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Abstract

Background: While recent development of Artificial Intelligence (AI)-based

approaches have demonstrated to be effective in predicting risk of ADRD, these

have mostly focused on AD subtype, aged and homogenous populations (Grueso

et al, 2022; Rahim et al., 2023), thereby limiting their applicability to other types

of ADRD and younger populations. Inspired by earlier work (Danso et al 2021), we

propose an AI-based deep-learning framework for early detection of ADRD based on

heterogeneous and diverse population frommidlife (Figure 1).

Method: We obtained two datasets from the European Prevention of Alzheimer’s

Dementia- EPAD (n = 2096) and PREVENT Dementia Programme (n = 700) available

online (AD workbench, 2020). Following procedures described in Danso et al (2018) a

harmonised cohort was curated containing individuals with no diagnosis of dementia.

We then created three risk groups (High risk = ApoE4 allele and family history of AD;

Medium risk = ApoE4 allele but no family history of AD; Low risk = no ApoE4 allele

and no family history of AD) following the risk definition by Ritchie & Ritchie (2012).

Convolutional Neural Network (CNN) and Long- Short Term Memory (LSTM) models

weredevelopedusing5-fold cross validation and then appliedoptimisationprocedures

to obtain optimal parameters for the trainedmodels.

Result: The harmonisation resulted in a cohort (n= 2796; mean age=62; range= 40 –

89years; female =57.5%, Caucasian = 95%), containing medical history, physiological,

lifestyle, neuroimaging, and sociodemographic features. Overall, CNN outperformed

LSTM by 7% points for accuracy and f1-score (Table 1), with mean AUROC scores of

97% and 94% respectively (Figure 2), and mean validation loss scores (CNN = 0.36;

LSTM=0.46).
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Conclusion: The superior performance of CNN is consistent with the literature and

the relatively low validation loss demonstrates its generalisability. While this model is

currently optimised for ADwith limited features, a Transfer Learning paradigm is being

employed to further train the CNN model to predict risk of other AD sub-types after

including BioHermes dataset into pipeline. Future workwill also exploremodifications

of the CNN architecture for multimodal features with explainability capabilities.
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