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Abstract 
In comparison to all types of injury, those to the brain are among the most likely to 

result in death or permanent disability. Some of these brain-injured people cannot 

communicate, recreate, or control their environment due to severe motor impairment.  

This group of individuals with severe head injury have received limited help from 

assistive technology. Brain-Computer Interfaces have opened up a spectrum of assistive 

technologies, which are particularly appropriate for people with traumatic brain injury, 

especially those who suffer from “locked-in” syndrome. The research challenge here is 

to develop novel interaction paradigms that suit brain-injured individuals, who could 

then use it for everyday communications. The developed interaction paradigms should 

require minimum training, reconfigurable and minimum effort to use. 

 

This thesis reports on the development of novel interaction paradigms for Brain-Body 

Interfaces to help brain-injured people to communicate better, recreate and control their 

environment using computers despite the severity of their brain injury. The 

investigation was carried out in three phases. Phase one was an exploratory study where 

a first novel interaction paradigm was developed and evaluated with able-bodied and 

disabled participants. Results obtained were fed into the next phase of the investigation.  

Phase two was carried out with able participants who acted as development group for 

the second novel interaction paradigm.  This second novel interaction paradigm was 

evaluated with non-verbal participants with severe brain injury in phase three. An 

iterative design research methodology was chosen to develop the interaction paradigms. 

A non-invasive assistive technology device named Cyberlink™ was chosen as the 

Brain-Body Interface. This research improved previous work in this area by developing 

new interaction paradigms of personalised tiling and discrete acceleration in Brain-

Body Interfaces. The research hypothesis of this study ‘that the performance of the 

Brain-Body Interface can be improved by the use of novel interaction paradigms’ was 

successfully demonstrated. 
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Chapter 1 – Introduction 

As medical technology not only extends our natural life span, but also leads to 

increased survival from illness and accidents, the number of people with disabilities is 

constantly increasing.  The World Health Organization (WHO, 2005) estimates that 

there are more than 600 million people in the world who are disabled as a consequence 

of mental, physical or sensory impairment, thus creating one of the world’s largest 

minorities. It has been estimated that 80 to 120 million European citizens have a form 

of disability, exceeding the population of almost every European state (Council of 

Europe, 2002). In comparison to all types of injury, those to the brain are among the 

most likely to result in death or permanent disability. In the European Union, brain 

injury accounts for one million hospital admissions per year (NABIS, 2005). Injury is 

the leading cause of death for children in Europe (Vincenten, 2001). For every child 

that dies from injuries, another 160 children are admitted to a hospital for a severe 

traumatic injury (Vincenten, 2001). Each year in the United States, an estimated, 1.4 

million people sustain a brain injury (Langlois et al., 2004). Studies have reported 

personality changes attributed to traumatic brain injury, which contribute to the 

perception of those with brain injury as social misfits. As a result of this, individuals 

with traumatic brain injury often face difficulty in adjusting to their injuries, causing 

extreme isolation and loneliness (DeHope & Finegan, 1999, Dumont et al., 2004). 

Brain-injured patients typically exhibit deficiency in memory, attention, concentration, 

analysing information, perception, language abilities, emotional and behavioural areas 

(Serra & Muzio, 2002). In the UK, out of every 100,000 of the population, between 100 

and 150 people suffer a severe head injury (Tyrer, 2005). Some cannot communicate, 

recreate, or control their environment due to severe motor impairment.  This group of 

severe head injured people are cared for by nursing homes that cater for their well being 

in every possible way. Their loved ones also play a major role in the well being of this 

group.   

 

A Brain-Body Interface is a real-time communication system designed to allow a user 

to voluntarily send messages without sending them through the brain’s normal output 

pathways such as speech, gestures or other motor functions, but only using bio-signals 

from the brain. This type of communication system is needed by brain-injured 

individuals who have parts of their brain active but have no means of communicating 
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with the outside world. There are two types of Brain-Body Interfaces, namely invasive 

(signals obtained by surgically inserting probes inside the brain), and non-invasive 

(electrodes placed externally on part of the body). This thesis reports on an 

investigation carried out on the use of novel interaction paradigms for non-invasive 

Brain-Body Interfaces so that this group of brain-injured people can communicate more 

reliably and more effectively in their environment using computers, despite the severity 

of their brain injury. 

 

1.1. Motivation 
The World Programme of Action Concerning Disabled Persons states that people with 

a disability:  

“are entitled to the same rights as all other human beings and to equal 

opportunities. Too often their lives are handicapped by physical and social 

barriers in society, which hamper their full participation. Because of this, 

millions of children and adults in all parts of the world often face a life that is 

segregated and debased.” (United Nations, 1982).  

 

In a statement presented to the 56th Session of the UN Commission on Human Rights 

in Geneva, in early April 2000, Bengt Lindqvist stated:  “It will take a long time to 

change this pattern of behaviour, which is deeply rooted in prejudice, fear, shame and 

lack of understanding of what it really means to live with a disability” (Lindqvist, 

2000).  At the 52nd meeting of the Third Committee, on 29 November 2001, the 

representative of Mexico introduced a draft resolution on an international convention 

on the rights of persons with disabilities, which the Committee recommended for 

adoption by the General Assembly. General Assembly resolution 56/168, entitled 

“Comprehensive and integral international convention to promote and protect the rights 

and dignity of persons with disabilities”, was adopted on 19 December 2001. There are 

also eEurope 2002 and eEurope 2005 initiatives, which show how the European Union 

also wants to improve the accessibility of the disabled in Europe (Council of the 

European Union, 2003, Bϋhler & Stephanidis, 2004).  
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Assistive technologies have done much to improve the quality of life of individuals 

with impairments (Salem & Zhai, 1997, Cleveland, 1994, Scargle, 1998, 

Zafar et al., 1999, WebAim, 2005). However, the group of individuals with severe head 

injury has received very limited benefit to date from assistive technology to 

communicate, recreate, or control their environment in any way (Marik et al., 2002, 

Thornhill et al., 2000).  Brain-Body Interfaces have opened up an entirely new 

spectrum of assistive technologies (Doherty et al., 1999, 2000, 2002, Gnanayutham,  

2005, Gnanayutham et al., 2005), which are particularly appropriate for people with 

traumatic brain injury, especially those who suffer from ‘locked-in’ syndrome, and 

appear to be comatose but are actually sentient (Chatrian et al., 1996).  Locked-in 

syndrome patients are completely paralysed, unable to speak or respond to anything, 

but are cognitively intact. This group of people do not receive further assessments, after 

their initial head injury and classification as locked-in syndrome, to find individual 

channels for communication with the outside world. Research has been carried out 

successfully in laboratory environment in the past, but the results had not filtered 

through to brain-injured individuals at large.  This study aims to take the Brain-Body 

Interface assistive technology to the field, develop novel interaction paradigms and 

evaluate with the brain-injured community, so that brain-injured individuals can use a 

communication system as part of their routine communication, in real time without the 

need for any off-line data processing. 

 

Although medical technology has advanced immensely in the last forty years, assessing 

the brain-injured is still very challenging.  Medical personnel find it hard to establish 

the appropriate medical classification with this group of disabled individuals (Roy, 

2004). This further complicates matters in performing research with such participants, 

since it is not known if some of these people are aware but unable to respond, or are 

really comatose (Berkow et al., 1997, Iskowitz, 1999).  One such individual whose 

capabilities went unrecognised for many years (Gnanayutham et al., 2003, 2005), and 

was classified as locked-in, with no ability to respond to any instruction, became a 

valuable contributor to this study. This individual was able to utilise the novel 

interaction paradigms developed in this study to communicate and control the 

environment for the first time since suffering traumatic brain injury. Although feedback 

from the participants of this study was limited at times, the effort made by some to 
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communicate was a great motivating force to carry on in this study. This group of 

people possess the right to communicate their feelings to the outside world, without all 

their decisions being made by others on their behalf.  

 

1.2. Research Approach 
A non-invasive assistive technology device named Cyberlink™ was chosen as the 

Brain-Body Interface for this research. Cyberlink™ combines eye-movement, facial 

muscle and brain wave bio-potentials detected at the user’s forehead to generate input 

via the mouse port. It is also relatively easy to set up. A novel interaction paradigm, 

was developed and evaluated first with able-bodied, and then with disabled participants. 

An interaction paradigm can be defined as a pattern underlying an open family of 

interaction techniques that exploit common knowledge of effective user interface 

features, whereby optimisation methods can be used to select the most effective 

technique within a paradigm. An interaction paradigm is characterised by the abstract 

task that users follow to achieve an interaction goal. Task steps are described in a 

manner that allows variations of design features and user interface parameters. 

Nevertheless, the paradigm has a coherence based on key distinguishing user interface 

features. 

 

Interfaces using brain waves to navigate a cursor around a computer screen to reach 

specific targets were developed and evaluated in this phase of the research.  The 

investigation was carried out in three phases. Phase one was an exploratory study using 

two interfaces. The interaction paradigm for the first, used techniques from previous 

research by Doherty (2001). The second used a novel interaction paradigm developed at 

this stage of the research. The data obtained in phase one was used in phase two to 

develop a second new hybrid interaction paradigm. The phase two investigations were 

carried out with able participants who acted as the development group for the 

development of the interaction paradigm. In phase three, the developed interaction 

paradigm was evaluated in a field study with non-verbal participants with severe brain 

injury. Various research methodologies were considered before the choosing the 

appropriate one for this investigation. It was an iterative development process.  

Formative research and empirical summative research methodologies were chosen to 
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evaluate the interaction paradigms (Burns & Grove, 1997). The approach used here was 

one of developing a prototype interface (Abowd et al., 1989) using non-disabled people 

as test subjects, then evaluating the interface with brain-injured participants.  This 

allowed better feedback for faster development. The ethics boards at each of the 

institutions approved this research.  

 

1.3. The Hypothesis 
This research attempts to improve on the existing work of Doherty (Doherty et al., 

1999, 2000, 2001, 2002) by developing a new interaction paradigm. It is intended to 

extend the scope of Brain-Body Interfaces, in terms of both the population who can 

operate them (both as carers and users) and in terms of what (some) users can do with 

them. The developed interaction paradigm is to be used for everyday communication by 

brain-injured individuals. Doherty’s success was limited and inconsistent. It was clear 

that improved control over the cursor would extend the population of brain-injured who 

could use Brain-Body Interfaces, as well as the functionality that could be accessed 

through it.   

The research hypothesis is thus: 

That the performance of the Brain-Body Interface can be improved by the use of 

novel interaction paradigms. 

 

1.4.Original contribution to knowledge 
The interaction paradigms developed in this research used hybrid techniques to improve 

control over the cursor. The application of these novel interaction paradigms to 

Brain-Body Interfaces is an original contribution to knowledge.  The previous work in 

this area had limited success, but the user interaction paradigm developed in this 

research improves on the previous one by developing an individually configurable 

interaction technique thus creating a more inclusive interface (Keates & Clarkson, 

2002).  
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1.5. Structure of the remainder of the thesis 
Chapter two surveys the research conducted in the area of Brain-Body Interface 

devices. The chapter begins by looking at the structure of the brain, brain injury and the 

bio-potentials that could be taken from the brain and used for Brain-Body Interfaces. 

Thereafter it deals with its main focus, which is devices for the severely brain-injured. 

The latter part of the chapter focuses on the choice of bio-potential device for this 

research and the previous research done using Cyberlink™ as a Brain-Body Interface. 

The chapter concludes by identifying the most suitable bio-potential, the Brain-Body 

Interface with the best success rate, the challenges faced by this area of research and the 

need for further research, in the area of Brain-Body Interface. Chapter three describes 

the overall research methodology that was used for this study. The chapter begins with 

the challenges involved in researching in the area of Brain-Body Interfaces and goes 

onto describe the chosen methodology and the structure of the investigation. 

 

Chapters four, five and six report on the first, second and third phases of this research. 

An interaction paradigm was developed, and experiments were carried out in the first 

phase.  In the second phase, a further novel hybrid interaction paradigm was developed, 

experiments carried out, and parameters refined, to obtain an optimised interface for 

phase three. Phase three used the optimised hybrid paradigm, to carry out experiments 

with brain-injured participants. Each chapter starts with a local hypothesis to be tested 

in each phase and goes on to report details of each experiment, time span, interface 

design/development, participants and experimental methods and results obtained. 

Chapters four and five conclude with what was accomplished in phase one and two of 

the research, and what is to be investigated in the following phase. Chapter six 

concludes with what was accomplished in phase three of the research and relates the 

results to the overall hypothesis of this research. 

 

Chapter seven summarises the work undertaken in this study. It also discusses the 

contributions made to Human Computer Interaction and assistive technology. It 

concludes by discussing future work that could be carried out in this area. 
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Chapter 2 – Literature Survey 

The chapter begins by looking at the structure of the brain, brain injury and the 

bio-potentials that could be taken from the brain and used for Brain-Body Interfaces. 

Thereafter it deals with research carried out in both non-invasive and invasive Brain-

Body Interfaces. The chapter concludes by focusing on the choice of Brain-Body 

Interface for this research and opportunity relative to existing research. 

 

Jagacinski and Monk (1985) described muscle tremors, angle of head rotation, and 

other biological concepts that influenced a user’s performance using a joystick or a 

helmet mounted sight in target acquisition experiments, but said little about the brain 

(Cooper et al., 2006). Auletta (1997) argued for the need for more computer interfaces 

and recording devices that require a variety of biological and environmental inputs. An 

improvement in understanding of how they can work together efficiently can benefit 

persons with or without a disability.  It is therefore important to include some 

information about basic brain anatomy and physiology.   

 

Allanson and her team (1999, 2002) said that the computer interface developer should 

have a tool kit available that will allow the addition of biological inputs as an 

alternative means of control. In addition, Picard (2000) describes how a user may 

control a computer with signals generated by the movements of eyes, the contraction of 

muscles, the changing of skin resistance, the creation of intense thoughts, or by the 

regulation of respiration. It is becoming evident that more computer interface designers, 

users, and those who wish to assist persons in using alternate methods of controlling a 

computer need some understanding in human biology if they do not already have it.  

 

2.1. Structure of Brain 
The brain is the centre of the central nervous system in humans as well as the primary 

control centre for the peripheral nervous system (Figure 2.1). The building blocks of the 

brain are special cells called neurons. The human brain has approximately a hundred 

billion neurons. Neurons are the brain cells responsible for storing and transmitting 

information from a brain cell. The adult brain weighs three pounds and is suspended in 
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cerebrospinal fluid. This fluid protects the brain from shock. The brain is also protected 

by a set of bones called the cranium or a skull. 

 

Figure 2.1 – Brain Map (Courtesy of www.headinjury.com) 

 

The three main components of the brain are the cerebellum, cerebrum and brainstem 

(pons and medulla oblongata). The cerebellum is located between the brainstem and the 

cerebrum.  The cerebellum controls facial muscle co-ordination and damage to this area 

affects the ability to control facial muscles thus affecting signals (eye movements and 

muscle movements) needed by Brain-Body Interfaces.  

 

The cerebrum is the largest part of the brain and sits on top of the cerebellum and 

contains large folds of brain matter in grooves (Kalat, 1995). The cerebrum is divided 

into two hemispheres, the right and the left. The dividing point is a deep groove called 

the longitudal cerebral fissure. The left hemisphere controls the right side of the body 

while the right side controls the left side of the body. The cerebrum is the section where 

thoughts are created and memory is stored. The associated brain waves may be used in 

Brain-Body Interfaces. The cerebrum also has five lobes which are the frontal lobe, 
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occipital lobe, temporal lobe, parietal lobe and insular lobe. Injury to the cerebrum can 

leave a person fully aware of their surroundings but unable to react to any events 

happening in the surroundings (Berkow et al., 1997). The frontal lobe contains the 

motor cortex, which creates alpha brain waves. The occipital lobe contains the visual 

cortex. The visual cortex effects the visual perception, which creates brain waves 

(Schmolesky, 2006). The temporal lobe contains the cranial nerve and auditory cortex 

(Berkow et al., 1997). Damage to this region may affect a person’s hearing. The 

parietal lobe contains the primary somatosensory cortex.  Damage to this area of the 

brain affects the ability to use bio-potentials to manipulate a Brain-Body Interface. The 

insular lobe affects emotion and damage to this region may affect a person’s ability to 

relax when using a Brain-Body Interface. 

 

The brainstem controls basic functions such as eating, respiration, heart rate (Fridlund, 

1994) and also controls cognition (Berkow et al., 1997). It is connected to the spinal 

chord and covered by a small flap of brain tissue known as the dura. The cranial nerves 

that carry the signals to control facial movements also originate in the brainstem, hence 

the brainstem is of interest when using Brain-Body Interfaces.  

 

There are two stages in traumatic brain injury, the primary and the secondary. The 

secondary brain injury occurs as a response to the primary injury. Primary brain injury 

is caused initially by: 

• Trauma - an acquired injury to the brain caused by an external physical force; 

• Amyotrophic lateral sclerosis - a degenerative disorder affecting upper motor 

neurons in the brain and lower motor neurons in the brain stem and spinal cord; 

• Brain stem stroke - A stroke affecting the area of the brain control functions 

such as breathing, instructing the heart to beat. Brain stem stroke may also cause 

double vision, nausea, loss of coordination and loss of speech. 

 

Secondary brain injury refers to the changes that evolve over a period of time (from 

hours to days) following the primary brain injury and includes complications such as 

damage caused by lack of oxygen, rising pressure and swelling in the brain. A brain 

injury can be seen as a chain of events beginning with the first injury which occurs in 

seconds after the accident and being made worse by a second injury which happens in 
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minutes and hours after this, depending on when skilled medical intervention occurs.  

There are three types of primary brain injury - Closed, Open and Crush.  Closed head 

injuries are the most common type, and are so called because no break of the skin or 

open wound is visible. Open head injuries are not so common. In this type of injury the 

skull is opened and the brain exposed and damaged. In crush injuries the head might be 

caught between two hard objects. This is the least common type of injury, and often 

damages the base of the skull and nerves of the brain stem rather than the brain itself.  

 

Individuals with brain injury require frequent assessments and diagnostic tests (Sears & 

Young, 2003). Most hospitals use the Glasgow Coma Scale for predicting early 

outcome from a head injury, for example, whether the person will survive; or Rancho 

Levels of Cognitive Functioning for predicting later outcomes of head injuries (Roy, 

2004). See Appendix 4 for full details of brain injury assessments and diagnostic tests. 

 

A few people sustain a head injury so severe that they remain in a state of coma for 

months and years. They may have sleeping and waking cycles allowing them to be fed, 

but they do not speak or follow commands. Such a person may be described as being in 

a persistent vegetative state or PVS. There are typically just less than 100 people in the 

UK in PVS at any one time (Headway, 2005). There is also another category of people 

who are alert and cognitively intact but cannot move or speak. This phenomenon is 

called locked-in syndrome. This group faces a great challenge in trying to communicate 

using eyes, muscle movements and brain waves (Kennedy et al., 2000, Moore, 2003). 

This group of people do not receive further assessments after their initial head injury 

and classification as locked-in syndrome, but this could find individual channels for 

communication with the outside world. Open/close eyelids, movement of eyebrows, 

movement of toes/fingers and use of bio-potentials are some examples of how 

individual channels can be used for basic communication by the locked-in syndrome 

individuals (Doherty, 2001). There are various recommendations and standards for 

monitoring comatose and other unresponsive states (Chatrian et al., 1996), especially 

for those who suffer from locked-in syndrome, and appear to be comatose but are 

actually sentient.  See Appendix 5 for full details of recommendations and standards for 

monitoring comatose and other unresponsive states.  
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2.2. Bio-potentials for Brain-Body Interfaces 
This section describes the bio-potentials that can be used in Brain-Body Interfaces. 

Bio-potentials are electrical signals from the brain which can be obtained from skull, 

forehead or other parts of the body (the skull and forehead are predominantly used 

because of the richness of bio-potentials in these areas). Each bio-potential has its own 

unique characteristics, such as amplitude, frequency, method of extraction and time of 

occurrence. Each brain-injured patient (apart from persistive vegetative state patients) 

can produce one or more of these bio-potentials with differing degrees of consistency. 

Brain-injured patients can operate Brain-Body Interfaces depending on the reliability of 

the bio-potential which they can produce. There are various definitions for data transfer 

rate in Brain-Body Interfaces. This thesis will use bits/second as defined by Farwell and 

Donchin (Kronegg et al., 2005). This thesis will use bits/second as defined by Farwell 

and Donchin (Kronegg et al., 2005). Farwell and Donchin law states, 

B = V⋅R 

where V is bit-rate (bits/second), V being the classification speed (in symbols/second) 

and R the information carried by one symbol (in bits/symbol). The current Brain-Body 

Interfaces can transfer data up to 1.13 bits/second (Gao et al., 2003). 

 

2.2.1. Electroencephalalography (EEG) 

Electroencephalalography measures electrical brain activity that results from thoughts 

or imagined movements (Kalcher et al., 1994, Guger et al., 2001). 

Electroencephalalographic signals can be collected by electrodes placed on the scalp or 

forehead (Berkow et al., 1997).  The amplitude can vary between 10 - 100 µV when 

measured on the scalp or forehead.   Electroencephalalography covers a frequency 

spectrum of 1 - 30 Hz and is divided into five classes. Authorities on 

electroencephalalography dispute the exact frequency demarcation points of the five 

classes (Berg et al., 1998). Robinson sampled electroencephalalographic signals from 

ninety-three participants and classified them as delta, theta, alpha, beta, and high beta 

(Robinson, 1999). Robinson’s classification will be used throughout this thesis. Some 

classes of electroencephalalographic signals can be used as bio-potentials for Brain-

Body Interfaces. 
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2.2.2. Delta Waves 
Delta waves are slow waves that are formed in deep sleep and have a frequency range 

of 0 - 4 Hz. Eye movements often produce strong signals that also affect electrical 

activity in the delta range (Berg et al., 1998). Brown (2006) states that the 3 Hz 

component of the delta wave can bring back experiences from the past, which could be 

psychologically traumatic for the patients. Hence it is desirable to avoid 

electroencephalalographic activity in the 3 Hz region. Tortora and Derrickson (2006) 

state that the presence of delta waves in an awaske adult indicates brain damage, since 

the presence of delta waves in a patient who is awake indicates unconsciousness or 

deep sleep. 

