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Abstract

This study investigates advanced deep learning methods to improve the detection
of periportal fibrosis (PPF) in medical imaging. Schistosoma mansoni infection affects
over 54 million individuals globally, predominantly in sub-Saharan Africa, with around
20 million experiencing chronic complications. PPF, present in up to 42% of these cases,
is a leading outcome of chronic liver disease, significantly contributing to morbidity and
mortality. Early and accurate detection is critical for timely intervention, yet conventional
ultrasound diagnosis remains highly operator-dependent. We adapted and trained a
convolutional neural network (CNN) using ultrasound images to automatically identify
and classify PPF severity. The proposed approach achieved a diagnostic accuracy of 80%.
Sensitivity and specificity reached 84% and 76%, respectively, demonstrating robust gener-
alisability across varying image qualities and acquisition settings. These findings highlight
the potential of deep learning to reduce diagnostic subjectivity and support scalable screen-
ing programmes. Future work will focus on validation with larger datasets and multi-class
fibrosis grading to enhance clinical utility.

Keywords: chronic liver disease; convolutional neural networks; deep learning; diagnostic
accuracy; medical imaging; periportal fibrosis; Schistosoma mansoni; ultrasound

1. Introduction

Intestinal schistosomiasis, caused by the blood fluke Schistosoma mansoni, is a major
public health concern, affecting approximately 54 million people annually, primarily in
sub-Saharan Africa [1]. The infection leads to intestinal schistosomiasis, with pathological
manifestations arising from the formation of granulomas around eggs that become lodged
in the liver. Granuloma formation leads to PPF, a severe complication affecting a significant
proportion of infected individuals, particularly in sub-Saharan Africa [2]. In Uganda, S.
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mansoni infection affects up to 70% of the population in endemic regions, with a particularly
high prevalence of PPF observed in communities along the shores of Lake Albert and Lake
Victoria [3]. PPF is a common manifestation of chronic liver diseases and significantly
impacts morbidity and mortality [4]. Early detection of periportal fibrosis is crucial for
timely intervention and the potential for reversibility.

Currently, non-invasive diagnostic imaging methods such as ultrasound, CT, MRI, and
elastography are used to assess and detect liver damage due to chronic schistosomiasis [5].
However, these methods have limitations. Conventional scoring systems for liver fibro-
sis based on these imaging techniques are often time-consuming, subjective, and semi-
quantitative, leading to variability in interpretation and potential diagnostic inaccuracies [6].

As illustrated in Figure 1, ultrasound imaging can visualize characteristic features
of PPE. However, interpretation still relies heavily on the sonographer’s expertise, which
introduces variability and limits scalability in low-resource settings. These limitations stem
from the inherent subjectivity in interpreting imaging features and the reduced sensitivity

of these methods in identifying the subtle signs of early-stage fibrosis.

Figure 1. A clinical photograph showing abdominal distension in a patient with PPF (left), and the
corresponding ultrasound image (right) with heterogeneous liver architecture, decreased portal vein
wall definition with a positive PPF diagnosis [7].

Machine learning (ML), a branch of artificial intelligence (Al), enables computers to
recognise patterns in data, supporting prediction and decision-making [8]. Positioned
within the broader Al framework, ML plays a pivotal role in the development of intelligent
diagnostic systems in healthcare. A computer system trained on thousands of medical
images can learn to recognise subtle pathological patterns linked to liver disease and,
without explicit programming, continuously improves its diagnostic performance through
exposure to data and experience.

Traditional machine learning techniques have been instrumental in advancing medical
imaging, supporting tasks such as classification, segmentation, and registration [9]. These
methods rely on manual feature extraction, where domain experts identify characteristics
such as texture, shape, or intensity, and feed them into algorithms like Support Vector
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Machines (SVMs) for classification [10,11]. However, this process is inherently subjective
and sensitive to image variations, often leading to inconsistent diagnostic outcomes [12].
Traditional approaches also struggle with the high dimensionality and subtle patterns
present in medical images, limiting their ability to detect complex pathological features [13].
Even established models like SVMs have shown inefficiencies in these contexts compared
to newer, data-driven deep learning approaches [14].

