
able. Attributes such as smoking status or medication history can be dis-
cretized or embedded and subsequently integrated into the attribute space
R = {r1, r2, . . . , rm}. Both the construction of attribute-conditioned label
co-occurrence matrices and the dynamic graph selection process can be nat-
urally adapted to accommodate these extended attributes. This design flex-
ibility enables the algorithm to better capture the complexity of real-world
clinical configurations, where richer patient metadata are often accessible.
Incorporating a broader set of attributes may further enhance the modeling
of label dependencies and improve overall predictive performance.

4.6.5. Discussion on Algorithm robustness

In clinical applications, chest X-ray images are frequently compromised
by quality issues such as noise, artifacts, and resolution inconsistencies. To
evaluate the robustness of the proposed algorithm under such conditions,
three representative perturbations are applied: Gaussian noise simulates
acquisition-related interference; Angle deviation reflects geometric misalign-
ments typically caused by improper device angle or patient positioning; and
Block occlusion artifacts emulate localized visual obstructions resulting from
external objects. All experiments are conducted on the ChestX-ray14 dataset
under consistent configurations. Figure 9 illustrates visual examples of each
perturbation. As shown in Table 10, although performance slightly degrades
under these adverse conditions, the overall results remain stable, indicating
that the algorithm maintains strong robustness and is suitable for clinical de-
ployment. Furthermore, to assess sensitivity to resolution variation, the algo-
rithm is evaluated on inputs downsampled to a range of resolutions (128–512
pixels). As illustrated in Figure 10, the AUC progressively improves with
increasing resolution and reaches a plateau beyond 224 pixels, reflecting high
adaptability to diverse imaging standards.

Table 10: Mean AUC under different perturbations(%)

Perturbations Original image Gaussian noise Angle deviation Block artifacts

AUC 84.2 84.0 83.7 83.4
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Figure 9: Visual example of image perturbations

Figure 10: Mean AUC under different image resolutions
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4.7. Qualitative Results and Visualization Analysis

Qualitative evaluations are conducted to assess the effectiveness of MSASG.
At the structural level, Figures 13 and 14 illustrate that demographic factors
such as gender and age significantly influence label co-occurrence graphs.
This confirms the capability of the attribute-aware graph construction mech-
anism to capture clinically meaningful, group-sensitive disease relationships.
To further support the theoretical justification presented in Section 3.5, em-
pirical analysis is conducted on the label embedding space. Specifically, the
average inter-class center distance Dinter is calculated across multiple scales
and the fused representation. As shown in Table 11, the fused embedding
consistently achieves the largest Dinter (1.67), validating inequality (19) and
confirming that multi-scale interaction enhances class separability.

Table 11: Inter-class Distance at Different Scales

E(1) E(2) E(3) Efinal

Dinter 1.22 1.28 1.19 1.67

Beyond structural validation, image-based prediction results further demon-
strate the utility of the proposed algorithm. As shown in Figure 11, predicted
labels from MSASG align closely with pathological regions, maintaining high
semantic and spatial consistency with radiological abnormalities. Addition-
ally, Figure 12 provides qualitative comparisons between MSASG and its
ablated variant (MFPR+LMSA), which excludes the A-GCN component.
Heatmaps generated by MSASG display more accurate and concentrated
localization of disease regions, better aligning with ground-truth annota-
tions. These visualizations highlight the discriminative power of MSASG
and its strength in learning structure-aware and clinically interpretable rep-
resentations. These results confirm the effectiveness of MSASG in capturing
attribute-aware label dependencies and accurately localizing disease regions,
highlighting its practical value for multi-label medical image analysis.
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Figure 11: Top-5 predicted labels with probabilities for CXR images (Ground-truth labels
are shown in red).
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Figure 12: Illustration of lesion locations obtained by the Grad-CAM method
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(a) Age 0–14 (b) Age 15–40

(c) Age 41–65 (d) Age>65

Figure 13: Label co-occurrence under different age conditions
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(a) Female (b) Male

Figure 14: Label co-occurrence under different gender conditions

5. Conclusion and Future Work

To address the challenges of lesion scale heterogeneity and the limited
generalizability of label dependency representations in multi-label CXR clas-
sification, this paper proposes a novel algorithm based on multi-scale and
attribute-aware semantic graph, where MFPR, LMSA, and A-GCN are col-
laboratively employed to extract multi-scale visual features and construct
attribute-conditioned label dependency. To evaluate its effectiveness, exten-
sive experiments are conducted on two widely used chest X-ray datasets:
ChestX-ray14 and CheXpert. Compared with existing state-of-the-art al-
gorithms, MSASG consistently achieves higher AUC, demonstrating robust
performance in multi-label CXR image classification. Ablation studies fur-
ther confirm that each component of the algorithm contributes significantly
to overall performance. Visualizations of label co-occurrence matrices under
different attribute configurations highlight the importance of incorporating
attribute information. Notably, the highest AUC is achieved when gender
and age are jointly integrated. Finally, the prediction results provide strong
evidence that the proposed algorithm achieves accurate identification of dis-
ease patterns in clinical practice.

Future work will explore deeper integration of personalized attributes
and assess the generalizability of the algorithm to other medical imaging
modalities. These efforts aim to support its deployment in intelligent clinical
decision systems and enhance its utility in real-world healthcare scenarios.
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