 

2.2.3. Theta Waves 

Theta waves have a frequency range of 4 - 8 Hz.   Theta waves are associated with 

daydreaming, emotions and sensations. This component of electroencephalalographic 

signals reflects a state of wakefulness and sleep at the same time (Robinson, 1999). Eye 

movements can also affect electrical activity in the theta range since they occur 

between 1.1 - 6.25 Hz (Berg et al., 1998). Brown (2006) states that the 5 Hz component 

of the delta wave is directly tied to physical trauma and/or structural changes to cortical 

regions that are frequently damaged in traumatic brain injury. Hence it is desirable to 

avoid electroencephalalographic activity in the 5 Hz region. Tortora and Derrickson 

(2006) state that the presence of theta waves in a patient who is awake indicates stress.  

 

2.2.4. Alpha Waves /Mu Waves 

Alpha waves, also known as Mu waves, have a frequency range of 8 -12 Hz. The alpha 

wave is collected through electrodes placed over a large fold in the brain known as the 

central sulcus (Kozelka, 1990) or at the forehead (Berg et al., 1998). Eye closures often 

produce strong signals that also affect electrical activity in the alpha range. Kalcher and 

his team (1994) say that movement of a limb or imagined movement of a limb also 

affects alpha waves.  

 

2.2.5. Beta Waves 

Beta waves have a frequency range of 12 - 20 Hz. Berg (1998) says that those with 

brain lesions have diminished capabilities to manipulate beta waves. In Berg’s work, 
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military pilots used a Brain-Body Interface with beta settings to control one axis of the 

cursor in a flight simulator thus creating a Brain-Body Interface. 

 

2.2.6. High Beta Waves 

High beta waves have a frequency range of 20 - 30 Hz. Facial movements often 

produce strong signals at approximately 45 Hz that also affect electrical activity in both 

the beta and high beta ranges (Berg et al., 1998). High beta waves have not been used 

for controlling Brain-Body Interfaces. 

 

2.2.7. Electromyography (EMG) 

Electromyography measures an electrical signal resulting from a contracted muscle 

(Berkow et al., 1997).  The moving of an eyebrow, for example, is a muscle contraction 

that produces waves at 18 Hz, but which resonate throughout the 

electroencephalalographic spectrum (Berg et. al., 1998). Electromyographic signals can 

be collected on the arms, legs, or face because muscle contractions may occur there. 

Electromyographic signals have an amplitude range of 0.2 - 2000 µV. 

 

2.2.8. Electrooculargraphy (EOG) 

Electrooculargraphic signals are low frequency signals derived from the resting 

potential (Corneal-Retinal Potential) by ocular or eyeball movements (Knapp et al., 

1995). Eyeball movements affect the electroencephalalographic spectrum in the delta 

and theta regions between 1.1 - 6.25 Hz (Berg, 1998). Electrooculargraphic signals 

have an amplitude range of 1 - 4 mV.  

 

2.2.9. Slow Cortical Potentials (SCP) 

Slow cortical potentials (SCPs) are signals of the cerebral cortex, which can be 

collected from the scalp surface. They are electroencephalalographic oscillations in the 

frequency range 1 - 2 Hz (Kotchoubey et al., 1997) and can be positive or negative. The 

signals can be 5 - 8 µV and a person may be trained to change the amplitude of slow 

potential signals to indicate a selection such as for a spelling device (Birbaumer et al., 

1999, Hinterberger et al., 2003). 
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2.2.10. Evoked Potential (EP) 

Another signal detected in the electroencephalalographic range is the evoked potential, 

also known as an event related brain potential (ERP).  Evoked potential can be a 

positive or negative signal and can occur at various times after visual or auditory 

stimuli. Evoked potentials occur when a person concentrates on an object.  Evoked 

potentials are of relatively low amplitude signals with a range of 1 - 10 µV in 

comparison with electroencephalalographic signals (10 - 100 µV).  When someone sees 

or hears anything that is especially meaningful to them then a special response is 

produced such as steady-state visual evoked potential, P300 and N400 (these signals are 

described in Sections 2.2.12 and 2.2.13). Electroencephalalography measures all brain 

activity at any point in time, while the evoked potential is that part of the activity 

associated with the processing of a specific event (post stimuli).  

 

2.2.11. Steady-State Visual Evoked Potential (SSVEP)/ Steady State Visual 

Evoked Responses (SSVER) 

Steady-State Visual Evoked Potentials (SSVEPs), also known as Steady State Visual 

Evoked Responses (SSVERs) are obtained when users can indicate their interest in 

specific stimuli by choosing to attend or ignore it (Cheng, 2002, Gao, 2003). This 

allows a user to send information by voluntarily modulating their attention, through 

SSVEP (e.g. choosing buttons flashing at different rates, on a virtual telephone keypad 

to make a phone call). SSVEP uses the 4 to 35 Hz frequency range. SSVEPs transfer 

data at high data transfer rates (1.13 bits/s) and occur at 100 - 1000 ms after the stimuli. 

 

2.2.12. P300 

The P300 (also called P3) is a component of the evoked potential range of brain waves. 

P300 displays a brain wave with positive amplitude, peaking at around 300 ms after 

task-relevant stimuli. This signal occurs in the delta (0.5 - 4 Hz) and theta (4 - 7 Hz) 

frequency range. Kotchoubey and his team (2001, 2002) investigated bio-potentials in 

patients with severe brain damage. They used oddball tasks (two stimuli with different 

probabilities e.g. 80/20) using signals such as sine tones, complex tones or vowel 

sounds o and i, to elicit P300 waves from twenty five out of thirty three patients. The 

P300 is perhaps the most studied evoked potentials component in investigations of 

selective attention and information processing (e.g. for choosing letters on a computer 
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screen to communicate) in comparison to the other components of the evoked potentials 

(Patel & Azzam, 2005, Farwell & Donchin, 1988, Donchin et al., 2000), further details 

in Section 2.4.5. The key stroke level model gives an average of 200-280 ms for an 

average typist to type a character or press a key on a keyboard (Kieras, 2005, Card 

et al., 1983). The times given by key stroke level model, compares favourably with the 

P300 task-relevant stimuli but, the participants using the P300 will have problems 

processing the letters on screen at this slow speed since our brain processes information 

in chunks (Kirschner, 2002, Kalyuga et al., 1999, Hinterberger et al., 2005).  

 

2.2.13. N400 

The N400 is a component of the evoked potential range of brain waves. N400 displays 

a brain wave with negative amplitude, peaking at around 400 ms triggered by 

unexpected linguistic stimuli. The N400 is most pronounced over centro-parietal 

regions of the scalp and tends to be larger over the right than the left hemisphere. This 

brain wave is mainly used for speech and gesture comprehension (Spencer et el., 2004, 

Debruille et al., 1996). 

 

2.2.14. Electrocochleography (ECoG)  

Electrocorticographic (ECoG) signals are obtained by recording brain surface signals 

with electrodes located on the surface of the cortex (invasive method). It is an 

alternative to data taken non-invasively by electrodes outside the brain on the skull such 

as in electroencephalalography, electromyography and evoked potential. 

Electrocochleography records at 300 - 1000 µV amplitude and has a frequency of 

40 Hz (Tran et al., 1997, Lal et al., 2005). 

 

2.2.15. Low Frequency Asynchronous Switch Design (LF-ASD) 

The low-frequency asynchronous switch design (LF-ASD) was introduced as an 

invasive Brain-Body Interface technology for asynchronous control applications. The 

low-frequency asynchronous switch design operates as an asynchronous brain switch 

(ABS) which is activated only when a user intends to control. The switch is placed on a 

scalp, it maintains an inactive state output when the user is not meaning to control the 

device (i.e., they may be idle, thinking about a problem, or performing some other 

action). The low-frequency asynchronous switch design is based on 
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electroencephalalographic signals in the 1 - 4 Hz frequency range (Borisoff et al., 2004) 

with an amplitude of 10 - 100 µV.  

 

2.2.16. Local Field Potential (LFP) 

Signals can be recorded in a human frontal cortex using implanted microwires in the 

sensorimotor regions of the neocortex which exhibit synchronous oscillations in the 

15 - 30 Hz frequency range and have an amplitude of 6 µV.  These signals are also 

prominent in the cerebellum and brainstem sensorimotor regions. These signals are 

called local field potentials. Multiple electrodes can be used to record these local field 

potentials, which can be synchronised with the execution of trained and untrained 

movements of limbs. Local field potentials provide an excellent source of information 

about the cognitive state of the subject and can be used for neural prosthetic 

applications (Kennedy et al., 2004, Harrison et al., 2004). 

 

2.3. Brain-Body Interface Devices 
Assistive devices are essential for enhancing quality of life for individuals with severe 

disabilities such as quadriplegia, amyotrophic lateral sclerosis (ALS, commonly 

referred to as Lou Gehrig’s disease), brainstem strokes or traumatic brain injuries 

(TBIs). Research has been carried out on the brain’s electrical activities since 1925 

(Kozelka & Pedley, 1990). Brain-Computer Interfaces (BCIs), also called Brain-Body 

Interfaces or Brain-Machine Interfaces (BMI) provide new augmentative 

communications channels for those with severe motor impairments. BBI will be used as 

the acronym for Brain-Computer Interfaces, Brain-Body Interfaces and Brain-Machine 

Interfaces from this point onwards.  

 

In 1995 there were no more than six active BBI research groups, in 2000 there were 

more than twenty (Birbaumer et al., 2000a) and now more than thirty laboratories are 

actively researching in BBIs (Vaughan et al., 2003). A BBI is a communication system 

that does not depend on the brain’s normal output pathways such as speech or gestures, 

but uses electrophysiological signals from the brain, as defined by Wolpaw and his 

colleagues (2000). There are two types of BBIs namely invasive (signals obtained by 

surgically inserting probes inside the brain) and non-invasive (electrodes placed 
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externally on part of the body). Allison (2003) states that a BBI may even transfer data 

faster than conventional interfaces because it is possible to determine a user’s intent to 

move from the electroencephalalography before that information is actually sent to the 

spinal cord.  Although the above statement is true in theory, in practice it is much 

harder to control and process brain waves in order to make BBIs work faster than 

conventional interfaces (Gnanayutham et al., 2005). Most non-invasive BBI devices 

use bio-potentials taken from skull/forehead as signals for communications instead of 

functional imaging approaches such as Functional Magnetic Resonance Imaging 

(fMRI) and Positron Emission Tomography (PET) as illustrated in the next section. 

 

2.3.1. Mechanism of Brain-Computer Interfaces  

Figure 2.2 – Non-Invasive Brain-Computer Interface 

 

Non-invasive technology involves the collection of control signals for the BBI without 

the use of any surgical techniques, with electrodes placed on the face, skull or other 

parts of their body. The signals obtained are first amplified, then filtered and thereafter 

converted from an analogue to a digital signal (Figure 2.2). Various electrode positions 

are chosen by the developers, who choose electrode caps, electrode headbands with 

different positions and number of electrodes or the International 10-20 System 

(Pregenzer, 1994, Coyle et al., 2007). Authorities dispute the number of electrodes 

needed for collection of usable bio-potentials (Berg et al., 1998). Junker recommends 
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using three electrodes for collecting signals (Junker, 1997) while Keirn and Aunon 

(Keirn & Aunon, 1990) recommend using six electrodes.  Chatrian claim at least twenty 

electrodes are needed (Chatrian et al., 1996).  The caps may contain as many as 256 

electrodes, though typical caps use 16, 32, 64 or 128 positions, each cap has its own 

potential sources of error. High-density caps can yield more information, but in practice 

they are hard to utilise for real time communications (Nunez et al., 1999). The 

bio-potentials obtained from these large numbers of electrodes need extensive off-line 

processing to make any sense of what the user is trying to express. There is only one 

agreed standard for the positions and number of electrodes, the International 10-20 

System of electrodes (Jasper, 1958) shown in Appendix 1. 

 

 

 

 

 

           

           

           

           

           

           

        

        

           

            

Figure 2.3 – Invasive Brain-Computer Interface 

 

Invasive electrodes can give better noise to signal ratio and obtain signals from a single 
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penetrating silicon electrodes, placed on the surface of cortex with needles penetrating 

into the brain, which can be used for recording and simulating neurons (Maynard et al., 

1997, Spiers et al., 2005). Neuron discrimination (choice of single or a group of 

neurons) does not play any part in the processing of signals in BBIs (Sanchez et al., 

2005). 

 

2.4. Non-invasive Brain-Body Interface devices 
Brain activity produces electrical signals that can be read by electrodes placed on the 

skull, forehead or other part of the body (the skull and forehead are predominantly used 

because of the richness of bio-potentials in these areas). These bio-potentials are then 

translated into instructions to direct the computer, so people with brain injury have a 

channel to communicate without using the normal channels. Various research groups 

have developed many BBIs and the following is a survey of the non-invasive category 

of BBIs. 

 

2.4.1. Alpha Wave Based 

Alpha wave based experiments were conducted by Craig and his teams (1997, 1999) 

with 21 non-disabled and 16 spinal cord injured participants. They used a 19 electrode 

BBI device to show how the alpha wave increases (between 200 - 400%) in the 8-12 Hz 

range in posterior, central and anterior regions of the brain following eye closure. They 

established that a majority of persons (95% of non-disabled and 93% of spinal cord 

injury individuals) could operate hands free control of devices using eye closure. The 

experiment also demonstrated that alpha waves increased when the electromyographic 

bio-potential was reduced by closing the eyes. This BBI did give the opportunity to 

switch electronic devices hands free, but had no further use.  Hence it was never used 

outside the labs on a brain-injured population. 

 

2.4.2. Electroencephalalography Based 

Kostov and Polak (1997a, 1997b) achieved one dimensional up - down movement on a 

computer screen using electroencephalalographic signals with a cap of twenty eight gel 

filled electrodes. This BBI was evaluated by three able-bodied participants, the results 

obtained showed significant differences between the participants’ generation of 
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electroencephalalographic signals, and hence this device was not developed further. 

However Kostov and Polak (2000) went on to develop a new parallel man-machine 

approach, using electroencephalalographic signals with relatively short practice, with 

parallel learning process. This process involved an operator sitting with the participants 

and recording the relevant electrodes in a hard disk and using offline and online 

processing to communicate in real-time. The object of the exercise was to achieve 

up-down-left-right precise cursor positioning. Two subjects (one able-bodied and the 

other disabled) achieved 70 to 85% success rates using this BBI. This was an 

improvement on the previous BBI (Kostov & Polak, 1997a, 1997b), with less training 

and cursor movement in all directions but there were still problems in controlling the 

cursor, hence it was not used beyond the laboratory exercise. 

 

An electroencephalalography based raw data acquisition system was developed by 

Malina and colleagues (2002). The BBI developed here aimed to acquire data in real 

time. Electroencephalalographic (alpha waves) signals using thirty-two scalp electrodes 

and standard amplification were recorded in this experiment. Limited computing power 

and signal delay caused them to discontinue this line of research.   

 

Electroencephalalography based research was also carried out by Wolpaw and 

colleagues (1991), who performed a group of experiments with a BBI that used the 

8 - 12 Hz alpha waves to move a cursor along one axis to targets marked yes or no.  

Five participants were instructed to respond to a series of questions directed at them. 

This BBI had two major flaws. Firstly, the BBI could not cater for the inconsistent 

amplitude of the signal created by each participant. Secondly, speed and accuracy of the 

selection and voltage ranges gave inconsistent results in relation to real-time online 

processing of the signals. The BBI was later improved to allow the cursor to move 

simultaneously in both vertical and horizontal directions.  Success for the five 

participants was in the range of 41 - 70%, which needed further improvement 

(Wolpaw & McFarland, 1994). This device was further improved to an accuracy of 

greater than 90% using digital signal processing techniques and a sixty-four electrode 

data acquiring system. Wolpaw and his team used five able-bodied participants, with 

90% accuracy, to show that humans can learn to control the amplitude of 

electroencephalalographic activity at specific frequency bands and use it to move a 
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cursor to a target (Wolpaw et al., 1997, McFarland et al., 1997, Miner et al., 1998). The 

main disadvantage of this BBI was the time taken for training, which was in the range 

of 26 - 81 one-hour sessions. This team has now gone on to develop a general purpose 

standard (BCI-2000) to share with other research groups (Wolpaw et al., 2003). 

BCI-2000 is an Application Programming Interface (API) that can incorporate any 

brain signal (individual or in combination), signal processing methods, output devices, 

and operating protocols. This standard is meant to cater for the future researchers and 

computer manufactures who will be able to integrate BBIs into mainstream hardware 

and software, thus making this research available in greater numbers to the brain-

injured public.   

 

Experiments in which participants imagined limb movements to manipulate their 

electroencephalalographic signals in order to choose one of six letters were developed 

by Keirn and Aunon (1990). The five able-bodied participants were able to control their 

electroencephalalographic signals to select required combinations of letters about 90% 

of the time. Kalcher and his team performed experiments similar to Aunon with a 

success rate in the 25 - 35% range (Kalcher et al., 1994). This area of research needs 

further work in order to improve the success rate. 

 

2.4.3. Electroencephalalography and Electromyography Based 

One of the well known applications for electromyography as a BBI is HaWCoS: The 

‘Hands-free’ Wheelchair Control System developed at the University of Siegen in 

Germany (Felzer, 2002). A non-invasive electroencephalalography and 

electromyography based BBI system was developed by Barreto and his team (1999). 

This device used four electrodes placed above pericranial muscles and above the 

occipital lobe of the cerebrum. The electrodes were made of Ag/AgCl and were 

adhered to the scalp using a headband or baseball cap. The computer interactions 

obtained were up, down, left, right and left mouse click. This real-time system was 

tested on six healthy subjects who verified the successful operation of the system. This 

BBI suffered from electromyographic contamination such as any eye movements and 

eye blinks. This system remains a laboratory experiment and the research is yet to be 

utilised by the brain-injured community.  
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2.4.4. Electroencephalalography, Electromyography and Electrooculargraphy 

Based 

Knapp and Lusted (1990) developed a BBI device called the "Biomuse" for their 

organisation called BioControl Systems. Electroencephalalographic, electromyographic 

and electrooculargraphic signals were obtained from seven electrodes and then sent to 

the signal-processing unit. The device's only recorded use as an assistive technology 

consisted of an instance in which a paralysed boy used electromyographic signals to 

move a cursor (Lusted & Knapp, 1996). This device was used mainly as a computer 

music application. It was concluded that these bio signals did not carry enough data nor 

were they controllable enough to make a usable BBI. Knapp and Lusted are now 

developing a wireless system for acquiring bio-signals for applications such as 

interactive computer gaming, simulation environments and music/audio control 

(Lusted, 2005, Knapp, 2005). Knapp and colleagues used a four channel (horizontal 

and vertical for each eye) electrooculargraphic signal acquisition headband, on six 

subjects over three trials to obtain both accuracy and speed. The test was to reach a 

target on the screen using Electrooculargraphic signals. The average response time was 

0.25 seconds with an average success rate of 65%.  Electrooculargraphic signals have 

also been used to control a wheelchair (Barea et al., 2000). 

 

Only a limited amount of research has been done using Cyberlink™ as a BBI. The 

Cyberlink was developed at US Air Force Armstrong Laboratory, Wright-Patterson 

Air Force Base, as a future technology for the US Air Force (Furness, 1986, Nelson 

et al., 1996, Junker, 1997). It was studied as an alternative method of control in a flight 

simulator and evaluated using seven able-bodied participants.  Cyberlink is a BBI 

that uses bio-potentials from the user’s facial contractions, eye movements, and 

thoughts (Metz & Hoffman, 1997) to produce discrete and continuous signals.  The 

signals obtained from the forehead are digitised, filtered, amplified and sent via the 

computer's serial port (Berg et al., 1998).  Junker (1997) divided the signals in the  

0.5 - 45 Hz range into ten bands for which he had coined the term ‘brainfinger’. The ten 

brainfingers were divided into theta, alpha, and beta bands of the 

electroencephalalographic spectrum.  Investigations of the use of Cyberlink up to 

1997 were of a military nature and involved pilot’s physiological monitoring and 

aircraft control (Haas, 1995) and relieving them of mundane tasks. In separate studies, 
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the Cyberlink™ was tested with non-impaired adults to switch menu screens and 

control an aircraft along one axis of flight (Nelson et al., 1996).  

 

Doherty investigated whether the Cyberlink™ could be used as an assistive technology 

for communications by the disabled (Doherty et al., 1999, 2000, 2001, 2002). 

Doherty’s research question was can severely motor-impaired non-verbal persons use 

the Cyberlink™ as an assistive technology to communicate and recreate? He 

investigated whether Cyberlink™ could be used by all the participants, which tasks 

could be performed with the device, and also observed how the use of the Cyberlink™ 

performed in comparison to other assistive technology devices and common input 

devices such as Mouse, Track Ball, Eyegaze Communication Device and Head Pointer. 

Experiments were carried out in four phases using forty-four participants from five 

institutions with various mental and physical impairments. This was a fifteen month 

longitudal study. The participants were organised into five groups. These groups 

comprised: 

• Ten traumatic brain-injured participants; 

• Fourteen participants with cerebral palsy, cognitive disability and with/without 

sensory deprivation participants; 

• Two highly spastic, cerebral palsy and cognitively disabled participants; 

• Eleven able-bodied participants; 

• Seven miscellaneous participants who died or otherwise left the investigation. 

 

The participants tested the Cyberlink™ and other assistive technology devices to reach 

targets and play games. Target acquisition was chosen as a pointing and clicking 

exercise to simulate the windows environment. Game scores, completion times, 

communication tasks and other such metrics were recorded by Doherty for later 

collation. From the results obtained through games and target acquisition, Doherty 

chose participants who could use no assistive device other than Cyberlink™ to 

communicate or recreate. The final focus group consisted of three participants who 

were severely motor impaired and not thought to be sentient due to their inability to 

respond to the environment (Doherty et al., 1999, 2000, 2002). The other participants 

were able to use other devices, which were much easier to use in comparison to 

Cyberlink™. 



 24 
 
 

 
 

 

Doherty developed a ‘Yes/No, program that worked with Cyberlink™ for these three 

participants to communicate. The participants had to navigate the cursor through a 

small maze to reach Yes and No targets. The concept of reaching the target through 

navigating through a maze was developed as requested by physicians responsible for 

disabled participants.  Having had disappointing results up to version five of the 

program, fifteen able-bodied participants were recruited by Doherty to improve the 

previous versions of the ‘Yes/No’ program. The data obtained using this new group of 

participants showed that targets at certain angles took longer to reach and also needed 

to be kept at optimum distances from the starting point.  

 

 

Figure 2.4 – Doherty’s Interface 

 

Doherty included these changes in version six of the program (Figure 2.4) and achieved 

a success rate of 60% (without any time limit restriction to reach a target). The number 

of experiments conducted with each participant was also limited (average three sessions 

per participant).  The average number of targets reached successfully per session 

was 2.5.  