Traditional machine learning techniques have made significant contributions to med-
ical image analysis; however, their limitations have led to the development of more ad-
vanced methods, notably deep learning. Deep Learning (DL) is a subset of machine
learning that uses deep neural networks (DNNs) with multi-layered architectures designed
to automatically learn complex patterns and representations from large amounts of data.
Inspired by the human brain (Figure 2), DL algorithms overcome limitations and reveal
new possibilities in medical imaging [15].
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Figure 2. (a) A natural neuron forms the basis of biological neural processing. (b) An artificial neuron
models this with a weighted sum of inputs and a nonlinear activation. (c) A deep neural network
consists of multiple layers of such neurons, enabling automatic learning of complex patterns from
image data [16].

DNNSs automate feature extraction and handle the complexity of medical image data,
unlike traditional methods dependent on manual feature engineering (Figure 3). DNN
algorithms autonomously learn complex patterns and representations from raw image data,
identifying subtle details and relationships that traditional techniques might miss [12].

Deep Neural Networks excel due to their ability to detect complex visual patterns,
generate consistent and objective measurements, and eliminate the need for manual feature
selection. These attributes have proven instrumental in enhancing diagnostic accuracy for
PPF detection [15].

Whereas DL has been applied to liver fibrosis detection more broadly [17], few studies
have specifically addressed schistosomiasis-related PPF using the Niamey protocol, a
standardised set of ultrasound guidelines for the assessment of schistosomiasis-related
morbidity, particularly PPF caused by Schistosoma mansoni [18,19]. This study aims to fill
this gap by implementing and evaluating a DL-based approach for automated detection of
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PPF in ultrasound images, providing an objective and scalable tool for early diagnosis in
endemic regions.

Feature Extraction

Traditional o) _j
ML
e.g. SVM \$j
Manual Classification
Contemporary PPF
ML —
e.g. ANN No PPF
Automated Classification

Figure 3. Comparison of the contrast in feature selection approaches between traditional methods
and DNNEs.

2. Materials and Methods
2.1. Dataset Source

This study utilised a comprehensive liver ultrasound image dataset from a case-
control study conducted by the Uganda Schistosomiasis Multidisciplinary Research Centre
(U-SMRC) [20]. Data were collected between October 2023 and June 2024 from adult
participants living in communities near Lake Victoria and Lake Albert, two distinct epi-
demiological settings [21]. The study aimed to investigate risk factors associated with
severe schistosomal morbidity by comparing individuals with advanced disease (cases) to
those without or with mild infection (controls). Liver ultrasound images were part of the
inclusion criteria to assess schistosomiasis-related PPF.

The liver ultrasound images were meticulously annotated by an experienced study
sonographer using the Niamey protocol, a standardised ultrasonography protocol, which is
fundamental for assessing schistosomiasis related morbidity, particularly hepatic morbidity
caused by Schistosoma mansoni [18,19].

The Image Pattern Score (IPS), derived from the Niamey protocol, provided a stan-
dardised approach for evaluating liver damage resulting from schistosomiasis. The score
incorporates key sonographic indicators including liver surface nodularity, periportal thick-
ening, parenchymal echogenicity, signal attenuation, and intrahepatic nodules or masses
to assess the severity of PPF [22]. Trained sonographers systematically evaluated these
features and assigned an IPS.

In this study, we employed image classification as the primary task, framed within the
paradigm of supervised learning. In supervised learning, models are trained on labelled
datasets, where each input image is paired with a known outcome, enabling the system
to learn mappings from input features to target labels [23]. Ultrasound images were
labelled according to the IPS assigned by the study’s radiologist following the Niamey
protocol. Specifically, we designated images with IPS of 2 or higher as cases and those
with IPS of 0 or 1 as controls. The CNN was trained to identify subtle ultrasound features
associated with PPF, conditioned on these labels, and subsequently applied to unseen scans
for classification.

The dataset source comprised 791 liver ultrasound images (197 cases and 594 controls)
obtained from adults aged 18 to 50 years. However, reliance on secondary data from
a resource-constrained setting, together with issues such as untraceable images arising
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from inconsistencies in the image identification numbers stored on the ultrasound de-
vice, resulted in inconsistent data quality and restricted the number of verifiable samples.
Furthermore, the dataset exhibited a substantial class imbalance, with substantially more
non-diseased than diseased cases. Under these constraints, only 200 images (100 non-
disease cases and 100 disease cases) could be reliably verified and included to form a
balanced dataset for binary classification. Consequently, the sample size was determined
by data accessibility and verification feasibility rather than statistical estimation. Of the
200 labelled images, 80% were used for training and 20% for testing.

