

MECHANICAL BEHAVIOUR AND MICROSTRUCTURAL ANALYSIS OF COPPER FABRICATED BY THE ADAM PROCESS

Armstrong. M, Mehrabi. H, Naveed. N, Ridley.G - Faculty of Business and Technology - University of Sunderland

INTRODUCTION

- Copper is widely used in industry because of its high electrical and thermal conductivity.
- Traditional copper manufacturing produces dense parts but restricts complex internal geometries.
- ADAM (Atomic Diffusion Additive Manufacturing), used on the Markforged Metal X platform, offers a low-cost, powderfree route to printing pure copper with nearnet-shape capability.

RESEARCH GAP

- Limited work exists on printed copper, especially regarding its mechanical properties, pore morphology, and microstructural integrity.
- Existing datasets come mostly from manufacturer datasheets rather than independent studies.
- Understanding microstructure and porosity is essential for assessing suitability for highperformance electrical, thermal, and structural applications.

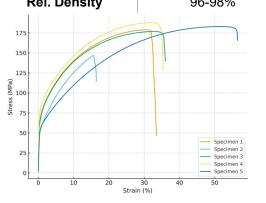
AIM

To evaluate the mechanical behaviour and microstructural characteristics of copper produced using the ADAM process.

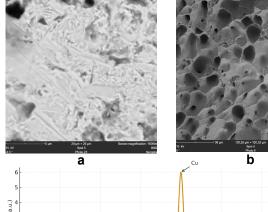
METHODS

- 1. Print Debinding Sintering
- Metal-polymer filament extrusion
- Solvent wash removes core polymer
- Furnace densification

2. Mechanical Testing


- n = 5 tensile specimens
- Tested according to ASTM E8.
- Print orientation: Solid-XY focusing on primary load-bearing direction in ADAM.

3. Microstructural Analysis


SEM imaging and EDS mapping.

MECHANICAL PROPERTIES

MECHANICAL PROPERTIES	
Property	ADAM Copper
UTS	193 Mpa
YS	26 Mpa
Elongation	35-45%
Rel. Density	96-98%
175	

MICROSTRUCTURE

- **a**. SEM surface microstructure showing fused copper particles and small isolated pores.
- **b**. Cross-section SEM image showing larger internal pores typical of ADAM-sintered copper.
- c. EDS confirming Cu with small C/O peaks

CONCLUSION

- ADAM copper achieves near-MIM densities but exhibits anisotropic pore structures, consistent with filament-based ME processes.
- Mechanical strength is primarily limited by sinter-neck development and any residual carbon.
- ADAM is a viable route for complex copper geometries, especially those requiring internal channels or conformal cooling.