 

BBIs cannot necessarily exploit existing input device research. Menu pointing can be 

seen as a goal directed process, where an input device can be configured so that the 

distance to the target or size of the target can be changed in an orderly predictable way. 
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Common input devices obey Fitt’s Law (Doherty, 2001, Accot & Zhai, 2003). The 

standard mouse and other pointing devices operate using this rule. Larger targets with 

shorter distances to reach are easily achieved in comparison to smaller targets with 

longer distances. Cyberlink™ does not obey this law. These results obtained by 

Doherty indicated a limited amount of conformity, but were inconclusive. Hence there 

remains a need for more research to be done in this area (Doherty, 2001). 

 

BBI systems using changes in alpha waves were developed at Graz University of 

Technology by Pfurtscheller and colleagues (Kalcher et al., 1994). This team conducted 

two studies to demonstrate how human beings could learn to regulate electrocortical 

activity (electroencephalalography, electromyography and electrooculargraphy 

activities) over the sensorimotor cortex. The International 10-20 System was used to 

record the results. The first study was a one-dimensional cursor control system, which 

could discriminate between left and right hand movement planning. This study was 

conducted with four able-bodied participants and obtained an average success rate of 

50% with almost no training. This second version was evaluated with four able-bodied 

volunteers. The task was to extend a bar on a screen to the left or right boundary using 

electroencephalalographic, electromyographic and electrooculargraphic signals. The 

experiments’ results indicated 85- 90% success rate (Neuper et al., 1999). The main 

difference between the two studies was the use of online feedback processing. In 

previous studies, discrete feedback was used which presented delay. These studies 

indicated how electrocortical activity could be regulated in future BBIs to use a 

pathway for communication. This team also developed a BBI which uses rapid 

prototyping (Guger et al., 2001) to enable fast transaction for real-time implementation 

that can be controlled using the Internet, Local Area Network or modem via a standard 

PC. The system was tested with three subjects with 70% - 95% success rate.  This team 

also used motor imagery (e.g. imaginations of left-hand, right-hand movements) to train 

a tetraplegic patient to use electroencephalalographic signals, with an array of 

electrodes to control an artificial hand with almost 100% accuracy (Pfurtscheller & 

Neuper, 2001). 

 

Takahashi and colleagues (2006) investigated the possibility of a gesture recognition 

interface system for non-verbal users. They used electromyographic and 
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electrooculargraphic signals to recognise the intended gestures and 

electroencephalalographic signals to evaluate the user’s emotion. The bio-potentials for 

this system were obtained using Cyberlink as the BBI.  This system was evaluated 

successfully using five able-bodied participants, but is yet to be evaluated with disabled 

participants. 

 

2.4.5. P300 Based 

Donchin and his colleagues, using four able-bodied individuals, tested the feasibility of 

using P300 based BBI devices (Farwell & Donchin, 1988). Users were presented with a 

matrix of 6 x 6 cells, each cell containing one letter of the alphabet. The user focused 

his or her attention on a cell to indicate selection using the P300 signal. The results 

obtained indicated that P300 signals can be used as an effective communication switch 

but the data rate was rather slow at one character every twenty six seconds.  This team 

went onto improve the previous work by using higher quality signal filters and faster 

computers. Ten able-bodied participants and four disabled participants evaluated this 

device. The results obtained showed that the able-bodied participants selected the 

letters at a speed of six to eight characters per minute, while disabled participants were 

able to select approximately three letters per minute (Donchin et al., 2000). The 

experiment proved that it was feasible to use P300 signals for BBI devices, but needed 

more work with the brain-injured participants.  

 

Bayliss and Ballard (1998, 2000) built on the previous work of Donchin and colleagues 

(2000) by developing a real-time BBI using virtual reality and 

electroencephalalography. Five participants were asked to do virtual driving using P300 

evoked potential.  These participants achieved commands successfully at 60 - 90% rate.  

Although P300 signals are robust and can be used in any real-time environment 

(Bayliss, 2003, Hinterberger et al., 2005).), they need evaluation with brain-injured 

participants before final conclusions on its usage are made for real-time BBIs. 

 

2.4.6. Slow Cortical Potentials Based 

Birbaumer and his colleagues (1999, 2000b) developed a spelling device named ‘The 

Thought Translation Device’ as a means of communication using slow cortical 

potentials (SCPs) of the electroencephalogram (Hinterberger et al., 2003). This spelling 
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device was tested on two locked-in patients, who were able to spell simple words 

although it took a long time for them to write a sentence. This device was then 

improved to cater for the two main errors, missing the correct symbol and choosing the 

wrong symbol. These adjustments gave a success rate of 75% (Perelmouter et al., 

1999).  This device was further improved to BCI-2000 standard, based on alpha waves 

and slow cortical potentials (Birbaumer, 2003a, Schalk et al., 2004). This BCI-2000 

standard device was successfully tested with five amyotrophic lateral sclerosis (ALS) 

participants who were able to spell and select words at more than 75% success rate, 

further to extensive training (35 sessions of forty minutes per session).  Training 

locked-in patients on using slow cortical potential for BBIs takes a lot of effort and 

time, hence only eleven disabled participants had been trained up to 2003 (Neumann & 

Birbaumer, 2003, Neumann & Kübler, 2003). Hence Neumann and his team (2004) 

stated that more research needed to be done in the area of slow cortical potentials 

before it can be accepted as possible bio-potential to control BBIs. Birbaumer and his 

colleagues have also developed a Brain Web Surfer for the quadriplegic community 

(Mellinger et al., 2003), which has been successfully evaluated with able-bodied 

participants. Evaluation with disabled participants needs to be completed before any 

form of conclusions can be drawn about this as an assistive technology.  

 

2.4.7. Electroencephalalography, magnetic resonance imaging and slow 

cortical potentials Based 

Birbaumer and his colleagues (2003b) worked on combining an 

electroencephalalographic driven BBI with Functional Magnetic Resonance Imaging 

(fMRI) with the intention of increasing transfer rates and improving control of slow 

cortical potentials. They used Magnetic Resonance Imaging and Transcranial Magnetic 

Stimulation (TMS) in five healthy participants and in six disabled participants to 

evaluate the Thought Translation Device (TTD). The average selection speed obtained 

was one letter per minute. More research needs to be done before this set-up could be 

used as a BBI. 

 

2.4.8. Low-frequency asynchronous switch design (LF-ASD) Based 

The Low-Frequency Asynchronous Switch Design (LF-ASD) was introduced as a 

direct BBI technology for asynchronous control applications. The LF-ASD operates as 
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an Asynchronous Brain Switch (ABS) which is activated only when a user intends 

control and maintains an inactive state output when the user is not meaning to control 

the device (i.e., they may be idle, thinking about a problem, or performing some other 

action). An asynchronous signal detector was developed and tested with five 

able-bodied subjects by Birch and Mason (2000). The results gave a success rate of 

78%. The system was then tested with two disabled participant who obtained a success 

rate of 50%. Further work is being done with able and disabled individuals to improve 

this BBI.  

 

Research is being done at present to improve Low Frequency Asynchronous Switch 

Design (LF-ASD) using direct BBI for asynchronous applications. The switch is 

activated only when the user intends to, giving an opportunity for the user to be idle, 

thinking or performing some other task (Borisoff et al., 2004).   

 

2.4.9. Steady State Visual Evoked Response Based 

Calhoun and her team (1995) carried out initial experiments on Steady State Visual 

Evoked Response (SSVER) or Steady State Visual Evoked Potential (SSVEP) with 

three able-bodied participants to indicate how potentials from surface electrodes could 

be used to modify the SSVEP in order to generate control signals. Cheng and 

colleagues (2002) used SSVEP based BCIs and achieved transfer of 0.45 bits per 

second. Eight out of thirteen participants used virtual keypad and International 10:20 

Standard electrode system to send information successfully to a computer. This team 

went on to improve the transfer rate to 1.13 bits per second using a new environment 

controller (Gao et al., 2003). SSVEP based research is also being carried out to show 

that the training can be minimised using SSVEP and P300 based BBIs (Beverina et al., 

2003). This area of research shows great potential for future BBIs. 

 

2.4.10. Functional Magnetic Resonance Imaging based 

Functional Magnetic Resonance Imaging (fMRI) is also being researched for real-time 

BBIs (Weiskopf et al., 2003). This set-up lets participants observe and control changes 

of their blood oxygen level dependant response. The data obtained is processed and 

used for communicating. More work needs to be done in this area before firm 

conclusions can be drawn about the performance of this set-up for BBIs. 
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2.4.11. Summary of Non-Invasive BBIs 

A summary of this survey of the non-invasive category of BBIs is given in Tables 

2.1-2.3. The tables show that the developed BBIs had a success rate ranging between 

41- 95%. All the experiments except the one by Doherty’s team were evaluated in the 

laboratory environment and not in the field. The table also shows that some BBIs were 

evaluated only with able-bodied participants and not with brain-injured individuals. 

Most of the BBIs also needed computer processing power and extensive training.  

 

Table 2.1 – Summary of non-invasive Brain Body Interfaces (Part 1) 

Dates Researcher
/Research 

Group 

BBI Participants Location Achievements Comments 

1997  - 
1999 

Craig and 
his team 

Alpha 
wave 
based 

21 able-bodied 
and 16 
disabled 

Laboratory 95% able and 
93% disabled, 
used eye closure 
to switch devices 

Laboratory 
exercise only 

1997 - 
2000 

Kostov 
and Polak 

EEG 
based 

1 able-bodied 
and 1 disabled 

Laboratory 70 - 85% success 
in moving a 
cursor in real-
time 

Laboratory 
exercise only, 
Needed 
online and 
offline 
processing 

1991 - 
1998 

Wolpaw 
and team 

EEG 
based 

5 able-bodied   Laboratory 41 - 90% success 
in moving a 
cursor around a 
screen 

Laboratory 
exercise only. 
Needed 
extensive 
training 
sessions 

1990 Keirn and 
Aunon 

EEG 
based 

5 able-bodied   Laboratory 90% success in 
choosing one out 
of six letters on a 
screen 

Laboratory 
exercise only 

1990 Barreto 
and team 

EEG and 
EMG 
based 

6 able-bodied Laboratory Moving a cursor 
around a screen 
and also mouse 
clicks. Success 
rate not given 

Laboratory 
exercise. Any 
eye 
movement 
caused this 
system to 
give wrong 
results 
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Table 2.2 – Summary of non-invasive Brain Body Interfaces (Part 2) 

Dates Researcher
/Research 

Group 

BBI Participants Location Achievements Comments 

1990  Knapp 
and 
Lusted 

EEG, 
EMG and 
EOG 
based 

1 disabled  Laboratory Move a cursor. 
No other data 
available  

Laboratory 
exercise. Now 
used a 
computer 
music 
application 

1996 Knapp 
and 
Lusted 

EEG, 
EMG and 
EOG 
based 

6 able-bodied Laboratory 65% success in 
hitting  a target 
on screen 

Laboratory 
exercise only 

1999 - 
2002 

Doherty 
and team 

EEG, 
EMG and 
EOG 

3 disabled  Field 60% success in 
hitting  a target 
on screen 

A field 
exercise with 
limited 
success 

1994  Pfurtschel
ler and 
team 

EEG, 
EMG and 
EOG 
based 

4 able-bodied Laboratory 50% success in 
Extend a bar on 
screen 

Laboratory 
exercise only. 

1999 Pfurtschel
ler and 
team 

EEG, 
EMG and 
EOG 
based 

4 able-bodied Laboratory 87% success in 
Extend a bar on 
screen 

Laboratory 
exercise. 
Needed 
online 
processing 

2001 Pfurtschel
ler and 
team 

EEG, 
EMG and 
EOG 
based 

3 able-bodied Laboratory 70 - 95% success 
in Extend a bar 
on screen 

Laboratory 
exercise using 
internet 
control 
Needed 
online 
processing 

1988 - 
2000 

Donchin 
and team 

P300 
based 

10 able-bodied 
and 4 disabled 

Laboratory Able-bodied 
selected 6 - 8 
letters per minute 
while disabled 
selected 3 per 
minute 

Laboratory 
exercise only 

1998 - 
2003 

Bayliss 
and 
Bollard 

P300 
based 

5 able-bodied  Laboratory 50 - 90% success 
in completing 
virtual driving 

Laboratory 
exercise only 

1999 - 
2003 

Birbaumer 
and team 

SCP based 5 disabled Laboratory 75% success in 
using the 
developed 
spelling device. 

Laboratory 
exercise. 
Needed 
extensive 
training 

2003 Birbaumer 
and team 

EEG, 
fMRI,  
SCP based 

5 able-bodied 
and 6 disabled  

Laboratory Average one 
letter per minute 

Laboratory 
exercise 
only  
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Table 2.3 – Summary of non-invasive Brain Body Interfaces (Part 3)  

Dates Researcher
/Research 

Group 

BBI Participants Location Achievements Comments 

2002 Birch and 
Mason 

LF-ASD 
Based 

5 able-bodied  
and 2 disabled 

Laboratory 78% able and 
50% disabled, 
success in 
producing 
signals 

Laboratory 
exercise 
only 

2002 - 
2003 

Cheng and 
team 

SSVER 
based 

13 able-bodied Laboratory 62% success in 
sending 
information to a 
computer. 

Laboratory 
exercise 
only 

2003 Weiskopf 
and team 

fMRI, No data 
available 

Laboratory Not data 
available.  

No data to 
comment 

 

2.5. Invasive Brain-Body Interface devices 
Various protective tissues, the skull, blood flow and other brain matter between the 

scalp and area of the brain generating the signal can distort the bio-potentials drawn 

from the outside of the scalp. Hence invasive electrodes can give better signal to noise 

ratio and obtain signals from a single or small number of neurons.  Vidal (1973) first 

mentioned an invasive or direct BBI. Huggins and his team planted the first direct brain 

interface, as reported by Levine (Levine et al., 1996). It was found that participants 

with epilepsy who had electrodes placed under their dura during surgery could operate 

a switch on command by thought. The following is a survey of the invasive category of 

BBIs. 

 

2.5.1. Electroencephalalography and Electromyography Based 

An invasive brain interface was developed by Kennedy and colleagues (1999). They 

used two participants where they planted neurotrophic electrodes which are electrodes 

coated with a chemical to promote nerve growth (Siuru, 1999) into their skull in two 

different positions (as X and Y coordinates). These electrodes pick up action potential 

to specify location, and neural firing rate changes to speed up cursor travel (Adams 

et al., 1999). The studies showed that the users had difficulty in controlling both 

electrodes at the same time. Hence one electrode was left in the skull and two more 

electrodes were placed on the participants, one on the foot and the other one on the arm 

to pick up electromyographic signals to use as the other coordinate and for mouse click. 
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This study had limited success since the signals obtained were weak. Following this, 

Kennedy and colleagues went on to produce an improved invasive BBI device. In this 

instance neurotrophic electrodes were implanted in two locked-in patient neo-cortices. 

Nerves had to be grown in the electrodes for approximately two months before the 

person was able to operate the interface. This interface was tested with a rat and a 

monkey for sixteen months before being used on two participants. The first participant, 

who was an Amyotrophic Lateral Sclerosis patient, died 76 days after the implant. The 

second participant was able to control a computer cursor for seventeen months 

(Kennedy et al., 1999, 2000). Kennedy and his team (2004) have gone on to develop a 

system using conductive screws to access cortical local field potentials (LFPs) to 

communicate without entering the brain itself. A single Amyotrophic Lateral Sclerosis 

participant was able to use local field potentials to successfully communicate. Further 

tests are being done in this area. 

 

2.5.2. Electrocochleography Based 

Electroencephalographic signals have limited resolution and require extensive training, 

while single-neuron recording entails significant clinical risks and has limited stability. 

Levine and his colleagues (1999) collected data from seventeen epilepsy patients who 

had electrodes implanted on the surface of their cerebral cortex to record seizure 

activities. Patients were instructed to move their face, tongue, hand and foot. 

electrocochleographic signals (ECoG) recorded showed that the patients produced 

signals successfully at the rate of 50 - 90%, which could be used in BBIs.  

 

Birbaumer's non-invasive slow cortical potentials device offered potential for 

communication and controlling the environment (details in Section 2.4.6.). This 

encouraged Birbaumer's team to go on to invasive BBI research. Three participants 

with epilepsy had electrodes placed on to the cortex as well as deeper into the brain, 

with the skull over the interested regions having been removed. Electrocochleographic 

signals were recorded over a period of five to fourteen days. The participants were 

asked repeatedly to imagine two different movements that are represented at the 

primary cortex; a tongue and little finger movements. The average success rate was 

between 77 - 82% (Lal et al., 2005). Electrocochleography based BBIs could provide 

the brain-injured individuals a potentially stable communicating device for the future in 
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comparison to electroencephalalography based and less traumatic than BBIs that use 

electrodes penetrating the brain (Leuthardt et al., 2004).  

 

2.5.3. Neuroprosthetic Based 

Research is being done in Stanford University on neuroprosthetic (brain activities 

related to intended movements) BBIs that translate neural activities from the brain into 

control signals for prosthetic devices to assist disabled patients. The signals from the 

pre-motor cortex of a rhesus monkey enabled it to move computer icons solely by 

activating neural arm movements (Yu et al., 2004). The success of the human motor 

prosthetics will largely depend on increasing systems performance by maximising 

movement related information that can be recorded from cortical neurons 

(Shenoy et al., 2004). Local field potentials (LFP) in the brain area are an important 

source of information for neuroprosthetic applications. In the near future implantable 

devices will need to transmit neural information from hundreds of microelectrodes to 

make human neural prosthetic motor systems possible (Harrison et al., 2004). More 

research needs to be done in this area before neuroprosthetic BBIs can be implemented.  

 

2.5.4. Motor Function Based 

Research was done using primates to show that signals from imaginary motor functions 

can produce signals that can be used in BBIs. Experiments are being carried out with 

monkeys being implanted with electrodes to prove this phenomenon (Taylor et al., 

2002, Musallam et al., 2004). Primates learnt to reach and grasp virtual objects by 

controlling a robotic arm, using their brain signals to create imaginary motor functions. 

The monkeys succeeded in reach and grasp movements even when they did not move 

their arms. More research is being done to extend such closed loop methods for humans 

in future BBIs (Carmena et al., 2003).  

 

Research on neural prosthetics has focused mainly in activities related to hands. 

Recorded data has been taken from motor cortical areas. Researchers are looking for 

other signals such as local field potentials, which can be used for controlling devices. 

New movable probe technologies are also being tried to seek the best signals for the 

electrodes automatically (Anderson et al., 2004). This research uses monkeys and is yet 

to be tried on humans. 



 34 
 
 

 
 

2.5.5. Summary of Invasive BBIs 

A summary of the survey of the invasive category of BBIs is shown in Table 2.4. Fewer 

teams have been involved in this type of BBI development than the non-invasive 

category due to the complicated setup needed. The signals obtained can be accurate and 

less noisy than non-invasive BBIs, but the success rate still ranges between 50- 90%. 

All the experiments were conducted in the laboratory environment and evaluated with 

disabled participants due to the medical intervention needed. The procedures for 

implanting an invasive BBI, the risks involved, and the skilled personnel required 

makes non-invasive BBIs the preferred choice as a communication tool for 

brain-injured individuals.  

 

Table 2.4 – Summary of invasive Brain Body Interfaces 

Dates Researcher/ 
Research 

Group 

BBI Participants Location Achievements Comments 

 1999 - 
2000 

Kennedy 
and team 

EEG and EMG 
based 

2 disabled  Laboratory One 
participant 
died, the other 
one 
communicated 
for 17 months. 

Limited 
available 
data to 
make any 
conclusions. 

1999 Levine and 
team 

ECoG based 17 disabled Laboratory 50 – 90% 
success in 
producing 
signals 

Laboratory 
exercise 
only 

2005 Birbaumer 
and team 

ECoG based 3 disabled Laboratory 77 – 82% 
success in 
producing 
signals 

Laboratory 
exercise 
only 

2004 Stanford 
University 

Neuroprosthetic 
Based 

No humans  Laboratory Not data 
available  

No data to 
comment 

2002 - 
2004 

Tsinghua 
University 

Motor 
Functions 
Based 

No humans  Laboratory Not data 
available  

No data to 
comment 

 

2.6. Current Research in Brain Body Interfaces 

Artificial Intelligence at the level of the user interface is currently being supported 

through number of strands such as adaptive user interfaces and interface agents 

(Akoumianakis et al., 2000). Much research is being done in the use of agent 

technology in areas such as networking but not much is done in interface agents 

(Brown, 1999) for the disabled. Use of interface agents to closely monitor user trends 
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and change configuration parameters of the interface where the bio-potentials of a user 

is altered to such an extent that, changes need to be made to improve the performance.  

 

The problem with intelligent user interface is that it may violate many good usability 

principles by not being transparent, predictable and taking control. One way to provide 

user control is to provide the user with choices for adaptability. Proper analysis will 

show individual differences (Friedman et al, 2007). Scalability should be included 

(Höök, 2000). Is the adaptive user interface going to take the emerging technology of 

agent based interaction in the future specialising in intelligent help, intelligent 

hypermedia and intelligent filtering (Benyon & Murray, 2000)? 

 

There is a possibility that interfaces can be extended to include data such as location, 

presence of objects, people, temperature and blood pressure of the user (Pascoe, 1997) 

when the interface is being used. The bio-potentials generated by the individual might 

be monitored to observe any adverse or pleasant reaction to the environment. This will 

give any additional data that can be used to indicate any unwanted stress caused to the 

participants when using BBIs. It can also indicate any stimulus that takes place when 

using BBIs.  

 

Research is being done by Kaiser and team (2001) to create a portable BBI for severely 

paralysed patients to voluntarily generate bio-potentials at anytime. This work is done 

to create a BBI which will be used to communicate continuously rather than at a time 

set by the personnel around a brain-injured individual. Research is also being done in 

wearable wireless BBIs where technology such as bluetooth is proposed for 

transmitting and receiving signals from the participant (Navarro, 2004) so that a BBI 

wearing individual can move around without the need for apparatus to be attached 

when moving from place to place.  

 

Work is also being carried out where an invasive BBI will not only receive signals but 

also introduce information into the brain.  The Defence Advanced Research Projects 

Agency (DARPA) has awarded $26 million to improve its implanted BBI techniques 

towards this research (Wickelgren, 2003). 
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Interfaces could be standardised in future to a standard like BCI2000 (a 

General-Purpose Brain-Body Interface Application), this type of design could be used 

with any BBI thus increasing the usage of any BBI to a much higher level without tying 

to a particular technology. 