All ultrasound images were stripped of identifying information to protect participant
privacy, in compliance with the Uganda Data Privacy and Protection Act [24] and the
General Data Protection Regulation [25]. Participants in the original USMRC study had
given prior consent for their ultrasound data to be used in research, allowing for ethical
secondary analysis. The study received approval from the University of Essex ethics
committee following the submission of a detailed proposal, including formal consent from
USMRC principal investigators.

2.2. Data Extraction and Pre-Processing

As illustrated in Figure 4, 3D Slicer was used to extract and anonymise DICOM
ultrasound frames of varying sizes, reflecting differences in body habitus and imaging
parameters. Larger or deeper livers required greater imaging depth and a wider field of
view, whereas smaller or shallower livers required less. Variations in probe positioning,
transducer settings, gain, and resolution also influenced frame dimensions. To standardize
the dataset, all frames were resized to uniform dimensions (32 x 32 and 128 x 128 pix-
els) while preserving the original aspect ratio using padding, ensuring consistency and
computational efficiency during model training.

Figure 4. Pipeline illustrating the extraction and storage of ultrasonography (US) images using 3D
Slicer 5.6.2 software.

Processed images were exported as PNG files, with all identifiable metadata removed
to ensure compliance with privacy regulations and maintain participant anonymity. Sev-
eral steps were performed to optimize image data for model training. Study IDs were
replaced with anonymised labels, and images were categorized with prefixes (e.g., fibrosis_,
nofibrosis_) for classification.

Participants were scanned in the supine position after fasting or consuming only water
to optimize visualization of abdominal organs. Examinations were conducted using a GE
Healthcare Logiq E portable ultrasound system equipped with a 4 MHz curved linear
transducer and colour Doppler capability. All images were acquired in B-mode and stored
with participant identifiers. Scanning was performed by a Radiological Technologist with
over 20 years of experience in diagnosing Schistosoma mansoni-related morbidities and
applying the Niamey Protocol.

To enhance the robustness and generalisation capability of the CNN, data augmenta-
tion techniques were applied during training using the ImageDataGenerator class from
Keras. The augmentation strategy introduced random variability into the training images
through Random rotations of up to 20°, Horizontal and vertical shifts of up to 20% of the
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image width and height, respectively and Random horizontal flips. These transformations
simulate common variations in medical or real-world imaging and increase the diversity
of the training data. As a result, they help to reduce overfitting and improve the model’s
ability to generalize to unseen data.

Data Normalization was performed to enhance training stability and model perfor-
mance, all pixel values in the training and test datasets were first cast to 32-bit floating-point
format. The mean and standard deviation of the training images were then computed,
representing the average brightness and pixel value dispersion, respectively. Normalization
was performed using the equation:

Pixel — u

—_— 1
oc+10-7 M

Normalized pixel =
where y and ¢ denote the mean and standard deviation of the training dataset. A small
constant (10~7) was added to the denominator to avoid division by zero. This normalization
was also applied to the test dataset using the training set statistics, ensuring consistent
preprocessing across datasets and avoiding data leakage.

2.3. CNN Model Implementation

The CNN model in this study was implemented using the Keras Sequential API, a
widely adopted high-level deep learning framework built on top of TensorFlow [26]. The
implementation was carried out in Python 3.12.3 and utilised several libraries and packages
for model construction, training, evaluation, and visualisation. The model layers were
constructed using keras.

We used Google Drive, Git 2.34.1, and Google Colab for an efficient model devel-
opment workflow. Google Colab is a cloud platform which provides access to high-
performance hardware such as GPUs and TPUs, significantly accelerating computations
compared with typical local machines. This results in faster model training and potentially
higher accuracy [27].

The workflow involved several key steps to ensure seamless integration between data
storage, version control, and model training. Initially, periportal images were collected
on the local computer and stored in a designated Google Drive directory. These images
were organized into two folders labelled “fibrosis” and “nofibrosis” for clear categorization.
Jupyter notebooks used for data preprocessing, model training, and evaluation were
developed and stored in a GitHub repository, enabling version control and collaboration.
Finally, these notebooks and the pre-processed data were linked to Google Colab, where
the actual model training took place using the pre-processed data and the computational
resources provided by the cloud platform.

