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Abstract

Background: While recent development of Artificial Intelligence (Al)-based
approaches have demonstrated to be effective in predicting risk of ADRD, these
have mostly focused on AD subtype, aged and homogenous populations (Grueso
et al, 2022; Rahim et al., 2023), thereby limiting their applicability to other types
of ADRD and younger populations. Inspired by earlier work (Danso et al 2021), we
propose an Al-based deep-learning framework for early detection of ADRD based on
heterogeneous and diverse population from midlife (Figure 1).

Method: We obtained two datasets from the European Prevention of Alzheimer’s
Dementia- EPAD (n = 2096) and PREVENT Dementia Programme (n = 700) available
online (AD workbench, 2020). Following procedures described in Danso et al (2018) a
harmonised cohort was curated containing individuals with no diagnosis of dementia.
We then created three risk groups (High risk = ApoE4 allele and family history of AD;
Medium risk = ApoE4 allele but no family history of AD; Low risk = no ApoE4 allele
and no family history of AD) following the risk definition by Ritchie & Ritchie (2012).
Convolutional Neural Network (CNN) and Long- Short Term Memory (LSTM) models
were developed using 5-fold cross validation and then applied optimisation procedures
to obtain optimal parameters for the trained models.

Result: The harmonisation resulted in a cohort (n = 2796; mean age =62; range = 40 -
89years; female =57.5%, Caucasian = 95%), containing medical history, physiological,
lifestyle, neuroimaging, and sociodemographic features. Overall, CNN outperformed
LSTM by 7% points for accuracy and f1-score (Table 1), with mean AUROC scores of
97% and 94% respectively (Figure 2), and mean validation loss scores (CNN = 0.36;
LSTM =0.46).
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Conclusion: The superior performance of CNN is consistent with the literature and
the relatively low validation loss demonstrates its generalisability. While this model is
currently optimised for AD with limited features, a Transfer Learning paradigm is being
employed to further train the CNN model to predict risk of other AD sub-types after
including BioHermes dataset into pipeline. Future work will also explore modifications
of the CNN architecture for multimodal features with explainability capabilities.

Figure 1: Overview of approach to developing Foundation model for ADRD
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Figure 2: ROC curves for CNN and LSTM
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RESULT TABLE
Model Class | Precision | Sensitivity | F1- Weighted | Weighted Weighted | Accuracy
Score | Average | Average Recall | Average
Precision F1-Score
CNN Low 0.88 0.90 0.89 0.88 0.88 0.88 88%
Mid 0.89 0.83 0.86
High 0.86 0.91 0.88
LSTM Low 0.79 0.86 0.83 0.81 0.81 0.81 81%
Mid 0.82 0.74 0.78
High 0.81 0.83 0.82
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