 

2.7. Choosing a Design and Development Strategy 

Many experimental psychology (McCarthy, 1995) and scientific methodologies can be 

applied to the study of computer tools and how humans interact with tools (Hawthorn, 

2000, MacKenzie et al 2001). There are various models and techniques for specifying 

user interfaces such as psychological and soft computer science notations, user models, 

graphical/diagrammatic approaches, abstract mathematical models and user interface 

management systems (Abowd et al., 1989). 

 

A user interface consists of an input language for the user, an output language for the 

machine and a protocol for interaction (Chi, 1985). Wang and MacKenzie (1999) state 

that there is consistent human bias when objects are manipulated in an interface. This 

meant there was an optimum setting that needs to be addressed when developing 

interfaces. The design and development task faced here was not an engineering problem 

but an iterative problem that needed an optimised design. Various technologies, design 

and development strategies and guidelines were considered and discarded, such as: 

• Contextual Inquiry (Beyer & Holtzblatt, 1998, Clarke & Cockton, 1999, Dekker 

et al., 2003) – This research followed on from the previous work on using 

Cyberlink™ as a BBI (Doherty, 2001) and is not an inquiry to find out whether 

Cyberlink™ could be used as a BBI;  

• Task and Domain Models (Burmester & Machate 2003) – Not enough common 

tasks are known to be carried out by brain-injured users in order to create 

domain design models; 

• Layered Approach (Furtado et al., 2003) – Not enough common features exist 

between brain-injured users or Brain Body Interfaces, to use this design 

methodology; 

• Heuristic Evaluation (Baker et al., 2002, Kleinig & Witt, 2000, Nielsen, 1995) – 

The usability heuristics needed for this research were not known at this stage of 
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the research, hence this evaluation was found not to be flexible enough for 

carrying out studies with brain-injured participants (Holzinger, 2005); 

• Fitt’s Law predicts the time required to move from a starting position to a final 

target area (Bertelson, 1994, Card et al., 1983) – The chosen BBI, Cyberlink™, 

does not obey this mathematical law since bio-potentials cannot give a 

consistent input to a BBI as demonstrated by Doherty and his team (2003); 

• Design space of input devices (MacKinlay et al., 1990) – The participants of 

this research could not use the standard input devices covered in this model; 

• User Centred Design (Bevan, 2003) – Participants with severe brain injury 

could not be used as the central source of information since each of their 

abilities were very different and could not be generalised for the development of 

an interface; 

• Haptic Brain-Body Interfaces (Műnch & Dillimann, 1997, Beckhaus & Ernst, 

2004) – The disabled participants in this research were quadriplegic hence this 

type of interface was not considered;  

• Artificial Intelligent User Interfaces (Höök,1998, Friedman et al., 2007) – The 

usability issues connected with using bio-potentials as inputs took precedence in 

the choice of interface design concepts at this stage of the research. This 

research could not find an area to accommodate concepts from artificial 

intelligence.  

A specific research development strategy is evolved in Chapter 3. 

 

2.8. Conclusions and Research Directions 

The potential of various bio-potentials used in BBIs was discussed in this chapter. 

Electroencephalography gives access to one bio-potential (brain waves) that can be 

found on every brain-injured patient, but the amplitude of this signal is rather small 

(10 - 100 µV). However in the absence of any other signal, electroencephalography can 

be used in BBIs. Electromyographic signals (muscle movements) and 

electrooculargraphic signals (eye movements) are two bio-potentials with high 

amplitude (1- 4 mV) that can be used in BBIs, but patients must be able to move their 

muscles and eyes in a controlled manner to apply these two bio-potentials. These two 

bio-potentials also could be used to operate other assistive devices such as an eye 
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tracker or switch. There are other bio-potentials, positive and negative, which occur 

after a period of a stimulus to indicate selection, such as slow cortical potentials, 

steady-state visual evoked potential, P300 and N400. Researchers have tried to use 

these bio-potentials for spelling devices and other information processing BBIs, with 

limited success.  

 

We can deduce that electromyographic and electrooculargraphic signals will be the two 

front runners for the most suitable bio-potentials for non-invasive BBIs because they 

are high amplitude bio-potentials which be easily produced by a patient in comparison 

to other bio-potentials. Tables 2.1 - 2.3 show that the BBIs had a success rate ranging 

between 41- 95%, albeit with a lack of consistency. All the experiments except one by 

Doherty’s team were evaluated in the laboratory environment, and not in the field. Most 

BBIs also needed extensive computer processing power and extensive training.  

Experiments with bio-potentials obtained by invasive means are limited in comparison 

to non-invasive bio-potentials, due to the medical intervention needed to access the 

neurons, and the risks involved in opening the skull. The signals obtained are noise free 

in comparison with the non-invasive bio-potentials. Electroencephalographic signals, 

electromyographic signals and electrocochleographic signals are three examples of bio-

potentials obtained by invasive technology. From these three bio-potentials, 

electrocochleographic signals offer the highest amplitude (300 - 1000 µV), and 

becomes the strongest contender using invasive technology. Tables 2.1-2.3 and 2.4, 

indicated that the number of teams involved in invasive BBI development were fewer 

than the non-invasive category. The success rate was between 50 - 90%, albeit again 

with a lack of consistency. All the experiments were conducted in a laboratory 

environment. The risks involved, and the personnel need for setting up an invasive BBI 

system, made the non-invasive BBIs the preferred choice for a communication tool for 

the brain-injured individuals. 

 

The survey included BBIs with various success rates. The overall success rates of BBIs 

had a range of 41 - 95%. Hybrid systems could be implemented with more than one 

type of bio-potential to complement BBIs, as shown by Pfurtscheller and colleagues. 

The most successful non-invasive BBI was the device that combined 

electroencephalalographic, electromyographic and electrooculargraphic bio-potentials 
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at Graz University of Technology by Pfurtscheller and colleagues. As for the invasive 

BBIs, the number of tests carried out with brain-injured participants was too small to 

identify the most successful BBI.  

 

Diagnostics and measurements of brain injuries have progressed, but medical personnel 

working in the rehabilitation area (further to a brain injury) need accessible reliable 

BBIs to make progress in rehabilitating brain-injured patients. BBIs have not been 

shown to be dependable enough for main software manufactures to integrate them into 

mainstream operating systems and applications. This trend is likely to continue unless 

computer manufacturers see a need to invest in this area of special needs. 

 

The pace of research is increasing, and good progress is being made in the area of 

assistive technology. The last ten years have seen more than thirty research groups 

working on developing BBIs, both invasive and non-invasive types. The researchers 

have carried out extensive work and created many applications such as spelling, surfing 

the net, operating robots and controlling wheel chairs, and real-time manipulation of 

bio-potentials obtained from the brain. Many BBI research applications are laboratory 

implementations, with limited test results obtained from the brain-injured community. 

Hence slow progress has been made in the use of these devices for the brain-injured 

population at large (Gnanayutham, 2004, 2006). Despite the potential shown by many 

of BBI devices in this chapter, limited use is made by the brain-injured community. 

This is due to the cost of BBI systems and the lack of evaluation with participants 

outside research laboratories. Hence there is a clear need to take this technology outside 

the laboratory and into the field to nursing homes and hospitals.  

 

Doherty’s research achieved a limited amount of success. Doherty tested assistive 

devices and showed that the traditional assistive devices (mouth stick, switch, eye 

tracker, voice recognition software, head tracker, head mouse and head pointer) could 

not be used by severe brain-injured patients since they could not: 

• Control the movements of their mouth for mouth stick (Heyer, 1991); 

• Control parts of their body consistently for switches (Terrell, 1985); 

• Control their breath for sip and puff devices (Marsden, 2000); 

• Control their eyes for eye tracking (Ohno & Mukawa, 2003); 
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• Speak or will have slurred speech for voice recognition (Zafar et al., 1999); 

• Have precise positioning and control of the head for head movement devices 

(Anson et al., 2003, Scargle, 1998). 

 

Doherty had only one interface for all users. If a particular user could not move along 

the predefined route, no communication was possible. Hence this interface was not 

inclusive of all users. An inclusive interface is needed to overcome this.  Inclusive 

design implies (for this research), inclusion of any brain-injured (or able-bodied) user 

who can respond. The exceptions to this are individuals who are comatose, visually 

impaired, or suffer adverse effects of daily medicine intake.  

 

Participants can create unwanted signals (e.g. a twitch), so there is a need to ignore 

unwanted signals (noise) due to certain components of the bio-potentials. Research 

needs to improve cursor control, while giving the user the opportunity to move around 

a screen without any predefined route, a personalised route with targets which suit an 

individual. Doherty’s participants took different times to reach the targets Yes or No. 

Could individuals be allocated a pre-defined time to reach a target to suit their ability? 

Could a group interface be developed to suit a particular disability, or an individual 

interface to suit a person? 

 

Doherty concluded from his thesis that Cyberlink™ appeared to be a useful assistive 

technology for some disabled persons (Doherty et al., 2001, 2003). It was unfortunate 

that participants could not always operate the Cyberlink™ to select a response because 

of their fatigue, their injury and their responses to medications taken. He also stated that 

usable settings could be found and used for persons operating a Cyberlink™, but it was 

not known how close to optimal these were without a rigorous study involving medical 

personnel. Doherty also stated that with usable settings, Cyberlink™ does often allow 

participants a means to recreate and communicate to some degree, albeit with limited 

reliability.  This is much better than the option of no communication or recreation being 

possible. Participants often navigated difficult mazes to completion, but could not 

consistently perform this task due to the extent of their injuries. Doherty claimed that it 

was logical that, given the above mentioned impairments, the Cyberlink™ had a 

definite but limited value as an assistive technology for severely motor impaired 
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persons. Doherty’s success was limited and inconsistent, although three participants 

could use no other computer input device other than Cyberlink. Could research be 

carried out to optimise the interface parameters in order to minimise training? Moving 

the cursor across a computer screen using bio-potentials is a slow process. Hence there 

was a challenge to accelerate the cursor in the direction of travel to minimise the effort 

needed by the users. Is there any technique to push the cursor along the route to enable 

the user to reach the target easily, thus minimising the effort needed, thus reducing 

frustration? This research reported in this thesis addresses all above questions. 
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Chapter 3 – Research Methodology  

This chapter describes the challenges involved in developing and evaluating novel 

interaction paradigms for BBIs, the methodology chosen for this research and the 

resulting plan. Many scientific methodologies can be applied to the study of computer 

tools and how humans interact with these tools (e.g., Hawthorn, 2000, Höök, 2000, 

MacKenzie et al., 2001). Research development methods can draw on engineering 

design approaches to optimise designs, but the broader design context in HCI must 

embrace usability issues (Nielsen, 1993). One such approach of particular relevance 

would be Gould and Lewis’s (1985) three principles of system design: early focus on 

users and tasks, empirical measurement and iterative design whereby the interface is 

modified, tested, modified again, tested again, and the cycle is repeated again and 

again.  

 

The research hypothesis proposes that the performance of the BBI can be improved by 

the use of novel interaction paradigms, to the benefit of brain-injured individuals. 

Gould and Lewis’ principles are central for testing this hypothesis. The literature survey 

carried out for this investigation showed that all non-invasive BBI experiments (except 

Doherty’s) were laboratory experiments completed mainly with able-bodied 

participants. Invasive BBI exercises were laboratory experiments carried out with a 

small number of disabled participants. Tables 2.1-2.3 and 2.4 show that participants 

needed extensive training in many cases before a BBI could be used for 

communication. This meant a better design is needed, with emphasis on usability 

considerations, as well as brain injury and BBI issues. Severely brain-injured 

participants could not be expected to go through extensive training in order to use an 

interface. Hence learning should be considered when developing interfaces for this 

group of individuals. Minimum learning effort should be expected from this group of 

users. The training needed is to last no more than an hour, and should involve 

participants being instructed on how to use their eyes (look left and right), forehead 

(frown and relax) and their brain waves (imaginations) to move a cursor around a blank 

screen using a BBI.  

 

This research proposes to develop an interface that can be used for everyday 

communications in the field and not in a laboratory setting, with evolutions being 
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guided by field evaluation. Testing must therefore be carried out in the field. McDonald 

and her colleagues (2006) state field methods for usability evaluation reveal a broad 

and a very different range of problems that could not be achieved through lab testing. 

They also provide a better basis for understanding the causes of usability problems.  

 

3.1. Challenges with Brain-Body Interfaces 
Various challenges needed to be addressed by this investigation. Firstly the challenge of 

access to brain-injured individual needed to be addressed. Permissions and informed 

consents from the rehabilitation institutions, participants and/or their parents or 

guardians had to be obtained before research began (Friedman & Kahn, 2003, p.1189). 

A medical practitioner would be needed to assess each disabled participant for 

suitability for this research. The ethics boards at each institution had to approve this 

research. The validity and usefulness of this research had to be emphasised. 

 

There could be various problems associated when working with this group of 

participants such as: 

• Individual disabilities and abilities; 

• Effect of medication on individual participants (or change of medication in the 

middle of the investigation); 

• The best time for visiting a participant (e.g. ‘night person’ or ‘morning person’); 

• Attention span of an individual; 

• Emotions and frustrations when research is being carried out. Will this research 

bring back any flash backs from the past that could effect an individual? 

• Medical assessments further to existing ones will have to be carried out. Organs 

such as eyes might be functioning, but the brain might not process any 

information from the eyes. 

 

Another challenge is the qualities and features of novel interaction paradigms. There 

were various design issues to be address here: 

• Can this study develop an inclusive interface that can be used by any 

brain-injured user (except comatose, severely visual impaired or an individual 

with adverse effect of daily medicine intake)? 
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• Can a universal access (Stephanidis, 2001) interface be developed? If not, can 

we identify similarities to see whether group interfaces could be developed 

according the classification of the brain injury, e.g. one for cerebro vascular 

accident (stroke), another one for locked in syndrome etc,. From initial 

experience of various categories of brain injury, this study considered 

developing interfaces to cater for specific disability groups;   

• If neither universal nor group interfaces can be developed, can we design a 

personalised interface to cater for each brain-injured participant? 

• Should personalisation involve choice from a group of novel interaction 

paradigms, or one novel interaction paradigm that can be personalised?  

• Can the developed interface offer a facility to re-configure the interface at any 

time, if the medical or physical condition of the user changes?  

 

Doherty’s encouraging achievements in field testing lead to the choice of the 

Cyberlink™ as the BBI for this research. However, background noise (unwanted bio-

potentials) can cause the Cyberlink™ to behave in an erratic way when a user tries to 

control a cursor on a computer screen, regardless of the distance to the target or size of 

the target. Various background noise can be picked up by Cyberlink, which moves 

the cursor to unwanted parts of the computer screen (where there are no targets), 

causing erratic movements that could not be controlled, producing frustration and 

fatigue. Bringing the cursor back under control also takes a lot of effort. Such problems 

mean that we must improve cursor navigation. 

 

Doherty created a generic solution, having considered quite a range of geometries 

(Figure 2.4), by restricting the path of the cursor by creating a predefined maze 

(Doherty, 2001). This did not prevent the cursor becoming stuck in a corner for an 

indefinite period of time, frustrating users of the BBI. Research needs to find a 

technique for the cursor to be navigated in a controlled way on a computer screen to 

reach the intended targets, and also to come back to the starting point if the cursor does 

not reach the target in a given time interval. Moving the cursor across a computer 

screen using low voltage bio-potentials (0 to 10 µV) is a slow process, hence there 

could be advantages in accelerating the cursor in the direction of travel to minimise 

effort from users.  
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Therefore this research had to investigate strategies for: 

1. Minimising the effort needed by brain-injured users to reach a target, using an 

enhancement for cursor control of the BBI that can improve user performance; 

2. Avoiding user ineffectiveness when using the developed interfaces, e.g. by 

ensuring the cursor does not get stuck in an unwanted area of the computer 

screen for an indefinite period of time when attempting a task; 

3. Optimising the interface before being used by brain-injured users to minimise 

configuration and learning; 

4. Designing interfaces which will be robust in, and portable to, the field and not 

just used in laboratory experiments;  

5. Designing interfaces that will give realistic daily usage for communication; 

6. Designing interfaces that can facilitate  independent usage at user’s care home. 

 

3.2. Chosen Approach 
Having considered research methodologies (Freeman & Tyrer, 1998, Matthews, 2002, 

Preece et al., 2002), an appropriate one was chosen to deal with the challenges of this 

research.  This is not to be a classic engineering design approach, which would not 

cater for usability issues (different disabilities), but an iterative HCI approach with 

appropriate optimisation for some iterations. It combines field usage of prototypes with 

field evaluation, and is an example of a design research approach.  

 

Design methods used in 1960s and 1970s did not deliver hoped for scientific standards 

(Cross, 2001). However, science can and does underpin design. This research thus 

draws on brain and behavioural sciences. The steps to be taken for this research are 

thus: 

1. Select a research paradigm and select research methods (Kennedy, 1999) 

comparable with selected paradigm; 

2. Design an algorithm that can let the user navigate the screen in a controlled 

manner, enhancing cursor control of the BBI to improve the time to reach a 

target; 

3. Can a universal access interface be developed? If not, can we design an 

interface that can group disabled participants together, when developing 
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interfaces iteratively, e.g. one for cerebro vascular accident (stroke), another one 

for locked in syndrome etc.? 

4. If group interfaces are not possible, can we design personalised interfaces that 

can be compared with the group interfaces? 

5. Can the final interface be an inclusive interface that can be used by any 

brain-injured user (except comatose, severely visual impaired or an individual 

with adverse effects of daily medicine intake)? 

6. Develop interfaces that can facilitate  independent usage at user’s care homes; 

7. To evaluate all BBIs and design controlled studies. 

 

For step 7 above: 

1. Refine methods and approaches for each study; 

2. Obtain ethical approval for each study; 

3. Recruit participants both able and disabled; 

4. Choose participants both able and disabled; 

5. Obtain optimised values for design parameters, through engineering design 

approaches; 

6. Measure values for usage variables (time taken to reach the target, route taken 

to reach a target and success rate);  

7. Use formative (for development) and summative (to show robustness and 

validity) evaluation, based on quantitative and qualitative results. 

 

Principles from iterative user interface design thus underpin the methodology for this 

research (Gould & Lewis, 1985).  This methodology uses iterative methods to refine 

the interface design. Lessons learnt from previous user evaluations are used for 

refinement in the next iteration.  

 

The chosen approach is shown in diagrammatic form in Figure 3.1. The diagram shows 

an oval shape with an inner and outer area. The inner shows initial development and 

evaluation process carried out with able-bodied participants, while the outer shows the 

main evaluation process carried out with disabled participants. Evaluating with 

able-bodied participants could give data for optimising interfaces before they are used 

with the disabled participants.  It also enabled optimising the settings for each novel 
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interaction paradigm before it can be used with brain-injured participants. These 

optimised settings were used as the starting point when experiments were concluded 

with the disabled participants. Iteration drove the formative and summative evaluations 

(Munhall, 1989, Omery, 1987). Iteration also gave the opportunity for building 

artefacts that evolved into refined, tried and tested prototypes (Alexander, 1986, Abowd 

et al., 1989). 

 

Formative and summative methodologies were chosen to evaluate the paradigms being 

developed in this research (Kerlinger, 1986, Nogueira & Garcia, 2003). Formative 

evaluation is to be conducted before summative evaluation at each phase of research 

(Figure 3.1). Prototypes to be formatively evaluated based on users’ preferences and its 

implications for interface design, which could suggest possible re-designs. The 

participants for the formative evaluations are to be medical professionals, attending 

personnel and relatives of brain injured individuals. Focus groups are also expected to 

be setup for formative and summative evaluations during the development stages of the 

research. Summative evaluation is to be used to assess the interface designs refined 

through formative evaluation. Formative and summative evaluations are to complement 

each other when developing interaction paradigms.  
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Figure 3.1 – Research Methods 
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Figure 3.2 – Apparatus 

 

3.3. The Research Settings 
The above setup (Figure 3.2) was used when collecting data from brain-injured 

participants. The interface program was configured by the researcher or carer. An 

external, 19 inch LCD screen was placed in front of the participant, running an 

interface program written in MS Visual Basic or C++. This whole set-up was placed on 

a table that can be taken close to the participant. The three electrodes of BBI were 

placed on the forehead of the participant. Bio-potentials from the BBI were fed into a 

laptop computer which faced away from the participant, in order for the carer to launch 

and configure (if needed) the interface.  

 

 

Figure 3.3 – Cyberlink™ 
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The BBI (Cyberlink) signals are detected by three silver chloride plated, carbon 

filled, plastic sensors in a headband and sent to the interface unit (Figure 3.3). The 

interface unit consists of a bio-amplifier, analogue to digital converter and 

micro-controller. The bio-amplifier's function is to amplify electroencephalalographic 

signals from 0.5 - 50 µV range and electromyographic signals from the mV range to a 

higher threshold. The signals are filtered and the signal to noise ratio is also improved. 

An analogue to digital converter changes the analogue signals to six channel digitised 

signals.   The digitised signals are sent to the serial port of the computer where they are 

translated by a patented decoding algorithm into multiple command signals.  

 

3.4. Structure of this investigation  
Investigation is to be carried out in at least three phases. The first phase will be an 

exploratory one to investigate the possibility of creating a universal or group interface, 

rather a personalised one. Results from the first phase will feed into the second phase, 

where a new interface may be developed. This interface will then be evaluated with 

able-bodied participants to obtain optimised interface settings and evaluated with 

disabled participants in phase three of this research. Further phases will depend on 

results at this point and available time. One possibility, given a high degree of success, 

is to attempt independent use over several weeks without the researcher present. 

 

The structure for each phase is to have the following steps: 

• Gain access, recruit and select participants; 

• Field studies with existing technology or prototypes; 

• Redesign, to refine existing or introduce new design concepts; 

• Able-bodied testing to optimise interface; 

• Testing with brain-injured participants; 

• Repeat the above processes until a positive outcome is achieved (or run out of 

iterations). 
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3.5. Summary and Conclusions  
This chapter highlighted the challenges involved in this investigation, and the approach 

chosen to possibly deal with the challenges. Various methodologies were considered 

before a final selection was made. The chosen methodology is a design research 

paradigm, guided by principles from HCI research and practice, including engineering 

design approaches based on psychology research methods (called Human Factors 

Engineering in North America). A two level research framework uses able-bodied, then 

brain-injured participants. An initial three-phase structure was envisaged to carry out 

this research methodology to answer the research question: ‘Can the performance of the 

BBI be improved by the use of novel interaction paradigms’. Design, implementation 

and evaluation of the novel interaction paradigms will be carried out in phase one and 

phase two. The methodology addresses known challenges to develop an appropriate 

interface needed for severely brain-injured individuals to communicate during their 

daily routines. The chosen methodology combines elements of engineering design and 

design science to create novel interaction paradigm and to evaluate their effectiveness.  
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Chapter 4 – A Novel Interaction Paradigm for Impairment Groups 

This chapter describes phase one of this research. Two interfaces were developed to 

address the research question, and some of the challenges described in Chapter 3. 