2.4. VGGI16-Inspired CNN Architecture

The choice of a CNN for PPF detection was motivated by its proven effectiveness in
image processing tasks. We adopted a model inspired by the VGG16 network, known
for its balance between simplicity and performance. This architecture was selected for its
ability to extract deep features from ultrasound images while remaining computationally
efficient [28-30].

Compared with other models such as ResNet or transformer-based approaches, the
VGG16-inspired CNN offers several advantages [31]. Although the dataset used in this
study was relatively small, the deep structure of the network enabled effective feature
learning while minimizing the risk of overfitting. Its convolutional layers effectively
captured detailed and discriminative image features, supporting accurate fibrosis detection.
VGG16 and similar architectures have also demonstrated consistent success across a range
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of medical imaging applications, including disease classification. Furthermore, the model’s
computational efficiency made it well-suited to the resource constraints of this study,
unlike more complex transformer-based models that demand greater computational power.
Opverall, the VGG16-inspired CNN provided an optimal balance between performance and
efficiency, making it an appropriate choice for the study’s objectives.

The CNN used two activation functions at different stages to perform binary PPF
image classification. Rectified Linear Unit (ReLU) activation functions were applied to all
convolutional and dense layers except the final layer. Defined as ReLU(x) = max(0, x),
the ReLU function introduces non-linearity by zeroing out all negative input values while
preserving positive ones. This facilitates efficient training by mitigating the vanishing
gradient problem and enabling the network to learn hierarchical, discriminative features
from liver ultrasound images such as texture, edge contrast, and structural anomalies. The
output layer consisted of two neurons activated by the hlsigmoid function, defined as:

1

S

Each sigmoid unit independently maps its input to a probability range between 0
and 1 (Figure 5), allowing the model to assign class confidence scores for the presence or
absence of PPF. Since the classification problem was binary and the dataset had a balanced
class distribution, a threshold of 0.5 was applied [32], outputs > 0.5 were interpreted as
PPF-positive, and outputs < 0.5 as PPF-negative. In deployment, the higher of the two
probabilities was used to determine the predicted class.

Sigmoid Activation Function with Threshold at 0.5

-10 -5 5 10
Figure 5. Plot of the sigmoid activation function with a threshold at 0.5.

Together, this activation configuration enabled the model to learn rich representations
of image features and translate them into clinically relevant binary predictions.

2.5. Evaluation Metrics

To evaluate model performance, we used standard classification metrics derived from
the confusion matrix, including accuracy, precision, recall, F1 score, and specificity. In
addition, we assessed the area under the ROC curve (AUC). Together, these metrics provide
a comprehensive assessment of both the sensitivity and reliability of the model.

Accuracy represents the proportion of correctly classified instances (both positives
and negatives) among the total number of cases. It provides an overall measure of how
well the model performs across all classes. It is calculated as:

Acetacy — TP + TN
Y = TP L TN+ FP + FN
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Precision is defined as the proportion of true positive predictions among all instances
that were predicted as positive. It is given by:

TP
TP + FP

Recall, also referred to as sensitivity or the true positive rate, is defined as the propor-

Precision =

tion of true positive predictions among all actual positive instances. It is calculated using
the formula:

TP
TP + FN

The F1 score is a combined measure of precision and recall, calculated as their harmonic

Recall =

mean. It provides a balance between the two metrics, especially in scenarios where data is
imbalanced or when both false positives and false negatives carry significant consequences.

Precision x Recall

F1 =2
Score % Precision + Recall

Specificity, also called the true negative rate, measures the proportion of correctly
identified negatives among all actual negatives. It is expressed as:

TN
TN + FP

The AUC is a threshold-independent metric that evaluates the model’s ability to

Specificity =

distinguish between positive and negative classes. It is computed as the area under the
ROC curve, where the curve plots the true positive rate against the false positive rate at
various thresholds. An AUC of 1.0 indicates perfect classification, whereas 0.5 corresponds
to random guessing.