Experiments were conducted. This was in an exploratory study (Allanson et al., 1999, 

Amant & Cohen, 1997) to investigate whether: 

1. A universal access interface can be developed; 

2. Disabled participants can be grouped together, when developing interfaces, e.g. 

one for cerebro vascular accident (stroke), another one for locked in syndrome 

etc; 

3. Using a novel enhancement for cursor control of the BBI (discrete acceleration) 

can improve the time to reach a target through more effective control and with 

less frustration; 

4. Users can use the interface effectively with minimum learning. 

The challenges above were taken from the list of challenges described in Sections 3.1 

and 3.2. 

 

Phase one was a short study lasting two months, and it needed as many participants as 

possible. The researcher and a medical practitioner carried out a study with eleven 

able-bodied participants from Milton Keynes and nineteen disabled participants from 

Mother Teresa’s Missionaries of Charities New Delhi and Vimhans Hospital New 

Delhi. These institutes cared for people of various disabilities, but this study only 

involved individuals with brain injury. The experiments in Delhi lasted one month and 

produced very valuable data. This was a rather intensive study with regular visits to 

institutes. Each able and disabled participant was visited only once since this was an 

exploratory study.   

 

A demonstration of the interface was made and the participants were asked to use the 

interface to give answers ‘Yes’ or ‘No’ to the questions being asked. The interface was 

a maze similar to Doherty’s with predefined paths and controls. Two versions of this 

interface were developed and evaluated, one without discrete acceleration (Figure 4.1) 

and one in a novel interaction paradigm, discrete acceleration (Figure 4.2). Initial 

preparatory studies in Milton Keynes had confirmed suspected usage problems with 

Doherty’s tunnel interface. A new interface paradigm was thus developed to attempt to 
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overcome these problems. The effectiveness of the two interfaces could thus be 

compared in the Indian studies. An unmodified interface could not have provided any 

further worthwhile insights. 

 

The discrete acceleration paradigm pushes the cursor in the direction of travel. When a 

cursor enters a particular area of the interface (areas 1 to 6, Figure 4.2) an algorithm 

jumps the cursor towards the intended target.   

 

The user interface automated the research task of collecting x, y coordinates of 

navigation and the time to reach targets to investigate any similarities between 

participant profiles (Rubin, 1994). A statistical analysis (t-test) of usage/data would 

investigate whether adding discrete acceleration could reduce the time taken to reach 

the targets. Results could determine the suitability of discrete acceleration for group 

interfaces. The hope was that the acceleration algorithm could be parameterised to suit 

impairment groups. Should this be not possible, personalised interfaces using discrete 

acceleration and/or further new interaction paradigms would be developed.   

 

4.1. Design and Development 
The starting point for this study was results obtained using Cyberlink™ as a BBI 

(Doherty et al., 2000, 2001, 2002), combined with insights from initial independent 

research of the Cyberlink with able-bodied participants in Milton Keynes (mostly 

doctors). This initial research checked the abilities of able-bodied participants to reach 

Yes and No targets in Doherty’s tunnel interface (Figure 4.1).   
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Figure 4.1 – Basic Tunnel Interface 
 

Doctors liked the maze because a brain-injured person could be asked to navigate 

pre-specified paths to demonstrated control and intelligence, thus replicating the use of 

Cyberlink interfaces as a diagnostic tool (Doherty et al., 2000). Two three-turn tunnels 

to targets constrained the cursor’s movement.  

 

 

Figure 4.2 – Interface with discrete acceleration 
 

There were two main difficulties when using Doherty’s tunnel interface. Firstly the 

cursor became stuck in corners, frustrating users. This problem was addressed using 

discrete acceleration. Secondly the cursor starts to leave the ‘Starting Area’ (due to 
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unwanted bio-potentials) before an individual could decide the target route. To address 

the second problem, when the interface program starts, the cursor could start in the 

middle of the screen in an area called ‘Starting Area’, and stay there for a period of 

time, specified at the configuration stage before using the interface. This would stop the 

cursor going all over the screen in an uncontrolled manner, making the user lose control 

and confidence. This will also give the disabled user a rest between reaching a target 

and going for the next one. The time allocated for staying in the ‘Starting Area’ can be 

set for each user to cater for individual preferences and disability. The starting point 

being in the middle will also give the user an option to have targets in any part of the 

screen according to the user preference and not solely by predefined design choices. 

 

An alternative interface was thus developed to test this conjecture that discrete 

acceleration coupled with a pre-specified delay in the ‘Starting Area’ could address 

known usage problems (Figure 4.2).  A new interface with discrete acceleration could 

address problems which were confirmed in this phase. It operates as follows: 

1. After a configurable delay, the user can move the cursor away from the 

‘Starting Area’, in order to answer Yes or No; 

2. Entering pre-defined areas in the maze makes the cursor jump to the far side of 

the zone in the direction of travel, thus accelerating the cursor by a discrete step 

(based on the size of the area).  

 

Discrete acceleration coupled with a delay at the ‘Starting Area’, could deal with the 

problem of the cursor getting stuck in corners. It also gave the user a controlled and 

faster technique for navigating the cursor towards the target. One way tunnels, with no 

option to go back to ‘Starting Area’ while jumping towards the target, were used in this 

interface. This was to prevent the uncontrolled navigation encountered in Doherty’s 

tunnel interface, with cursor moving forward and backwards out of control at times.  
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To support replication of this research, a Flowchart (Figure 4.3), Storyboard (Figure 

4.4), State Transition Diagram (Figure 4.5) and Pseudo Code for Doherty’s Tunnels 

Interface are now presented. 

 

 

 

Figure 4.3 – Flow Chart: Doherty’s Tunnels Interface 
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Figure 4.4 – Storyboard: Doherty’s Tunnels Interface 

 

  
Launch Doherty’s tunnel interface,  
named ‘Without_DA’ 
 

Cursor appears in centre of the ‘Starting 
Area’.  

  
A question will be asked by the carer to 
which the user would want to respond 
with a ‘yes’ or ‘no’ answer. 

Depending on the answer the user will 
navigate the cursor towards the target, 
through tunnels.  
 

  
When the cursor reaches the 
destination, there is an audio 
confirmation. 

Cursor returns to the centre of the 
‘Starting Area’ to wait for the next 
question. 

 
Press ‘Alt + H’ at any time during the process to quit application. 
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Figure 4.5 – State Transition Diagram: Doherty's Tunnels Interface 

 

Figure 4.5 expresses the abstract task that defines Doherty’s tunnel paradigm as a path 

through the state transition diagram. The path is:  

Initial Step.1. (Tunnel Area Step. [2a ¦ 2b])+. 3. Target Step.4.  

 

Numbers refer to arcs in Figure 4.5. Arc transitions may involve user actions, system 

actions, or both. Phrases in the path refer to nodes in Figure 4.5. Node entry generally 

results in a system action. The + suffix indicates one or more repetitions, in this case of 

a node entry and arc transition. [x ¦ y] means x or y. 

The following Pseudo Code assumes a program that: 

• Has a ‘Starting Area’, tunnels and targets ‘Yes’ and ‘No’ as shown in 

Figure 4.1;  

• Keeps cursor within the boundaries of starting, target and tunnel areas; 

• Has a file created using current time and date for storing time and x, y 

coordinates;  
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• Uses combination keys (Alt + H) for quitting program.   

 

The Pseudo Code for the specific implementation of this interaction paradigm is: 
Move cursor to starting area 

Record time and x, y coordinates of cursor in file 

REPEAT 

 On mouse move 

 Move cursor 

 Record time and x, y coordinates of cursor in file 

 IF target reached 

  Give audio confirmation 

  Go to starting area 

 ENDIF 

UNTIL quit is pressed 

 

A Flowchart (Figure 4.6), Storyboard (Figure 4.7), State Transition Diagram 

(Figure 4.8) and Pseudo Code for the Discrete Acceleration Interface are now 

presented. 
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Figure 4.6 – Data Flow Chart: Discrete Acceleration Interface  
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Figure 4.7 – Storyboard: Discrete Acceleration Interface 

 

 
 

Launch  discrete acceleration interface,  
named ‘With_DA’ 

Cursor appears in centre of the ‘Starting 
Area’. 

  
There will be a time delay introduced in 
the ‘Starting Area’ to settle user before 
cursor control is possible. A question will 
be asked by the carer to which the user 
would want to respond with a ‘yes’ or 
‘no’ answer. 

Depending on the answer the user will 
navigate cursor, towards a target, using 
discrete acceleration zones make the cursor 
jump towards the target, through the 
tunnels. 

  
When the cursor reaches the target, there 
will be an audio confirmation 

Cursor will return to the centre of ‘Starting 
Area’ to wait for the next question. 

Press ‘Alt + H’ at any time during the process to quit application. 



 62 
 
 

 
 

 

Figure 4.8 – State Transition Diagram: Discrete Acceleration Interface 

 

The abstract task defining this interaction paradigm is expressed via Figure 4.8 as the 

path:  

Initiation Step. 1. Wait Step. 2. (Discrete Acceleration Jump Step. [3a ¦ 3b ¦ 3c])+. 4. 

Target Step. 5. 

 

The following Pseudo Code assumes a program that: 
• Has a ‘Starting Area’, tunnels and targets ‘Yes’ and ‘No’ as shown in 

Figure 4.2;  

• Keeps cursor within the boundaries of starting, target and tunnel areas; 

• Create Discrete Acceleration areas; 

• Has a file created using current time and date;  

• Uses combination keys (Alt + H) for quitting program.   

 

The Pseudo Code for the specific implementation of this interaction paradigm is: 
Move cursor to starting area 

Record time and x, y coordinates of cursor in file 

Wait a pre-configured time delay 
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Record time and x, y coordinates of cursor in file 

REPEAT 

 On mouse move 

 Move cursor  

 Record time and x, y coordinates of cursor in file 

 IF cursor comes into discrete accelerations area jump 

 to the far side of the zone in the direction of 

 travel 

 ENDIF 

 Record time and x, y coordinates of cursor in file 

 IF target reached 

  Record time and x, y coordinates of cursor in 

  file  

  Give audio confirmation 

  Go to starting area 

  Wait a pre-configured time delay 

 ENDIF 

UNTIL quit is pressed 

 

The two specific interfaces for each interaction paradigm could be evaluated to 

determine whether: 

1. A universal access interface can be developed; 

2. Disabled participants can be grouped together and could use common 

parameters optimised for their medical conditions, when developing BBIs;  

3. Using a novel interaction paradigm (Paradigm 1 - discrete acceleration), for 

cursor control of BBI will improve efficiency and effectiveness; 

4. Brain-injured individuals can use BBIs with minimal learning. 

 

4.2. Study Locations and Participants 
Tables 4.1 and 4.2 show the details of participants of this phase of research from 

Vimhans, New Delhi (Institute 1), Mother Teresa’s Missionaries of Charities, New 

Delhi (Institute 2), De Montfort University, Milton Keynes (Institute 3) and Milton 
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Keynes Volunteers (Institute 4). It should be noted that all permissions and informed 

consents from the institutions, participants and/or their guardians were obtained before 

research began (Friedman & Kahn 2003, p.1189). A local medical practitioner assessed 

each disabled participant for suitability for this research. The ethics boards at each 

institution approved this research.  

  

Phase one of the research used eleven able-bodied participants from Milton Keynes 

(Table 4.2) who volunteered for experiments in response to advertisements on the 

notice board of De Montfort University and local GP practices. There were problems in 

finding disabled participants for this research. Many submissions were made, 

demonstrations were carried out and ethical committee meetings were attended, but 

government hospitals were unable to provide participants. The National Health Service 

in Milton Keynes provided a letter, to say that the research was safe and valuable, but 

they could not offer any participants or use of their premises. This resulted in looking 

abroad for this phase of the research. A city was sought that had hospitals that would 

provide a large number of participants. Delhi was one possible target. It was also the 

place where the local medical practitioner had practised in the past. The local medical 

practitioner was a friend of the researcher and carried out all the medical assessments 

for this study both local and abroad. Applications were made to the Indian embassy and 

the relevant hospitals in Delhi, requesting permissions from ethical committees of the 

hospitals. The institutes carried out the initial selection of participants, but the final 

selection was carried out by the local medical practitioner who travelled to Delhi for 

this study with the researcher. The criteria for exclusion were visual impairment, a 

comatose state or adverse effects of daily medicine intake.  
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Table 4.1 – Details of disabled participants 

Part.  
No 

Institute Gender 
  Age 

Clinical Diagnosis Medication Additional 
Information 

1 Institute 1 M70 
 
 

CVA (Quadriplegic) Anti-
hypertension 
Aspirin 

Nonverbal, 
understands, obeys 
commands 

2 Institute 1 M17 Paraplegia None Nonverbal, Normal 
3 Institute 1 M65 Spastic Paraplegia None Nonverbal, obeys 

commands 
4 Institute 1 F63 CVA/Quadriplegic 

with MI 
Hospitalised Nonverbal¸ obeys 

commands, 
clouding thoughts 

5 Institute 1 F72 Severe Parkinsonism Antipsychotic 
drugs 

Unclear, paranoid, 
delayed response 

6 Institute 2 F9 CP with MR, Bilateral 
squint 

None Poor, slurred, 
behavioural 
problems 

7 Institute 2 F11 CP with mild MR None Poor, IQ 80, highest 
COG level 

8 Institute 2 M10 CP, one eyed, 
profound hearing 

None Nonverbal, 
understands 
commands, highest 
COG level 

9 Institute 2 F10 CP with MR None Verbal, obeys 
commands 

10 Institute 2 F11 CP Spastic 
Hemiplegics with MR 

Anti-epileptic, 
Luminol, 
Tegretol 

Poor, obeys 
commands 

11 Institute 2 M12 CP with MR, 
Convergent SQ 

None 
 

Speech poor, mild 
ADHD 

12 Institute 2 M13 Down's Syndrome, 
MR, LT CON Squint 

None Poor, few words, 
understands 
command 

13 Institute 2 F11 CP with MR None Nonverbal, highest 
COG Level, 
understands 
command 

14 Institute 2 M8 CP with MR None Nonverbal, obeys 
command 

15 Institute 2 M13 CP with MR None Verbal, IQ 80 

16 Institute 2 M14 CP with MR None Poor few words, 
highest cognitive 
level 

17 Institute 2 F9 CP with MR None Nonverbal, obeys 
commands 

18 Institute 2 M8 CP with MR None Nonverbal, obeys 
command 

19 Institute 2 M10 CP with MR None Nonverbal, mild 
ADHD 
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Table 4.2 – Details of able-bodied participants 

Part.  
No 

Institute Gender 
Age 

Clinical Diagnosis Medication Additional 
Information 

20 Institute 3 M23 Able-bodied None Verbal, normal IQ 

21 Institute 4 F11 Able-bodied None Verbal, normal IQ 

22 Institute 3 M40 Able-bodied None Verbal, normal IQ 

23 Institute 3 M26 Able-bodied Anti-Peptic 
Ulcer 

Verbal, normal IQ 

24 Institute 3 M33 Able-bodied None Verbal, normal IQ 

25 Institute 4 F50 Able-bodied None Verbal, normal IQ 

26 Institute 4 F45 Able-bodied None Verbal, normal IQ 

27 Institute 4 M15 Bilateral divergent 
squint 

None Verbal, normal IQ 

28 Institute 4 F40 Able-bodied None Verbal, normal IQ 

29 Institute 4 M50 Able-bodied None Verbal, normal IQ 

30 Institute 4 F36 Able-bodied None Verbal, normal IQ 

 

4.3. Study Method 
Two interfaces using Microsoft Visual Basic (Figures 4.1 and 4.2) were developed and 

evaluated iteratively following the research methodology described in Chapter 3, with 

eleven able-bodied participants before use with nineteen brain injured participants. 

Apparatus was setup as shown in Figure 3.2 in Chapter 3. At the start of the experiment 

the participants trained on how to navigate a cursor using the Cyberlink™ on a blank 

screen. They were instructed to move a cursor on a computer screen horizontally by 

navigating the cursor with their eyes, using the electrooculargraphic signal (EOG). 

They followed the researcher’s index finger from left to right before attempting to 

navigate the cursor side to side on the computer screen. To move the cursor vertically, 

they were asked to tighten their forehead muscles by frowning and hold the cursor in 

place or push it up and relax the forehead muscles to allow the cursor to come down 

(EMG). These participants were then encouraged to add navigation in any direction of 

their choice by imagining an event such as walking along a beach, climbing a hill or 

carrying out a mental calculation thus invoking the brain waves (EEG). Each 
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participant was encouraged to generate brain waves EEG using imaginations of their 

choice and notice how the cursor movements respond to their different emotions. They 

were then encouraged to navigate the cursor on all four directions on a blank using any 

combination bio-potentials EOG, EMG or EEG. This training did not last more than 

thirty minutes. The able-bodied participants could do this, but brain-injured individuals 

were only able to navigate the cursor according to their individual abilities and 

available bio-potentials. Both able and disabled participants generated different amount 

of EOG, EMG and EEG. An individual has his/her own profile for generating 

bio-potentials. Cyberlink™ used all available bio-potentials from a participant. Only 

one training session was given to participants: simple demonstrations sufficed.   

 

Participants were asked to answer ‘Yes’ or ‘No’ by the researcher using the interfaces. 

Specific questions were also asked by parents or carers. Medical professionals, 

attending personnel and relatives, provided questions that were relevant to the 

participants, which had definite Yes or No answers. The times to reach the targets, the 

path used to reach the target and the success rate were recorded and analysed. T-tests 

(Kazdin, 2003) were used to compare the performances of the two interfaces.  The user 

interfaces also automated the tasks of collecting the x, y coordinates of navigation to 

the targets and also the time to reach targets (Table 4.3). The initial interfaces were 

developed in English and used by able-bodied participants.  The text in the targets was 

translated into Hindi and Urdu to cater for the brain-injured participants in Delhi.  

 

When the interface program begins, the cursor starts in the ‘Starting Area’. The user 

had to navigate the cursor to the intended target ‘Yes’ or ‘No’ in a given time interval 

of five minutes. When the target is reached, an audible confirmation is given and the 

cursor goes back to the ‘Starting Area’. This process was repeated as many times as 

required by the participant to communicate. Navigation routes to reach a target (e.g. 

No) were used to find whether any similarities existed between participant profiles.  

Appendix 2 shows the record of routes taken by group of Cerebral Palsy participants 

from Mother Teresa’s Missionaries of Charities, New Delhi. 
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4.4. Results and Statistical Analysis 
There was only limited success with both interfaces due to the various unwanted 

potentials picked up from the forehead by the Cyberlink.  Some users communicated 

using this simple interface to answer questions for the very first time since their brain 

injury.  However some able-bodied participants could not move the cursor to one part 

of the screen using the first interface.  Even participants who could use the first 

interface (Figure 4.1) had to make strenuous efforts, causing frustration and fatigue.  

Some impaired participants found it almost impossible to control the erratic movements 

of the cursor or move the cursor in a particular direction using Doherty’s tunnel 

interface.  A participant who was paralysed on one side could not steer the cursor to the 

left.  This further confirmed that the need for alternative ways to improve control of the 

cursor and to ease movement within the maze.  

 

Table 4.3 shows performance data with the two interfaces. T-tests were performed to 

compare the interfaces with and without discrete acceleration to find out whether 

adding discrete acceleration made any significant improvement to average times taken 

to reach targets. T-tests showed that discrete acceleration improved the time to reach 

the target. Results illustrated that the two sets of data were normally distributed and 

significantly different at p << 0.05. Single tailed and two sampled with unequal 

variance were used as parameters for the t-test. These results also showed that every 

participant was an individual with different times to reach targets who cannot be 

grouped by impairment (details in Appendix 2). Records of individuals’ routes 

indicated that, within the tunnels’ constraints, no participant used regular routes to 

reach a particular target, which may be due to the extensive noise on signals and 

varying bio-potentials of the Cerebral Palsy group users.  This further showed problems 

with inconsistent control of the cursor and the need for controlling the cursor.   
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Table 4.3 – Average time taken to reach target with and without using discrete acceleration 

Part No 
(Details of able 
participants shaded) 

Time without discrete 
Acceleration 
(minutes) 

Time with discrete  
Acceleration 
(minutes) 

5 0.44 0.25 
20 0.45 0.23 
13 0.45 0.25 
26 0.50 0.37 
23 0.56 0.34 
16 0.63 0.45 
19 0.68 0.59 
7 0.75 0.51 
4 0.77 0.43 
3 0.78 0.5 
28 0.78 0.51 
1 0.79 0.43 
8 0.79 0.5 
25 0.79 0.47 
15 0.86 0.64 
6 0.87 0.51 
24 0.89 0.43 
29 0.89 0.69 
12 0.90 0.5 
30 0.93 0.79 
18 0.98 0.55 
2 0.99 0.89 
11 0.99 0.79 
27 0.99 0.93 
9, 10, 14, 17 
                  

Unable to do  
Anything 

Unable to do  
Anything 

    21, 22 
 

Unable to do  
Anything 

Unable to do  
Anything 

 

 

 

 

 

 

 

 

Figure 4.9 – Data for t-test 
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The results (Table 4.3 and Figure 4.9) show clearly that adding discrete acceleration 

improves the times taken by individual users to reach the targets. Times taken by the 

participants were always faster with discrete acceleration, which indicates that 

improvement has been made on Doherty’s interface design.   

 

Uncontrollable bio-potentials (physiological signals) cause the cursor to get stuck in 

various areas of the tunnel.  When impaired users became frustrated, carers had to take 

over and move the cursor using the traditional mouse.  In tunnel and maze interfaces, 

users who could not move through the predefined route could not communicate at all. 

An interface to cater for individual needs had to be investigated. All eleven able-bodied 

participants also confirmed that the interface with discrete acceleration was the 

preferred choice in comparison to the interface without, when using the two interfaces, 

thus completing the summative evaluation.   

 

Some participants also created unwanted signals (e.g. from a twitch) which meant there 

was a need for getting rid of this noise by ignoring certain components of the bio-

potentials from such users to implement inclusive design. Worse still, six participants 

could not use the interface at all (two were able-bodied).  It was also found that able 

and disabled participants found certain areas of the computer screen easy to navigate, 

while finding other areas much harder to reach when being asked to move the cursor 

around a computer screen in a controlled manner. This meant an individual interface 

would be needed for each user with targets at the appropriate places. A target test could 

be used to find out preferred individual areas of a computer screen for each user.  

 

4.5. Conclusions 
A more inclusive interface was still needed.  Inclusive design implies (for this 

research), inclusion of any brain-injured (or able-bodied) user who could respond, the 

exception to this being those in a comatose state, visually impaired or with adverse 

medication. Assistive technologies, despite their design purpose, can penalise users 

whose capabilities do not match the demands of the interface. One fifth of participants, 

both able and disabled were unable to use either interface (Table 4.3). The results 

showed that all participants were individuals who cannot be grouped by medical 
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condition. There were also not enough common results to create universal access. In 

tunnel interfaces, users who could not move through the predefined route could not 

communicate, which excluded them on the basis of their capabilities. As a result an 

inclusive interface to cater for individual needs had to be investigated.  

 

Personalisation is required to make the most of each individual’s capabilities. A person 

with no electrooculargraphic signal from eye movement may be unable to move the 

cursor horizontally, but might be able to move the cursor up and down using 

electromyographic signals. Tunnels do meet the aim of controlling the cursor to a 

degree, but performance is still adversely impacted by signal noise. The cursor will 

move around the display with little effort, picking up ‘irrelevant’ electrooculargraphic, 

electromyographic and electroencephalalographic signals and frustrating users.  

‘Relevant’ signals are very small voltages, which can be lost in the noise. Records of 

individual routes indicated that, within the tunnels’ constraints, no one used regular 

routes to reach a particular target, indicating that each participant was an individual 

with different capabilities producing dissimilar bio-potentials (details in Appendix 2).  

Even with discrete acceleration, similar problems existed. Adding discrete acceleration 

improved performance, but did not overcome the problems of inconsistency that arise 

with BBIs.  When the cursor got stuck in an area of the tunnel it remained there until 

the user made an effort and moved it towards a target. There was no time allocated for 

the user to reach a target. One possible solution to this problem could be to set a 

predefined time limit to reach a target, failing that to come back to the ‘Starting Area’ 

again.  This solution could be considered for the next stage of this study. 

As for the research hypothesis: 

That the performance of the brain body interface can be improved by the use of novel 

interaction paradigms.  

Discrete acceleration did improve the performance as stated in the hypothesis, but the 

need for a personalised interface remained despite this improvement.  

 

Thus we can summarise. A universal access interface cannot be developed. Disabled 

participants cannot be grouped together. Adding discrete acceleration for cursor control 

of BBI improves efficiency and effectiveness. Brain-injured individuals can use BBIs 

with minimal learning for these two tunnel interfaces. 
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From this exploratory phase of the study, the next phase of the research took on board 

the need for a personalised interface and further improvement in performance beyond 

what was achieved by discrete acceleration.  

 

One possible approach would be to exploit Fitt’s Law, but Doherty had already 

concluded from his investigation that Cyberlink™ did not obey the Fitt’s Law.  Hence 

changing the dimensions of the interface based on Fitt’s Law may not improve the 

performance of the BBI. When considering the use of tunnels in an interface, to 

navigate cursors, Accot and Zhai’s (1999, 2001) Steering Law could be considered. The 

Steering Law can be expressed as 

 
where T is the average time to navigate through the tunnel, C is the path parameterised 

by s, W(s) is the width of the path at s, and a and b are experimentally fitted constants.  

 

Very long sections or very narrow tunnels are very difficult to steer according to this 

law. Cyberlink™, which was chosen for this research, did not steer well when using 

tunnels as indicated in Table 4.3, where twenty percent of the participants were unable 

to steer through the tunnels. Since the Steering Law and the feedback from the 

participants indicate inherent drawbacks in tunnel-based interaction paradigms, we 

need to come up with a different approach and discard the tunnel approach for the next 

stage of this study. 

 

A further approach cannot thus be based on existing major theories for pointing device 

usage. A new interaction paradigm based on different interactive behaviours is thus 

required.  
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Chapter 5 – A Novel Interaction Paradigm for Personalised BBIs  
This chapter deals with the second phase of this investigation, the design of a further 

novel interaction paradigm. The study lasted eight months. The first four months of the 

study was spent on designing and evaluating a new paradigm with only the 

development group. The final interface was evaluated with ten able-bodied participants, 

which excluded members of the development group. An iterative approach was used to 

develop a prototype using able-bodied participants. The design went through various 

stages of testing with a development group, with the final test being carried out with ten 

able-bodied participants.  

 

5.1. Design Challenges and a Possible Solution 
This phase of the research investigated the following questions: 

1. As group interfaces are not possible, whether personalised interfaces can be 

designed? 

2. Can the final interface be an inclusive interface that can be used by any 

brain-injured user (except comatose, severely visual impaired or an 

individual with adverse effects of daily medicine intake)? 

3. Can interfaces be developed to facilitate  independent usage at user’s care 

homes? 

4. How do all BBIs perform in controlled studies? 

The challenges above are a subset from the list of challenges described in Sections 3.1 

and 3.2. 

 

In addition to the above challenges, this phase of the study addressed problems from 

Phase one. Twenty percent of the participants, both able and disabled were unable to 

use the interfaces. The results showed that in tunnel interfaces, users who could not 

move through the predefined route could not communicate. An inclusive interface to 

cater for individual needs had to be investigated. A further problem encountered was 

the inconsistent control of the cursor, which was caused by the ‘irrelevant’ 

electrooculargraphic, electromyographic and electroencephalalographic signals being 

picked by the BBI. Adding discrete acceleration improved performance, but did not 

overcome the problems of inconsistency that arose with using BBIs in phase one.  
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Phase one indicated that the users had problems navigating certain parts of the screen or 

when travelling in certain directions.  Two existing recommendations were considered 

for target practice and personalised individual interfaces in this phase of the study.  

Sibert and Jacob (2000) recommend a target practice with random target with no target 

being repeated. Jacko and team (1999) state allowing individual time to reach a target 

will cater for any individual with minor visual impairment. One possible approach to 

accommodate varying individual capabilities would be to have a target practice to show 

individual preference of a screen location through time to reach the target.  

 
Target practice could have a screen with, for example, twenty four targets (Figure 5.1). 

There would be eight targets at one distance from the starting point, and another eight 

further away, then another eight further still. Then the participant would be asked to hit 

each target at random, as each appeared one at a time, within a prescribed time interval. 

The time taken to reach each target would be recorded and a program could 

automatically decide which areas are fastest for each participant. The participants could 

move to any one of the 24 targets, thus choosing the most easy to use individual areas 

of the screen, for his/her individual interface. Once the user finishes target practice, the 

program can come up with a tailor-made profile for that particular individual user. Then 

a second program could create a personalised interface according to the results of the 

target practice. Different numbers of targets could be set for a particular individual 

interface, for example 2 to 6 depending on application needed. Targets could also be 

programmed to do various tasks such as read text, launch applications or switch 

devices.  

 

Figure 5.1 – Targets 
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Automated target practice for a personalised interface based on this results could 

improve on the previous interfaces described in Chapter 4, but will this automated 

process work with severely brain injured individuals? Do we need a manual 

configuration facility to give the carer even better control of the parameters to fine-tune 

the interface or even over-write the results of the automated process? There could be a 

manual configuration i.e. to choose an area of the screen and number of targets, if a 

carer wants to override the automated settings for a particular individual.  A program 

could give the carer options to choose target size, target distance from starting point, 

tile dimensions, the gap between tiles, number of targets and all time allocations 

associated with the interface. Default settings could be obtained by using able-bodied 

participants to optimise parameters. This could be used as a starting profile. 

 

Schlungbaum (1997) states that the individual user interface can be an adapted user 

interface (adapted to the end user at design time as in phase one), an adaptable user 

interface (end user themselves may change) or an adaptive user interface (interface that 

changes its characteristics dynamically at run time which is used in this phase). 

Schneider-Hufschmidt and his team (1993) state that adaptability increases usability. 

Phase two aimed to add adaptable features to the interface to produce a better match 

between device demands and user capabilities. This had to be achieved with minimal 

training time, and allow reconfiguration of the interface at any time.  We could see no 

advantage in remaining with Doherty’s tunnel paradigm, which we abandoned in search 

of a more flexible interface. An interface would combine discrete acceleration within a 

new paradigm that could also be personalised for individual capabilities. This would 

reduce the impact of noise and consequent erratic involuntary movement of the cursor 

by presenting users with targets that best matched their capabilities. 

 

Masliah and Milgram (2000) recommend a goal (target) directed process as a means of 

communication, which this study took on board when using a ‘Starting Area’ and target 

as the end points of navigation. The interface could be a window with targets, tiles, 

gaps between tiles and a ‘Starting Area’ for the cursor to start from (Figure 5.6). A 

interface was developed so that it can be configured to suit each individual according to 

his or her ability.  
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5.2. Algorithm 
In order to retain the advantages of discrete acceleration, a computer screen can be 

divided into tiles, which support discrete jumps from one tile to the next predicted one 

on the user’s route, until the target is reached.  Lack of regularity in user’s cursor paths 

in study one ruled out a predictive adaptive algorithm, that could immediately jump to a 

target. Instead an incremental approach was devised as follows: 

1. The cursor starts in the middle of the ‘Starting Area’ and moves across the gaps 

between tiles, aiming for the target, using the tiles as stepping-stones. The 

cursor can be moved in any direction after a configurable enforced wait; 

 

 
 

Figure 5.2 – Feedback to the user 

 
2. From the starting point A, once the cursor enters a new tile, the program 

calculates the angle of travel (Figure 5.2) and takes the cursor to the edge of the 

tile point B, nearest to any target in that direction and makes that target flash, 

thus giving feedback to the user (Pope & Bogart, 1996, Pfurtscheller et al., 

2004);  

3. There is also a provision for the target flash to be switched off or slowed down 

if it distracts the user or causes any discomfort. An arrow is displayed to give 

feedback to the user on the direction of travel used by the cursor; 

4. The calculation for the next tile is as follows (Figure 5.2).  Calculate the angles 

between each possible target and the AB line. This set is closed by a maximum 
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angle (initially 30°) either side of AB. If this set is empty, the program waits for 

another cursor move. Target lines AB1, AB2 and AB3 give angles β , α  and θ . 

Then the program finds the smallest angle and considers the corresponding 

target (in above example, Target 2, since α  is the smallest) as the one that the 

user wants to reach. The selected target blinks. If there are two targets below 30 

degrees in the direction of travel, the algorithm will wait for another cursor 

move from the user before deciding on the target; 

5. Once the cursor has moved to the edge of a tile, the user has to steer the cursor 

over the gap into an adjacent tile, at which point step 2 (above) or 6 (below) is 

taken; 

6. In addition to the tiles, a small surrounding area was designated around each 

target (a neighbourhood), so that when the cursor, reaches that area, it gets 

pulled into the target (Figure 5.3); 

 

 

Figure 5.3 – Neighbourhood 

 
7. As soon as the user reaches the target, it stops blinking, but this might not be the 

intended target. The algorithm allows the user to move the cursor to go to  

another target as long as the ‘Target Time’ set at the configuration stage, does 

not lapse. If a target is reached and the cursor is kept at the target for the 

duration of ‘Target Time’, the target will be chosen by the algorithm and the 

cursor will go back to the ‘Starting Area’ for the next question or target; 
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Figure 5.4 – Storyboard: Moving Cursor to Targets (Part 1) 

8. There are thus two conditions to be satisfied for the algorithm to consider a 

target as the user's intended target:  

8.1. The cursor must be within the target area. If it is the target will stop 

blinking (if it is blinking the algorithm indicates to the user that the 

cursor needs further moving);  

8.2. With the above two conditions satisfied, the cursor should wait for a 

pre-specified time interval on the target.  

The storyboards in Figures 5.4 and 5.5 show how the algorithm functions when the 

cursor moves around the personalised discrete acceleration interface when moving 

  
When the personalised BBI is launched 
the cursor moves to the ‘Starting Area’ 
and waits for a pre-configured time. 
Then the user moves the cursor 
jumping tile to tile en route to a target. 

The red arrow indicates the last 
movement of the cursor. The green 
coloured tile indicates the position of 
the cursor en route. The target blinks, as 
the cursor moves towards a target, as 
per the algorithm described in 
Section 5.2. 

  
If the cursor moves towards a target on 
the left, the red arrow indicates the last 
movement of the cursor (left). The 
‘Lights’ target blinks as per algorithm 
described in Section 5.2. 

If it further moves towards another 
target the red arrow indicates the last 
movement of the cursor (diagonal). The 
target ‘Yes’ blinks as per algorithm 
described in Section 5.2.  
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towards a target. The application that configures this hybrid interaction paradigm is 

called ‘Trainer’ (Section 5.6). 

Figure 5.5 – Storyboard: Moving Cursor to Targets (Part 2) 

5.3. Initial Interface 
An algorithm for the personalised tiling with discrete acceleration interface improved 

the previous interface, but there were other issues such as ‘look and feel’, maximum 

flexibility on configuration, feedback to users, and minimum user frustration that had to 

be addressed in this second phase of the research.  

 

  
If the cursor moves towards a target 
above, the red arrow indicates the last 
(up) movement of the cursor. The 
‘Thanks’ target blinks as per algorithm 
described in Section 5.2.  This 
sequence is repeated as the user 
navigates the screen 

When neighbourhood of the intended 
target ‘Thanks’ has been reached, the 
cursor is kept in the target until target 
time has elapsed. ‘Thanks’ stops 
blinking. The word ‘Thanks’ is output 
(text to sound conversion) by the 
program while the target is lit. 

 

 

The cursor moves to the ‘Starting Area’ 
and waits for a pre-configured time and 
awaits the next question to be answered 
by the user. 

 

 
Press ‘Esc’ at any time during the process to quit application. 
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Figure 5.6 – Targets, tiles and gaps between tiles 

 

Look and feel issues were addresses through Gestalt Laws of visual perception (Ware 

2000): 

• Law of Similarity – Our mind groups similar elements to an entity. The similarity 

depends on relationships constructed about form, colour, size and brightness of the 

elements; 

• Law of Proximity – Spatial or chronological closeness of elements are grouped by 

our mind and seen as belonging together; 

• Law of Symmetry – Symmetrical images are seen as belonging together regardless 

of their distance. 

 

A screen conforming to Gestalt Laws was designed (Figure 5.6), where objects with 

similarity, proximity and symmetry were grouped together. Pickford (1972) reports on 

an experiment carried out by Fechner in 1876, where, out of nine shapes, the rectangle 

was chosen by a group of five hundred men and women (33%) as their best liked. 

Schiff (1980) states that even infants can perceive rectangular shapes, which further 

Targets 

Gap between Tiles 

Tiles 

Starting Point 
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backs the argument for rectangles as a building block for an interface. Hence the 

rectangle was chosen as the shape for the ‘Starting Area’, tile and the targets. 

 

Previous investigations show that users have emotional reactions to colours and fonts, 

this interface gave the option for making changes to suit any user (Laarni, 2003). 

Laarni’s study also showed that white or yellow text on blue background was more 

readable, which was taken as the default setting for the interface.  

 

A target test was devised to choose the best parts of the computer screen to suit an 

individual user. Target enlargement to reduce pointing time was also considered at this 

stage (Zhai et al., 2003, Ren & Moriya, 1997) but since Cyberlink™ was not a Fitt’s 

Law device, it was not adapted. Hence the target sizes were fixed as a default, but there 

was also a provision for carers to change any of these parameters manually as described 

in Section 5.1.  There was also audio feedback (Brewster, 2003, Gnanayutham et al., 

2003). The configuration settings took care of all time intervals. There were individual 

maximum times allocated for every target, which meant the interface automatically 

recovered to the original position (i.e. starting point in the middle), taking care of error 

recovery. 

 

Prototypes were developed for phase two that dropped tunnels in favour of placing 

target buttons in areas suited to individual users.  Figure 5.6 shows an example of this 

interface. If a disabled user moves a cursor in one particular direction consistently, an 

individual interface could be created to communicate effectively. The severity of the 

disability of the participants made only electroencephalalographic signals available for 

communicating. The target test used a protocol whereby the participant followed a 

fixed repetitive scheme (Millan, 2003).  

 

5.4. Design Iterations 
A four member development group (Table 5.1) evaluated interface versions formatively 

throughout the development process. Then ten able-bodied participants tested the final 

version. There were two components to this interface program, the trainer and the 

profiler. The trainer ran the target test and created the ‘ini’ (e.g. ‘Trainer_John’) file for 
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the profiler (Figure 5.14).  The profiler then created an executable personalised 

interface file, which was launched by a carer every time the user wanted to 

communicate. Table 5.1 shows the details of participants who evaluated all the versions 

of the interface before the final version was evaluated by ten able-bodied participants. 

This development group consisted of participants from De Montfort University. 

 

Table 5.1 – Details of the participants used in the development group 

Part. No Gender/Age Clinical 
Diagnosis 

Medicines Additional 
Information 

31 F40 Able-bodied None Regular computer 
user 

32 M45 Able-bodied None Regular computer 
user 

33 M50 Able-bodied None Regular computer 
user 

34 M42 Able-bodied None Regular computer 
user 

 

The first iteration gave a beep every time a target was reached in a pre-allocated time. 

Hearing a beep did not sound encouraging for the users. The beep was changed into 

applause for well done, but the development group felt that the feedback was not 

encouraging and requested a text reader be developed for the next iteration.  The use of 

audio feedback was of paramount importance for this application as a communications 

tool. In addition to this, some disabled participants could also have some visual 

impairment and benefit from audio feedback.  

 

Target tests can produce a user profile with more than one target in the same direction, 

e.g. three targets in the vertical direction one behind the other (Targets 1, 9 and 17 in 

target test, Figure 5.1). This meant the user going through a target into the next one. 

This problem was addressed by introducing a field in the configuration window called 

‘Target Time’ which was the minimum period the user had to keep the cursor in the 

target to indicate selection of that particular target. When the user kept the cursor on the 

target for the ‘Target Time’, the target was chosen. This also gave the user an 

opportunity to change his or her mind and select another target.  

 

A facility to change dimensions (targets, tiles and gap between tiles) was introduced in 

this iteration. This facility was to enable manual configuration i.e. to choose an area of 
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the screen and number of targets, if a carer wants to override the automated settings for 

a particular individual.  A facility for a report on the completion of target tests was also 

created to make available a printable version of the details of the interface for reference.  

This modified version was accepted by the development group. However three further 

modifications still needed to be added for the next iteration: 

• Programmable targets for launching application and switching devices; 

• Facility to start the C++ interface program and the BBI with one mouse click. If 

the C++ interface program and the Cyberlink™  device are started 

independently, BBIs can move a cursor to some part of the screen without any 

user control. One way to address this problem is to control the cursor at the start 

of navigation itself by placing the cursor in the starting area and introducing a 

preconfigured delay;  

• The targets appeared at random in the target practice instead of in a predictable 

manner. 
 

The final iteration was tested and accepted by the development group and then tested 

by ten able-bodied participants, in order to optimise settings of the interface. Targets 

were chosen according to the time taken to reach them in the target practice. Data from 

this target practice automatically created the final executable profile for each individual 

user. There was also a report created with all the data after the target practice, showing 

times and dimensions used in the interface. This version enabled the user to configure 

the target to launch applications or send a signal to the parallel port of the computer to 

switch on/off a device. 

 

5.5. Final Interfaces 
The Trainer described in Section 5.4 is still a universal design that only takes account 

of user differences at run-time.  Irregularities in user input rule out jumping directly to 

the nearest predicted target.  Instead, a step-by-step approach is taken that leaves the 

user in control at each point.  There is not only an automated process to personalise 

interfaces, but also provides manual choices to change any parameter of the interface to 

better match the needs of a brain-injured individual. 
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The run-time profile interface thus has further features that allow the cursor’s path to be 

controlled by settings for a specific user (Figures 5.10 - 5.15).  These settings include:  

• Time spent on the ‘Starting Area’ to relax the user before navigating towards a 

target;  

• Time spent on each tile to control the bio-potential to allow navigation to take 

place;  

• Size of tile to suit each user, smaller tiles will control the cursor better, but will 

take longer to reach the target;  

• Gap between tiles to suit each user, the bigger the gap, the more work for the 

user and time to reach a target, depending on the ability of the user.  

 

5.6. The Trainer Interface 
The flowchart (Figures 5.7, 5.9, 5.16 and 5.19), storyboards (Figure 5.8, Figure 5.10 to 

Figure 5.14, Figures 5.17, 5.18 and 5.20) and state transition diagram for Trainer are 

now presented, to support future replication and extension of this work. 

 

 
 

Figure 5.7 – First level: Flow Chart for Trainer 
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Figure 5.8 – First level Storyboard: Trainer 

  
Launch trainer, by double clicking on the 
icon named ‘Trainer’ 

The trainer opens up giving four 
options. Choose ‘New Training’ 
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Figure 5.9 – Second level: Flow Chart for Start New Training 
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Figure 5.10 – Storyboard: Start New Training A 

 

 

‘Start New Training’ window has input 
boxes for: ‘User name; User Number; 
Carer Name; Institute, Time on Target 
Area; Target Reach Time; Time on Tile; 
Blinking Speed; Target Time and 
Maximum Number of Targets’. Enter 
details and click on ‘Set Target’ 
 

Change the target width and height as 
necessary. Choose ‘Target Face Colour’ 

  
Set ‘Width’, ‘Height’ and ‘Arrow Length’ 
using sliders. Choose ‘Set Face Colour’. 
Repeat steps shown in Figure 5.10. Repeat 
the same process for ‘Set Text Colour’, 
‘Set Arrow Colour’ and ‘Set Font’.   

Set ‘Tile Width’, ‘Tile Height’ and ‘Tile 
Gap’ using sliders. Repeat steps shown 
in Figure 5.10 for ‘Tile Colour’, ‘The 
Colour when focused’ and ‘Background 
Color’.  
 



 88 
 
 

 
 

 

Figure 5.11 – Storyboard: Start New Training B

 
 

Choose ‘Start Training’. Both 
Cyberlink™ interface program and the 
BBI will start together.  

Choose ‘Full Mouse Launch’ for 
Cyberlink™ operation (Other options are 
not used in this program). This window 
will disappear and the target test screen 
will appear. 
 