2.6. Model Training

Random seed initialisation was performed using Python’s built-in random and numpy
modules to ensure reproducibility of training results. Several key hyperparameters were se-
lected and adjusted during the model training process. These adjustments were supported
by callbacks that helped fine-tune training based on model performance. Training began
by evaluating two input image resolutions (32 x 32 pixels and 128 x 128 pixels), cycling
through each size to identify the optimal scale for feature extraction. Comparison of the
two input resolutions showed that the model trained on 32 x 32 frames achieved higher
accuracy and greater consistency across validation runs than the 128 x 128 configuration.
The network employed the Adam optimizer with an initial learning rate of 1 x 10~.

To enhance generalisation and mitigate overfitting, on-the-fly data augmentation
was applied using Keras’s ImageDataGenerator, which randomly rotated, shifted, and
flipped input images during training. Finally, a dropout rate of 0.5 was used in the
fully connected layer to reduce overfitting by randomly deactivating half the neurons
during each update. In addition to our baseline training setup, we leveraged two key
Keras callbacks to enhance model performance. The first, ReduceLROnPlateau, monitors
validation loss and automatically reduces the learning rate by a factor of 0.1 after 10 epochs
without improvement. This approach helps the optimizer converge more precisely once
performance plateaus [33]. The second callback, EarlyStopping, halts training when no
further progress is seen over ten epochs. Together, these callbacks streamlined training,
prevented overfitting, and secured an optimally tuned model.

In summary, training was performed using the Adam optimiser, selected for its adap-
tive learning rate and strong empirical performance on complex medical imaging tasks. For
activation functions, we applied the ReLU in all hidden layers to introduce non-linearity
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while maintaining computational efficiency. The final layer used a sigmoid activation
function to output probabilities suitable for binary classification, specifically distinguishing
between cases with and without PPF [34]. Although no automated search strategy was
applied, the use of well-chosen hyperparameters and responsive callbacks played an impor-
tant role in shaping the model’s learning behaviour and improving overall performance.

3. Results

Table 1 presents the descriptive characteristics of the study population from whom the
ultrasound images were collected and used to train and test the CNN model. It summarizes
the demographic, anthropometric, and ultrasound IPS for the 200 individuals included in
the analysis.

Table 1. Characteristics of study participants stratified by PPF status (N = 200).

Characteristic No PPF (N = 100) PPF (N = 100)
Sex
Female 28 (28%) 18 (18%)
Male 72 (72%) 82 (82%)
Age (years) 29 (25, 37) 30 (24, 39)
Left Liver Lobe Length (cm) 6.90 (6.15, 7.60) 8.15 (7.25,9.20)
Right Liver Lobe Length (cm) 9.90 (9.40,10.30)  10.40 (9.90, 11.40)

Inner-to-Inner Diameter of Branch 1 (mm) 2.20 (1.80, 2.50) 2.50 (1.85, 3.10)
Outer-to-Outer Diameter of Branch 1 (mm) 4.30 (3.60, 5.10) 6.50 (5.40, 7.90)
Inner-to-Inner Diameter of Branch 2 (mm) 2.20 (1.80, 2.50) 2.50 (2.20, 3.00)
Outer-to-Outer Diameter of Branch 2 (mm) 4.00 (3.60, 4.85) 6.95 (5.45, 8.10)
Image Pattern Score

0 88 (88%) 0 (0%)
1 12 (12%) 0 (0%)
2 0 (0%) 54 (54%)
4 0 (0%) 40 (40%)
6 0 (0%) 6 (6.0%)

Values are presented as n (%) for categorical variables and Median (Q1, Q3) for continuous variables.

Initially, a baseline model (Model 1) was developed using a batch size of 16. It achieved
a test accuracy of 83% and a test loss of 0.40, showing promising results [35,36].

Figure 6 loss and accuracy curves indicated overfitting, as reflected by stable high vali-
dation accuracy but fluctuating validation loss. This suggested that the model memorised
training data rather than generalizing well.

Loss Evolution Accuracy Evolution

—— Train Loss

Validation Loss
0.65

0.75 1

0.65 1
0.50

0.60 ‘\
0.45
0551
—— Train Accuracy
0.40 Walidation Accuracy
1] 5 10 15 20 5 o 5 10 15 20 25

Figure 6. Training and validation curves for Model 1.
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To help reduce overfitting, we increased the batch size from 16 to 32 in Model 2. This
adjustment aimed to stabilise training and improve the model’s ability to generalise.

Model Performance Evaluation

Model 2 achieved a test accuracy of 80% (Table 2), with smoother learning curves ob-
served during training (Figure 7), suggesting improved generalisation. The 95% confidence
interval (CI) for accuracy was [77.5%, 97.5%]. The model attained an AUC of 0.87, with a
95% CI of [78%, 99.5%], reflecting strong discriminative ability between classes.

Table 2. Comparison of model performance metrics.

Model Accuracy AUC Precision Sensitivity Specificity F1 Score
Model 1 83 89 73 100 67 84
Model 2 80 87 76 84 76 80

Loss Evolution Accuracy Evelution

0.85

0.60

0.55 ' i 0.65

0.50

o 5 0 15 20 25 30

o H 1 15 20 25 30

Figure 7. Training and validation curves for Model 2, indicating smoother convergence during

training and clearer improvements in generalisation compared to model 1.

Figures 8 and 9 show the confusion matrix for PPF detection, summarizing true

positives, false negatives, false positives, and true negatives.

Confusion Matrix

True Labels
fibrosis

nofibrosis

fibrosis nofibrosis
Predicted Labels

Figure 8. Confusion matrix for Model 1.

17.5
15.0
0
12.5
10.0
-75
i 7 -5.0
-25
| - 0.0

https:/ /doi.org/10.3390/app16010087


https://doi.org/10.3390/app16010087

Appl. Sci. 2026, 16, 87 11 of 16

Model 2 achieved a precision of 76%, a recall of 84%, and an F1 score of 80%, indi-
cating balanced performance between correctly identifying fibrosis cases and avoiding
false positives. Specificity was 76%, showing the model’s ability to correctly identify

16
14
12
10

nofibrosis cases.

Confusion Matrix

fibrosis

True Labels

3
E =

nofibrosis

1
fibrosis nofibrosis
Predicted Labels

Figure 9. Confusion matrix for Model 2.

The ROC curve for Model 2 is shown in Figure 10, with an AUC of 0.87, demonstrating
strong discriminative capability between fibrosis and nofibrosis cases.

Receiver Operating Characteristic
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Figure 10. ROC curve for Model 2 with an AUC of 0.87.

In summary, Model 1 achieved higher accuracy, F1 score, and AUC, but showed
signs of overfitting, raising concerns about reliability on unseen data. Model 2, though
with reduced accuracy and F1 score, demonstrated greater stability across sensitivity and
specificity and better resisted overfitting. Overall, Model 1 excelled in headline performance
metrics, but Model 2 provided stronger generalisation and consistency, making it more
suitable for real world clinical deployment in resource limited settings.

4. Discussion

This study demonstrates that a CNN can effectively detect PPF from ultrasound
images. Even at a reduced 32 x 32 resolution, diagnostic performance remained robust,
indicating that essential visual features were preserved. The results highlight the value of a
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well-designed preprocessing pipeline that maintains structural integrity while improving
computational efficiency. Preserving the original aspect ratio during resizing prevented
distortion of anatomical structures, allowing the model to focus on relevant echogenic and
textural features. These findings also emphasise the potential of lightweight, resource-
efficient models for ultrasound analysis, particularly in field or low-resource settings, and
support the feasibility of scalable, automated approaches for PPF screening.

The second model (Model 2), developed through iterative optimisation, achieved
strong overall performance, suggesting that deep learning can play a valuable role in
improving diagnostic accuracy for liver disease caused by Schistosoma mansoni. The results
reflect a balanced ability to both identify true positive cases and avoid false positives, a
critical consideration in clinical diagnostics. The model’s high precision indicates that
when fibrosis is predicted, it is usually correct, reducing unnecessary concern or follow-
up. At the same time, its ability to capture most positive cases highlights its potential to
support earlier identification of patients with fibrosis. Taken together, these findings point
to a model that could complement human expertise by providing consistent and reliable
diagnostic support.