 
Twenty four random targets appear and 
the user tries to hit the targets within a 
pre-configured time. The tile under the 
cursor is highlighted to show the route 
taken. The red arrow indicates the 
direction of travel.  The participants 
could move to any one of the 24 targets 
and choose their preferred individual 
areas of the screen. On presentation of all 
targets, the target test screen closes and a 
smaller window opens indicating ‘End of 
Target Practice Session’.  
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Figure 5.12 – Storyboard: Start New Training C

  
Target practice report is displayed. Close 
window using exit button in top right 
corner.  
 

Note: Text files with configuration 
parameters and the target practice report 
are saved in the same folder as the Trainer 
application for retrieval later on if needed, 
as shown above. 
 

 
After saving the configuration parameters 
file, each target can be customised by 
double clicking on the targets. 
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Figure 5.13 – Storyboard: Start New Training D

  
Select relevant option using radio 
buttons, Type in Target Caption to have 
text with sound.  

Optionally, type binary digits to send to 
parallel port to control devices.   

 

 

Alternatively, launch applications by 
filling in file name and location.   

All carer set up is now complete. Section 
5.1 and Figure 5.3 give full details of the 
algorithm that run the interface shown 
above.  
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Figure 5.14 – Storyboard: Start New Training E 

 
 
This completes the second level specifications for Start New Training. The second level 
specifications for Utilise User Records associated with the created profile are now 
presented.  

 
Personalised profiles will appear in the 
same folder as the Trainer application for 
retrieval by the Carer. To launch the 
personalised interface the carer has to 
double click the profile icon shown 
above. There is no need to run the target 
test again unless the condition of the user 
has changed and another profile is 
needed. 
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Figure 5.15 – Second level: Flow Chart for Utilise User Records 
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Figure 5.16 – Storyboard:  Utilise User Records A 

 
 

  
Select ‘User Records’ To add a new or existing user, Select 

‘Add New Profile’ 
 

 
 

Choose name of New Profile from 
the folder where the trainer files are 
saved (refer to end of target practice 
test). If open is selected, profile will 
be added to ‘User Records’. If not, 
select ‘Cancel’.  
 

To remove existing user or profile, 
select file and choose ‘Remove 
Profile’.  
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Figure 5.17 – Storyboard:  Utilise User Records B 

 

 

 
Interface with configured targets 
will appear.  Close window using 
exit button in top right corner.  
Target can be reconfigured by 
double clicking and following 
procedure shown in Figure 5.13. To 
make any changes to existing 
profile Select ‘Change Profile’ from 
‘User Records’ window.  
 

Make necessary changes to setting 
and profile appearance manually. 
Select ‘Change Target Positions’ to 
customise and repeat target 
customisation as per ‘New Training 
Session’. 

 

 

Choose ‘Yes’ or ‘No’ to confirm. If 
‘Yes’ all 24 possible targets will 
appear. Carer can manually choose 
locations and configure each target 
as required for user.  This step is 
used if the user cannot do the target 
test or if the carer wants to 
over-write the results of the 
automated individual profile 
creation. Select OK or Cancel in the 
‘Change Profile’ window. Select 
‘Close’ in the ‘User Records’ 
window, to quit user records. 
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The next, second level specification is for a simple utility to manage the Cyberlink™  
driver. 

  

 
Figure 5.18 – Level two: Flow Chart Change location of Cyberlink™ application 

 
Figure 5.19 – Storyboard Change location of Cyberlink™ application 

 
 
 
 

  
To confirm or change the location of 
Cyberlink, select ‘Change Cyberlink’.  
This facility is in case the Cyberlink™ 
driver gets corrupted and needs to be 
reinstalled or the location of the 
Cyberlink™ applications is changed. The 
BBI program automatically launches the 
Cyberlink™ when it launches the 
interface, so it needs to know the exact 
location of the drive software. Make 
changes and ‘Set’ or ‘Cancel’ as 
necessary.  
 

Open the main folder where the Trainer 
application is located. Select the folder 
where the personalised profile is saved 
and double click to launch and use from 
that point onwards.  
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Figure 5.20 – Interface with personalised discrete acceleration 

 

The abstract task defining this interaction paradigm is expressed via figure 5.20 as the 

success path:  

Initiation Step.1. Wait Step. 2. (Undecided Step. 4a. Discrete Acceleration Step. 

[4b¦3])+. 5. Target Step. 7 

 

Figure 5.20 shows the algorithm described in Section 5.2 in a State Transition Diagram. 

The PDA algorithm commences with the ‘Initiation Step’ and a pre-configured delay 

using the ‘Wait Step’ and ‘Arc 1’.  Then the cursor is released for the user to navigate 

the screen towards the intended target using ‘Arc 2’. The user moves the cursor through 

the gap between the tiles using discrete acceleration. An ‘Undecided Step’ with a 

pre-configured delay is introduced at each tile to control any noise and give the user 

time to contemplate the next cursor movement. The ‘Discrete Acceleration’ and 

‘Undecided’ Steps are repeated using ‘Arcs 3, 4a, 4b, 5 and 6’ until the intended target 

is reached. The cursor goes back to ‘Initiation Step’ after a target is chosen using ‘Arc 

7’ or if the time to reach the target has elapsed using ‘Arcs 8a and 8b’. 
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The following Pseudo Code assumes a program:  
 

• That opens the BBI with a window named ‘Trainer’ (Figures 5.8) which has 

four buttons named: 

i. ‘New Training – open ‘New Training Session’ window when pressed 

(Figure 5.10); 

ii. ‘User Records’ – open ‘User Records’ window when pressed 

(Figure 5.17); 

iii. ‘Change Cyberlink’ – opens ‘Set Cyberlink’ window when pressed, where 

the location of the Cyberlink™ application is entered (Figure 5.20); 

iv. ‘Close’ – quit the program. 

 

• Has a ‘Start New Training’ window which has input boxes for: User name; User 

Number; Carer Name; Institute, Time on ‘Starting Area’ (delay set by the carer, 

before the user can, leave the starting area to the intended target); Target Reach 

Time ( time interval given to reach a target, if this time is exceeded the cursor 

will come back to the starting area); Time on Tile (a delay set up carer to 

control the erratic movement of the BBI); Blinking Speed (the speed the target 

blinks when the user travels in the direction of a target, it gives feedback to the 

user); Target Time (the time the user needs to stay on target to indicate that it 

was the chosen target) and Maximum Number of Targets (depends on the 

abilities of the user). The carer/researcher enters the values for these inputs 

(Figure 5.10); 

 

• Has a  ‘Start New Training’ window which has six buttons named (Figure 5.10): 

i. ‘Set Target’ – open ‘Set Target’ window when pressed. The 

carer/researcher  uses the buttons to configure the BBI; 

ii.  ‘Set Starting Area’ – open ‘Set Starting Area’ window when pressed; 

iii. ‘Set Background’ – open ‘Set Background’ window when pressed; 

iv. ‘Start Training’ – launches the target test sub-routine when pressed; 

v. ‘Show Arrangement’ – display locations of all twenty four targets used in 

 the target practice; 

vi. ‘Close’ – close ‘Start New Training’ window when pressed. 
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• Has a ‘User Record’ window displaying all the personalised user profiles of the 

BBI. The carer/researcher uses the buttons to configure the BBI; 

 

• Has a ‘User Record’ window which has five buttons named (Figure 5.17): 

i. ‘Add New Profile’ – open a window to browse hard disk and add user 

profiles; 

ii. ‘Remove Profile’ – give the option to choose and delete user profiles; 

iii. ‘Show Profile’ – give the option to display an individual profile; 

iv. ‘Change Profile’ – give the option to alter the parameters of a profile; 

v. ‘Close’ – close the ‘User Records’ window. 

 

• That each target can be programmed to convert text to audio, switch on/off 

devices or launch applications (Figure 5.14); 

 

• Has a window ‘Change Profile’ which has input boxes and buttons to 

reconfigure over-writing all previous settings for any user profiles manually 

(Figure 5.18); 

 

• Has an arrow in the ‘Starting Area’ to show the direction of travel (Figure 5.11); 

 

• Has a facility to create a personalised profile at the end of a target test 

(Figure 5.13); 

 

• That quits when the esc key is pressed any time.  

 

The Pseudo code for the trainer for personalised discrete acceleration follows:  

 

1)  Setup 
OBTAIN personal details (user name, user number, carer’s 

name, name of institute) 
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OBTAIN target parameters (Time_on_Starting_Area, 

Target_Reach_Time, Time_on_a_Tile, Blinking_Speed, 

Target_Time, Maximum_Number_of_Targets) 

 

SET interface parameters (Target_Width, Target_Height, 

Target_Face_Colour, Target_Text_Colour, Target_Font, 

Starting_Area_Width, Starting_Area_Height, Arrow_Length, 

Set_Face_Colour, Set_Text_Colour, Set_Arrow_Colour, 

Set_Font, Tile_Width, Tile_Height, Tile_Gap, 

Tile_Colour, Tile_Colour_when_focused, 

Background_Colour) 

 

2)  Target test 
FOR twenty four targets 

 Move cursor to starting area 

 Wait a pre-configured time delay 

 Target appears on screen 

 Start clock for Target_Reach_Time 

 target_test_running = true  

 WHILE target_test_running 

 IF less than Target_Reach_Time THEN 

   On mouse move 

   Highlight location of cursor 

   Move arrow to indicate direction of travel 

   Display cursor to nearest edge of tile in 

   the direction of target 

    IF target is reached 

    Make audio confirmation 

    Change text on target to ‘well done’ 

    Move cursor to starting area for next 

    target 

    target_test_running = false 

    ENDIF 
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  ELSE 

   On mouse move 

   Highlight location of cursor 

   Move arrow to indicate direction of travel 

   Move cursor to nearest edge of tile in the 

   direction of target 

  ENDIF 

  ELSE 

   Make audio confirmation 

   Change text on target to ‘sorry’ 

   target_test_running = false 

  ENDIF 

 ENDWHILE 

ENDFOR 

 

3)  Feedback and data storage 
Display target practice report on screen 

Save report in the folder where ‘trainer’ program is 

located 

Display the personalised target on screen  

 

4)  Set-Up targets 
For each target 

Double click on each target 

SET target to convert text to sound or switch devices 

on/off or launch an application 

 

5)  Using the PDA interface 
Double click on a personalised profile 

Display personalised interface of user 

FOR any target 

 Move cursor to starting area 

 Start clock for target reach time 
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 Wait a pre-configured time delay 

 IF less than target reach time THEN  

  On mouse move 

  Calculate angles between each target and the 

  last direction of travel 

  IF the calculation gives two targets below 30 

  degrees in the direction of travel wait for one 

  more mouse move THEN   

   On mouse move 

   Re-calculate angles between each target and 

   the last direction of travel and make the 

   intended target to blink at the blinking 

   speed 

   Highlight the tile where the cursor is  

   located 

   Move the arrow to indicate the last  

   direction of travel 

   Move cursor to nearest edge of tile in the 

   direction of the intended target 

  ENDIF 

  IF the calculation gives two targets as the  

  intended targets wait for one more mouse move 

  THEN 

   On mouse move 

   Re-calculate angles between each target and 

   the last direction of travel and make the 

   intended target to blink at the blinking 

   speed 

   Highlight the tile where the cursor is  

   located 

   Move the arrow to indicate the last  

   direction of travel 
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   Move cursor to nearest edge of tile in the 

   direction of the intended target 

  ENDIF 

  IF the calculation does not gives two targets 

  below 30 AND two targets as the intended targets 

  THEN 

   On mouse move 

   Make the intended target to blink at the 

   blinking speed 

   Highlight the tile where the cursor is  

   located 

   Move the arrow to indicate the last  

   direction of travel 

   Move cursor to nearest edge of tile in the 

   direction of the intended target 

  ENDIF 

  IF target is reached THEN 

  Carryout the pre-programmed function of the  

  target 

  ENDIF 

 ELSE 

  Move cursor to starting area 

 ENDIF 

END FOR 

 

5.7. Summative Study 
The interface with the above specifications was evaluated in a study to investigate 

whether: 

1. Using Personalised Discrete Acceleration will reduce the impact of noise and 

consequent erratic involuntary movement of the cursor by presenting users with 

targets that best matched their capabilities; 
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2. PDA will achieve an improved performance with able users in comparison to 

the previous results obtained in this area of research using Cyberlink™ as a 

BBI. 

 

Personalised Discrete Acceleration will be abbreviated to PDA for the rest of this 

thesis, PDA is a term coined by the researcher, not from any other literature and that it 

has nothing to do with Personal Digital Assistants.  Table 5.2 below shows the details 

of participants used for evaluating the final PDA Interface. The participants were 

volunteers from the local area of Surrey and they received no prior training. The 

participants for this phase of the research were given the training described in 

Section 4.3. In addition to this, the researcher demonstrated how to navigate the cursor 

to a target on a computer screen using the PDA interface (Sections 5.1, 5.3 and 5.5, 

Figures 5.4, 5.5 and 5.11). The participants had to complete the target test, obtain their 

individual PDA interface and then evaluate the PDA interface.  

 

Table 5.2 – Details of the participants used in evaluating the final interface  

Part. No Gender/Age Clinical 
Diagnosis 

Medicines Additional 
Information 

35 F 11 Able-bodied None Occasional computer 
user 

36 F35  Able-bodied None Rare computer user 

37 F40 Able-bodied None Occasional computer 
user 

38 M52 Able-bodied None Rare computer user 

39 M14 Able-bodied None Occasional computer 
user  

40 F25 Able-bodied None Regular computer 
user 

41 M33 Able-bodied None Rare computer user 

42 F16 Able-bodied None Regular computer 
user 

43 M48 Able-bodied None  Regular computer 
user 

44 M16 Able-bodied None Regular computer  
user 

 

The target test program automatically created individual profiles at the completion of 

each target test. The interface for each individual participant consisted of a computer 

screen with his/her six fastest targets. Each participant was asked to use the interface to 

give answers to questions. The following data was recorded: 
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• Percentage of correct answers; 

• Any reconfiguration of interface.  

 

 

Figure 5.21 – Doherty’s Interface 

 

These ten able-bodied participants also tried the interface designed by Doherty 

(Figure 5.21). The time taken to reach the targets using Doherty’s interface was 

compared with the PDA interface. This test was carried out to measure the progress 

made using the PDA interface.  

 

Table 5.3 – Summative Evaluation for PDA Interfaces 

Participant Used text to 

audio  

Launched 

applications 

Switched 

devices 

35, 36, 37, 38, 39, 40, 41, 

42, 43, 44 (i.e. all) 

Yes Yes Yes 

 

Every participant was able to communicate using text, launch applications and switch 

devices at the success rate of 80 - 90%, using a default personalised interface (Profile 2, 

Table 5.3), when a time restriction of 30 seconds to reach a target was imposed. When 

this was increased to 60 seconds the success rate reached 100% (Table 5.3). This 

indicated that PDA interface was an inclusive interface in comparison to Doherty’s 

tunnel interface. 
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Table 5.4 – Summative Evaluation for Doherty’s Interface 

Part. No PDA interface 
(profile 2) 

Doherty’s 
interface 

35 4 seconds Unable  

36 3 seconds 5 Minutes 

37 4 seconds Unable 

38 3 seconds 6 Minutes 

39 6 seconds Unable 

40 7 seconds Unable 

41 8 seconds 4 minutes 

42 9 seconds Unable 

43 5 seconds 3 minutes 

44 3 seconds 1 minute 

 

The maximum time allocated to reach either Yes or No in Doherty’s interface was ten 

minutes (Table 5.4). Five out of ten able-bodied participants were unable to reach the 

targets in the allocated time. The minimum time taken to reach the targets using the 

PDA interface was at least twenty times faster than Doherty’s interface (Gnanayutham 

et al., 2005).  

5.8. Optimisation Study 
Having compared PDA with Doherty’s interface we could conclude that the first three 

concerns raised in Section 5.1 were positively addressed. Positive outcomes from the 

comparison study lead to next investigation whether optimised settings for PDA can be 

obtained with able bodied participants. This could be used as a starting point when 

evaluating the interface with disabled users. 

 

The algorithm described in Section 5.2 was utilised here to navigate the cursor.  

Kelton (1997, 1999) states that if a search is made for a configuration of inputs that 

maximises some key output performance, you need to decide very carefully which 

configurations you will run (and which ones you will not) and also choose your 

scenario carefully. As a preliminary response to this recommendation, four target 

practices with different dimensions for tiles and gap between tiles were presented to the 

participants (Table 5.5). These were based on the researcher’s experience of observing 
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usage and his best judgement. The dimensions for targets and ‘Starting Area’ were 

fixed for the experiment since they played no part in navigation of a cursor from 

‘Starting Area’ to the target. This was an experiment with no prior training for the 

users. The result from this phase was to be used as a starting point for the interface 

settings to be used in phase three with disabled participants.  

 

Table 5.5 – Profiles used for optimising PDA interfaces 

Tile (pixels) 

Profile Width Height Gap 

1. All low 80 30 10 

2. Medium, small gap 90 50 10 

3. Medium, large gap 90 50 20 

4. All high 130 70 20 

 

 

Ten able bodied participants were used to conduct summative experiments with the 

four profiles shown in Table 5.5. The four profiles were chosen to give different tile 

dimensions and different gaps. There was a time limit of one month to conduct 

optimisation with the ten able-bodied participants, which limited the number of profiles 

to four and the number of participants to ten. Feedback from the development group 

had indicated that small and large tiles were difficult to navigate in comparison to 

medium tiles, hence the choice of four profiles shown in Table 5.5. The development 

group also indicated that large gap between tiles did not allow the user to control 

navigation between tiles, hence two small and two medium size gaps between tiles 

were used for the experiment. The study started with summative evaluations to obtain 

individual preferences for the four profiles. Then the users completed further 

summative evaluation using the four profiles to hit targets within a given time interval 

(24 x 4 trails per participant) and the success rate was recorded (Appendix 3).  The data 

were used to obtain the best profile as the default for the experiments to be carried out 

with the severely brain-injured participants in the next phase of this research. Results 

obtained were analysed, and conclusions drawn for the next phase of the research.  
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The target test (trainer program) automatically collected the data shown below: 

• Number of targets reached; 

• Time taken to reach the targets; 

• Dimensions of targets, tiles and gap between targets; 

• Fonts and chosen colours. 

 

The target test consisted of twenty four targets appearing on the screen at random. The 

interface was configured with the following settings for collecting data for this 

summative evaluation. 

• Time on ‘Starting Area’ = 0.1 minutes; 

• Maximum time to reach target = 1.0 minute; 

• Maximum time on each tile = 150 ms; 

• Blanking speed = 5 per second; 

• Maximum number of targets = 6; 

• Screen resolution 800 x 600. 

 

Usage data was recorded for four profiles. The variables being considered in each 

profile were the dimensions of tiles and gap between tiles. The dimensions of the 

‘Starting Area’ were fixed at 120 pixels in width and 60 pixels in height and the 

dimensions of the targets were fixed at 100 pixels width and 60 pixels height.  

 

Table 5.5 shows the initial profiles chosen for the study. These were based on 

observations in previous studies. They were investigated first, before any systematic 

exploration of the PDA design space. If one the profiles resulted in improved able-

bodied performance, it would be chosen as the default for the trainer program. If not, 

then a more systematic exploration of the design space would be required.  
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Table 5.6 – Summative Evaluation for PDA Interface: Ranked preferences for profiles 

Part. No Profile 1 Profile 2 Profile 3 Profile 4 

35 2 1 3 4 

36 2 1  3 4 

37 1 2 3 4 

38 2 1 3 4 

39 1 2 3 4 

40 2 1 3 4 

41 3 1 2 4 

42 1 2 3 4 

43 2 1 3 4 

44 2 1 3 4 

 

The results of the summative evaluation (of ranked profile preferences by individuals) 

are given in Table 5.6, with Profile 2 being the most common first choice and Profile 4 

being the universally disliked.  Eighty percent of the participants preferred Profile 2 

with medium tiles and small gap between tiles. 

 

Table 5.7 – Summative Evaluation for PDA: Success Rates 

 Successes Trials % Success 
1. All low 
 

70 240 29.2% 

2. Medium, small gap 
 

110 240 45.8% 

3. Medium, large gap 
 

45 240 18.8% 

4. All high 
 

44 240 18.3% 

 

The dimensions and times recorded during summative evaluation showed (Table 5.7, 

Appendix 3) that the interface with medium tiles and small gap between tiles (Profile 2) 

gave a better performance than interfaces with small/large tiles and medium/large gap 

between tiles, as shown in Table 5.7, when the success rates are compared. Hence 

Profile 2 was chosen as a good default setting for evaluation with disabled participants. 

Although Profile 2 is to be the starting point for the next phase of this study, the 

provision to overwrite any automated process and configure PDA interfaces manually 

gives the opportunity for carers to personalise using Evidence-Based Personalisation 
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(Nutley et al., 2003) and to create interfaces to include all brain-injured individuals 

(except the users with visual impairment, comatose or affected by adverse medication). 

No further exploration of the PDA design space was required, nor was there time for 

exhaustive systematic optimisation. The approach was an engineering, rather that 

scientific method. 

 

5.9. Conclusion 
Development with able-bodied participants answered all the questions posed at the 

beginning of this phase of research. PDA interfaces reduced the impact of noise and 

consequent erratic involuntary movement of the cursor by presenting users with targets 

that best matched their individual capabilities with tiles that controlled the movement of 

the cursor when using bio-potentials to navigate. The interface developed also had the 

provision for reconfiguration anytime, provided a carer ran the target tests again or used 

the manual method to alter the interface. This supports the position that individuals are 

each very different in the way they respond. It also shows how individuals who respond 

in different ways to the interface can be accommodated in a PDA interface that strives 

to be inclusive regardless of the capabilities of the user. This phase of the study started 

with a design for a PDA interface addressing known difficulties brought from phase 1 

of this research. The design improved by selecting Profile 2 (medium tiles, small gap).  

The design can be further improved by carer support for evidence based 

personalisation, and perhaps by a more exhaustive search of the tile size and gap 

parameter space.  

 

The participants who evaluated the PDA interface received no prior training, but were 

asked to hit random target using the four pre-configured profiles being evaluated.  The 

success rate shows that there is no need for prior training to be able to use a PDA 

interface.  