The area under the curve further reinforces the strength of the classifier, indicating
that the model could be confidently applied to distinguish between individuals with and
without PPF [37]. One of the main improvements from the baseline model (Model 1) to
Model 2 was in addressing overfitting. Initially, while the model achieved strong training
performance, the unstable validation loss suggested it had memorised the training data
rather than learned general patterns. By adjusting the batch size, implementing early
stopping, and applying data augmentation, Model 2 was able to generalise better. The
resulting learning curves, though showing mild oscillations, indicated more consistent
performance on unseen data. Such fluctuations are common in models trained on lim-
ited or noisy datasets, where validation metrics often reflect sampling variability rather
than convergence failure [38]. Nevertheless, the overall trajectories demonstrated stable
and progressive optimisation. To further mitigate overfitting and improve generalisation,
expanding the dataset to capture greater diversity and better represent real-world distribu-
tions is recommended [39]. The results reported here, however, reflect the best-performing
configuration following iterative adjustment of training parameters.

In clinical practice, diagnosing PPF through ultrasound imaging requires significant
expertise and is prone to subjectivity. The use of a CNN model provides an opportunity
to standardise this process, reducing reliance on expert interpretation and increasing the
consistency of results. This could be especially beneficial in low-resource settings where
access to trained radiologists or sonographers is limited.

Moreover, early detection of PPF is crucial, as it can prevent progression to more severe
liver complications. An automated tool capable of identifying early signs of fibrosis in
routine ultrasound scans could support timely interventions and improve patient outcomes.

The results observed here are comparable to those from similar studies. For instance,
Lee et al. (2020) [17] reported strong performance using deep learning on ultrasound data to
detect liver fibrosis, similar to the performance achieved in this study. However, this project
differs in that it focuses specifically on PPF, rather than general liver fibrosis, and applies the
Niamey protocol, which is widely used in field-based diagnostics. This makes the model
more applicable to schistosomiasis-endemic settings, particularly in sub-Saharan Africa.

While the results are encouraging, this study has a number of limitations. The dataset
included only 200 ultrasound images, which may restrict how well the model generalises
to broader populations or different imaging settings. Another limitation is that the initial
classification of images was carried out by only one ultrasonographer. Having a second
independent reviewer would have reduced the risk of relying on a single person’s subjec-
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tive perspective. Moreover, no other types of liver disease were included, meaning the
procedure may not perform as well if other causes of fibrosis are present.

Future research should therefore aim to train and validate the model on larger and
more varied datasets, ideally collected from multiple centres and regions. In addition,
future studies should consider stratified or randomised recruitment strategies to minimise
bias and improve dataset representativeness. Another direction is extending the model
beyond binary classification (fibrosis versus no fibrosis) to predict different levels of fibrosis
severity, as defined by the Niamey grading system, which could enhance clinical utility.
Future work should incorporate a wider range of hepatic pathologies to ensure the model
can distinguish PPF from other causes of liver fibrosis. Exploring alternative architectures,
such as ResNet, DenseNet, or EfficientNet, may provide improved accuracy and efficiency
compared to VGG16. Ensemble approaches could also be investigated to combine the
strengths of multiple models for more robust PPF detection.

Manual hyperparameter tuning was employed in this study to optimize model perfor-
mance. While this approach allowed careful adjustment based on observed model behavior,
we acknowledge that automated methods such as Bayesian optimisation could be explored
in future work to further refine the hyperparameters systematically. Future work could also
explore the use of interpretability methods such as Gradient-weighted Class Activation
Mapping (Grad-CAM), which highlight the regions of an image most influential in the
model’s decision. This would make the system more transparent and help build clinician
confidence in its outputs.

5. Conclusions

This study adds to the growing body of evidence supporting the application of deep
learning techniques to routine ultrasound imaging for the detection of PPE. The CNN model
developed demonstrated strong diagnostic performance, highlighting its potential to assist
clinical decision-making, particularly in schistosomiasis-endemic regions where access to
specialised radiological expertise is limited. With further validation, this Al-based approach
could help shift fibrosis diagnosis from a subjective process to a more standardised and
scalable one, thereby promoting more equitable and timely care for individuals at risk of
liver complications due to schistosomiasis.

In summary, our CNN achieved strong diagnostic performance for detecting PPF
in ultrasound images. With further validation on larger and more diverse datasets, this
approach could support earlier, more consistent diagnosis in endemic regions. We acknowl-
edge that deployment metrics (e.g., inference latency, memory footprint) and comparative
evaluation against clinical experts were beyond the scope of this study. Future work will
address these aspects, alongside extending beyond binary classification to capture fibrosis
severity and improve interpretability for clinical adoption.
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