 

Results from random target tests showed that Profile 2 obtained a success rate of 45.8% 

in comparison to, 29.2% (Profile 1), 18.8% (Profile 3) and 18.3 % (Profile 4) success 

rates (Table 5.7). This finding illustrated that the interface with medium tiles and small 

gap between tiles gave a better performance than interfaces with small/large tiles, 
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small/large targets and medium/large gap between tiles. The targets that were least hit 

were in the diagonal direction of screen or very near the ‘Starting Area’. Moving a 

cursor diagonally using Cyberlink™ is much harder than horizontal or vertical 

movements, hence the difficulty in hitting the diagonal targets.  Users seem to leave the 

‘Starting Area’ rapidly, instead of a steady start, which makes them over-shoot the 

targets next to the ‘Starting Area’ and miss them altogether.  However this problem 

does not occur when the PDA interface is utilised to communicate in real time, since 

targets are fixed, do not appear at random, and the user knows what to expect.   

 
As for the research hypothesis, the performance of the BBI can be improved by the use 

of novel interaction paradigms. The results show how the PDA interfaces achieved 

better performance than previous work in this area and also created an optimised 

inclusive interface that aims to accommodate all users, except the users with visual 

impairment who cannot read a screen, comatose users, or users affected by adverse 

intake of medication. This interface also facilitated  independent usage at user care 

homes, as reported in the next Chapter. 
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Chapter 6 – Impaired Independent Usage 

The third phase was a detailed investigation carried out at Holy Cross Hospital Surrey 

and Castel Froma Leamington Spa nursing home. Both these institutes are 

rehabilitation centres for brain-injured individuals. This investigation lasted nine 

months. Consent was granted by the institutes to work with ten nonverbal brain-injured 

participants. A medical practitioner at each institute cleared each participant medically. 

After the first two visits, five out of the ten participants were chosen for further 

investigation. The other five had severe visual impairment, which prevented them from 

using the BBI, hence they were not used in the research.  

 

The research question addressed in this phase was, can a disabled participant give 

consistent answers using the PDA interface developed and evaluated by able-bodied 

participants in phase two of this research? This phase of the study also investigated 

usage of the PDA interface without the researcher being present for daily meaningful 

routine communications by severely brain-injured individuals. There was some 

evidence of independent researcher supported usage of Cyberlink™ as a BBI (Doherty 

et al., 1999, Junker, 2005), but no independent carer supported usage has been reported 

with individuals with severe traumatic brain injury such as the participants in this phase 

of the study (Doherty, 2007, Junker, 2005). 

 

Data from each disabled participant was collected once or twice a week (Wednesday 

and/or Fridays), depending on the availability and health of the participants. Data 

collection sessions lasted twenty minutes to one hour, with one or more breaks as 

needed for each participant. Every visit was recorded and progress noted. The 

percentage of correct answers given was recorded for analysis. The BBI was also left 

by the researcher at the Holy Cross Hospital for three weeks in a month, and for one 

week every month at Castel Froma for independent usage by the carers and medical 

staff (Vallender, 2007). 

 

The search for participants for phase three of this research began through articles being 

written requesting participants in disability magazines and web sites connected with 

brain injury to recruit disabled participants. Partners and parents of brain-injured 

persons made contact indicating their interest in trying the interface developed by this 
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research. Demonstrations were carried out in all institutes and hospitals to both staff 

and members of the family of brain-injured persons. Holy Cross Hospital Surrey and 

Castel Froma Leamington Spa nursing home granted permission for research to be 

carried out in the premises after obtaining individual consent from parents/guardians of 

each brain-injured participant. Ten participants were granted consent by the institutes 

and parents/guardians. Five participants were not included in this study due to their 

visual impairment. A medical practitioner also accompanied the researcher in the first 

two visits and any other time when a medical opinion was needed.  The medical 

practitioner checked the medical status of each participant and the regular dosage of 

medication to assess the suitability of a participant. The medical practitioner also 

became involved whenever the need arose due to possible changes to medication or 

well being. There were also carers present when experiments were carried out to help 

the investigation. At each visit, the condition of the participants were reassessed for 

continuation in the research, any new development including any change of medication 

was taken into consideration. The results from phase one (Chapter 4), combined with 

requesting volunteers at demonstrations (e.g. relatives/guardians of participants and 

staff from the institutes) to test the interface for safety and any side effects, enabled the 

ethics committee to grant permission for using their patients.  

 

6.1. Experimental Setup 
The experiment to be carried out here is to answer the question, can a disabled 

participant give consistent answers using personalised tiling and discrete acceleration? 

Table 6.1 shows details of participants of this phase of research.  
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Table 6.1 – Details of the participants used in phase three 

Part. No Institution Gender/Age Clinical 
Diagnosis 

Medicines Additional 
Information 

45 Holy Cross M38 Locked-in 
syndrome 

Phenytoin, 
Clonazepam 

Non-verbal 

46 Holy Cross F61 Severe cerebral 
haemorrhage, 
brain stem injury 

Bisacodyl 
supplement, 
Corsodyl, 
Ranitidine, 
Hypromellose 

Non-verbal 

47 Holy Cross M45 RTA, Diffuse 
axonal brain 
damage 

Suppositories Non-verbal. 
Can use a foot 
switch but it 
takes a lot of 
effort from the 
participant 

48 Holy Cross M60 Brain stem injury Anti-anxiety, 
cardiac 
Anti-Depressant 
Psychotropic,  

Non-verbal 

49 Castel 
Froma 

M32 Traumatic Brain 
Injury 

Sodium 
Valproate, 
Hyoscine 

Non-verbal, can 
respond by 
thumb 
occasionally 

 

6.2. Experimental Method 
The best settings investigated in phase two (Profile 2) were used as the starting point 

for this phase. Manual re-configurations had to be made for some individuals, 

over-writing the automated process due to the severity of the brain injury (participants 

46 and 49) and usage of evidence based personalisation (Nutley et al., 2003). 

 

The research question raised in phase three was, can a disabled participant give 

consistent answers using the PDA interface. The number of targets was from two to six 

depending on the severity of the disability. The data recorded were: percentage of 

targets reached to indicate correct answers, behaviour of participant, any 

reconfiguration of interface, changes in medication, duration of visit, and other input 

devices used. There was also one participant who had been able to use a foot switch. 

This gave an opportunity to double check the answers given by the user interface. 

 

6.3. Evaluation of Results 
The first step for evaluation was giving each medically cleared participant two tasks to 

determine their suitability for this research. These tasks were as follows: 
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• Respond to requests; 

• Use Cyberlink and their bio potential to move the cursor around in any direction 

on the screen. 

 

The head of Participant 46 had to be held by a brace, which prevented any 

electromyographic signals being used for communications, Participant 49 had a twitch, 

which resulted in unreliable electromyographic signals being picked up the BBI. This 

meant these two participants had to rely exclusively on electroencephalalographic 

signals to move the cursor along the screen, effectively limiting them to two targets. 

The automated profiles for Participant 46 had to be manually re-configured to bring the 

targets close to the ‘Starting Area’ and the height of the target also had to be increased, 

since she produced only a small amount of electroencephalalographic signals. The 

targets had to be moved further back manually for Participant 49, since his twitch 

produced unwanted electromyographic signals which had to be ignored while using 

only his electroencephalalographic signals for communications. Participants 45, 47 and 

48, were able to use some electrooculargraphic signals in addition to 

electroencephalalographic signals, hence they were able to use four to six targets in 

their individual profiles.  

 

Encouraging feedback was received from the locked-in syndrome participant, who used 

his thumb to indicate approval.  All five suitable Participants (45, 46, 47, 48 and 49) 

were able to communicate using the Cyberlink™ (Table 6.4). They could use the 

Cyberlink according to their own ability, using their personalised interface to 

communicate.  Thus communication with a slightly larger group than Doherty was 

achieved. Doherty only had partial success with two out of three severely impaired 

participants. Although the participant numbers are still very small (five in comparison 

to three by Doherty), it can be confidently generalised, that this inclusive PDA interface 

enabled all five participants to communicate consistently, for a longer period (nine 

months in comparison to six weeks by Doherty) and a relatively large increase in 

successful usage was achieved (75% instead of 60% by Doherty) as shown in 

Tables 6.2 and 6.3. The communication took the form of asking participants various 

questions connected with their day to day tasks, e.g., Do you want the CD player on? 

Do you want the curtains closed? Would you like a bath? Are you tired? How many 
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targets do you see in the screen? (then give choice of answers) etc. Individual profiles 

of participants (Figures 6.1, 6.3, 6.5, 6.7 and 6.9) and profile settings of participants 

(Figures 6.2, 6.4, 6.6, 6.8 and 6.10) are now presented. These profiles demonstrate how 

each participant had his or her individual interface with personalised times to suit their 

abilities, which made the PDA interface inclusive of the five remaining participants 

who were different abilities.  
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Figure 6.1 – Profile of Participant 46 

 
 

 
Figure 6.2 – Profile settings of Participant 46 
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Figure 6.3 – Profile of Participant 49 

 

 
 

Figure 6.4 – Profile settings of Participant 49 
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Figure 6.5 – Profile of Participant 47 

 

 
 

Figure 6.6 – Profile settings of Participant 47 
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Figure 6.7 – Profile of Participant 48 

 

 
 

Figure 6.8 – Profile settings of Participant 48 
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Figure 6.9 – Profile of Participant 45 

 
 

 

Figure 6.10 – Profile settings of Participant 45 
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Table 6.2 – Evaluation Results A 
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Table 6.3 – Evaluation Results B 

 
 

Table 6.4 – Evaluation Results  

Participant Used text to 

audio  

Launched 

applications 

Switched 

devices 

46, 49 Yes No No 

45, 47, 48 Yes Yes Yes 
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Participants had to wait in the ‘starting area’ for a user dependent pre-configured delay 

and then reach the appropriate target within a user dependent pre-configured time, to 

achieve success. The success rate was measured only with disabled participants. 

Participant 47 was able to use a foot switch. This was valuable at times for 

double-checking answers given. The success rate averaged around 75% for all these 

participants (Table 6.4). As Table 6.4 shows, three participants (45, 47 and 48) could 

launch applications such and switch devices. We have thus achieved a wider range of 

functionality than Doherty with similar participants. Participants 45, 47 and 48 had 

television and music systems in their room and showed interest in doing more with the 

interface than other participants. These three participants used the PDA to control these 

devices and also launch applications such as the Internet browser. Participant 47 had 

days where he wanted to be left alone, which reduced his success rate. However, on a 

good day he used the interface to communicate, switch devices and launch applications.  

The ability of these three participants to do more than communicate demonstrated the 

superiority of a personalised interface that can expand or shrink the number of targets 

to match an individual’s capability.  Doherty’s tunnel interface was restricted to two 

targets. Several participants had problems with their eyesight and were greatly 

encouraged by audio feedback that enhanced their experience.  The text to sound 

facility incorporated in the target of the interface also lets users, hear any phrase they 

wanted to use, not just YES or NO. 

 

The provision of personalisation greatly improved the PDA interface by giving a 

facility to configure the interface to suit each participant as shown in Figures 6.1 

to 6.10. This interface also gives the user the possibility of another target test and 

reconfiguration at any time, which reduces error frequency.  Further flexibility in the 

interface is provided by adaptable dimensions (manual configurations), fonts and 

colours, which can cater for colour blindness and other visual impairments. The speech 

therapists (three from Holy Cross Hospital and one from Castel Froma) and the 

Matrons in both institutes were able to carry out independent usage of the BBI for daily 

routine communications. Communications with participants were carried out at least 

three times a week in Holy Cross Hospital by support staff in addition to the visits by 

the researcher. Apparatus was left for independent usage three weeks a month at Holy 
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Cross hospital.  Independent usage was carried out at Castel Froma three times a month 

minimum, but the Apparatus was left there only one week per month. 

 

6.4. Conclusions 
All five participants chosen for this phase of the research were able to use the interface 

to varying degrees to communicate and control applications. This demonstrated the 

inclusivity of interface, leaving out only participants who had serious visual 

impairment, were in comatose or adverse effect of daily medicine intake.  The rate of 

success averaged around 75% for all participants. Participants 46 and 49 were able to 

use the interface to communicate using a two target Yes or No interface, due to the 

severity of their brain injury. Participants 45, 47 and 48 had television and music 

systems in their rooms and showed interest in doing more with the interface than the 

other participants. They were able to switch devices on and off and also launch the 

Internet using their interface. The success rate for Participants 45 and 48 averaged 

around 75%, but Participant 47 had days where he wanted to be left alone, which 

reduced his success rate.  The ability of these three participants to do more than 

communicate demonstrates the superiority of a personalised interface that can expand 

or shrink the number of targets to match an individual’s capability. 

 

The research question addressed in phase three, can a disabled participant give 

consistent answers using the PDA interface? was answered here with a 75% success 

rate. Previous research in phases one and two fed valuable data into this phase, 

resulting in the answer to the research question. This phase shows that the combined 

discrete acceleration and personalised tiling allows faster and more extensive 

interaction.  Discrete acceleration has been shown to improve performance.  A flexible 

interface can be configured to suit each person, with targets positioned by either using 

the target test program or manually placing them where participants wish.  As a result, 

we have been able to extend effective interaction for some users to tasks beyond simple 

communication.   

 

The apparatus was left at the premises of Holy Cross Hospital and Castel Froma 

nursing home for independent usage without the researcher. The carers were able to use 
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it as part of their communication with the disabled individuals. A portable BBI which 

can be used in the field outside the laboratory environment to carry out independent 

usage for daily routine communications was one of the main achievements of this 

research.  

 



 126 
 
 

 
 

Chapter 7 – Conclusions and Future Work 

This research improved on the existing work of Doherty by developing new interaction 

paradigms. It created two interaction paradigms, discrete acceleration and personalised 

tiling with discrete acceleration.  This research extended the scope of BBIs, in terms of 

both the population who can use them and in terms of what (some) users can do with 

them. This research was completed with patients in their own homes or nursing home 

environments and it was not a laboratory exercise with laboratory subjects. There was 

no need for extensive training or any off-line processing. 

 

Doherty’s success was limited and inconsistent. It was clear that improved control over 

the cursor would extend the population of brain-injured who could use BBIs, as well as 

the functionality that could be accessed through it.  The research hypothesis of this 

study that the performance of the Brain-Body Interface can be improved by the use of 

novel interaction paradigms was achieved in this research. The application of novel 

interaction paradigms to this area of BBIs is an original contribution to knowledge. 

Previous work in this area had some limited success, but the user interaction paradigms 

produced in this research improved on the previous one by developing an individually 

configurable interaction paradigm, thus creating a more inclusive interface. The 

patients who were non-verbal, paraplegic and tube fed now had the ability to 

communicate, which was not possible previously. This also gave them a say in 

controlling their own environment without decisions being made by others on their 

behalf. 

 

Forty nine participants were used in this research at various stages to conduct formative 

and summative evaluations, while Doherty used forty four participants. Doherty used 

forty four participants (twenty eight disabled and sixteen able-bodied) for the 

exploratory stages of his investigation.  The same total number (albeit twenty one 

disabled and twenty three able-bodied) was used for the exploratory stages of this 

investigation. Doherty used three brain-injured participants to evaluate the final 

interface of his research, while this research used five brain-injured participants to 

evaluate the final interface. The final evaluation (phase 3) was carried out over a longer 

period of time in comparison to Doherty’s evaluation to discover whether the 

participants could use the interface with any consistency as part of their routine 
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communication.  This part of the study also indicated that the developed PDA 

interfaces could be used independently for daily routine communications by the care 

homes, without the researcher being present. Hence this research facilitated daily 

routine communication between the carers and the patients in their own environment at 

the convenience of the patient. The setup of the apparatus was simple and didn’t need 

any special expertise or medical knowledge. 

 

There were other challenges encountered in this investigation apart from the ones 

highlighted in Section 3.1, such as the lack of any up to date information on 

participants, the participants not having eyesight tests or other tests further to their head 

injury, no score for GCS scales or Ranchos Los Amigos Scale of Cognitive 

Functioning. Due to this challenge, a medical practitioner conducted preliminary 

medical checks and also checked the medical records and daily medication intake 

before clearing the participants for the study. 

 

A methodology had to be chosen to address the many challenges of this investigation. 

The chosen methodology was a design research paradigm, guided by principles from 

HCI research and practice, including engineering design approaches based on 

psychology research methods. A two level research paradigm using able-bodied then 

brain-injured participants was used for developing and evaluating novel interaction 

paradigms. A three-phase minimum structure was employed to carry out this research 

methodology, which was sufficient to answer the research question. The methodology 

addressed known challenges to develop an appropriate interface for severely 

brain-injured individuals to communicate during their daily routines. The main task was 

to develop algorithms that can let the user navigate a screen in a controlled manner, 

enhancing cursor control of the BBI to improve the time to reach a target. The chosen 

methodology combined elements of design, engineering and science to create novel 

interaction paradigms and to evaluate their effectiveness. The chosen methodology 

drew on Gould and Lewis’s three principles of design for usability, using iterative 

methods to refine the interface design. This was not a classic engineering design 

approach, but an iterative HCI approach with attempts at optimisation. It combined 

field usage of prototypes with field evaluation.  For each phase of the study, there were 

various issues to be addressed such as, refining methods and approaches, ethical 
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approval, recruitment of both able and disabled participants and conducting 

experiments.  

 

7.1. Phase one studies 
The results of this exploratory study showed that every participant was an individual, 

who could not be grouped in any way. In tunnel and maze interfaces, users who could 

not move through the predefined route could not communicate, thus excluding them 

due to their personal abilities. An inclusive interface to cater for individual needs had to 

be investigated. In this exploratory study, both able and disabled participants found 

certain areas of the computer screen easy to navigate, but others were much harder to 

reach. This meant that targets should be placed in their preferred areas rather than any 

predefined location of the screen. Personalisation was required to make the most of 

each individual’s capabilities. There were even able-bodied participants who were 

unable use this interface. There were further problems with inconsistent control of the 

cursor.  

 

Tunnels do meet the aim of controlling the cursor, but performance is still adversely 

impacted by signal noise. The cursor will move around the display with little effort, 

picking up bio-potentials, thus frustrating users.  Records of individual routes indicated 

that, within the tunnels’ constraints, no one used regular routes to reach a particular 

target, indicating each participant produced dissimilar bio-potentials. 

 

Participants also confirmed that discrete acceleration was the preferred choice in 

comparison to Doherty’s interface.  Adding discrete acceleration improved 

performance, but did not overcome the problems of inconsistency that arose with BBIs. 

The t-test shows that with/without discrete acceleration, sets of data were significantly 

different at p << 0.05 level. However, six participants (some able-bodied) could still not 

answer questions at all using a Cyberlink.  For the able-bodied users, there was no 

question of them being disabled in any way, but may have been very adversely affected 

by a pervasive problem with cursor control, thus calling for a personalised interface. 

Alternative designs for speeding up tunnel navigation were considered, but discarded.   

This would have resulted in a smaller display area, as per Steering Law, which may not 
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have worked well with the common combination of visual impairment and shared use 

of the display from a distance. There was also no need to give extensive training to the 

participants before these two interfaces could be used.  

 

As for the research hypothesis, the performance of the BBI was improved by a novel 

interaction paradigm, but the need for a personalised interface was more important than 

the benefits of discrete acceleration.   

 

7.2. Phase two studies 
Phase two introduced a further novel interaction paradigm, personalised tiling which 

was combined with discrete acceleration (from phase one). This reduced the impact of 

noise and consequent erratic involuntary movement of the cursor. This interface 

presented users with targets that best matched their individual capabilities and tiles that 

controlled the movement of the cursor when using bio-potentials to navigate the 

interface. The data obtained shows that individual differences were significant, but 

participants were able to reach the targets. This supported the position that individuals 

are each very different in the way that they respond. It also showed how these 

individuals who respond in different ways to the interface can be accommodated in the 

PDA interaction paradigm, which strives to achieve an inclusive interface design 

regardless of the capabilities of the user. The participants for evaluating the PDA 

interface received no prior training, but successfully achieved the objective, which 

proved that this interface needed minimum training. Doherty used game playing to 

establish the correct settings before testing his ‘Yes/No’ interface, whereas PDA is 

self-contained and supports all necessary configurations. 

 

Improved default settings for PDA were obtained with able-bodied participants, to be 

used as a starting point when evaluating the interface with disabled users in phase three 

of the research. Results from random target summative tests showed that Profile 2 was 

the best. This finding illustrated that the interface with medium tiles and small gap 

between tiles gave a significantly better performance than the other three profiles. This 

statistically shows that there is a difference between each profile and that the best one 

that could be chosen. The summative evaluation (of ranked profile preferences) also 
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indicated that 80% of users preferred Profile 2 to the other three profiles. The 

alternative for the parameters used in the four profiles for optimising the PDA interface 

were based on experience with by the development group utilised in this phase of the 

study. The improved individual interface obtained shows the users can successfully 

navigate their individual PDA interface achieving 100% success. The minimum time 

taken to reach the targets using PDA was at least twenty times faster than Doherty’s 

interface.  

 

7.3. Phase three studies 
This was the final phase with the PDA interaction being evaluated by the disabled 

participants. All five participants chosen for this phase of the research were able to use 

the interface with varying degree of application to communicate. This indicated an 

inclusive interface, which only left out participants who had serious visual impairment, 

were comatose, or had adverse effect by their daily medicine intake.  The rate of 

success averaged around 75% for all the participants. The ability of three participants to 

do more than communicate demonstrates the superiority of a personalised interface that 

can expand or shrink the number of targets to match an individual’s capability.  

Doherty’s tunnel interface is restricted to a fixed number of targets (typically two). 

Several participants had problems with their eyesight and were greatly encouraged by 

audio feedback that enhanced their experience.  The inclusion of personalised tiling 

with acceleration greatly improved the interface. Further flexibility in the interface is 

provided by adaptable dimensions, fonts and colours, which can cater for colour 

blindness and other visual impairments. 

 

The research question raised in phase three, can a disabled participant give consistent 

answers using the PDA interface was answered here with a 75% success rate. This 

phase of the study also showed that PDA interface can be used without the researcher 

being present independently for daily meaningful routine communications by severely 

brain-injured individual. This phase showed that the combination of discrete 

acceleration and personalised tiling allowed faster more extensive interaction.  Discrete 

acceleration has been shown to improve performance.  A flexible interface can be 

configured to suit each person, with targets positioned by either using the target test 



 131 
 
 

 
 

program or manually placing them where participants wish.  As a result, it has been 

possible to extend effective interaction for some users to tasks beyond simple 

communication. This also gave this group of people a say in controlling their own 

environment without decisions being made by others on their behalf. Thus this research 

facilitated daily real-time communication between the carers and the patients in their 

own environment without the need for the researcher being present. Phase three also 

indicated the research hypothesis, that the performance of the BBI can be improved by 

the use of novel interaction paradigms has been achieved in this phase of the research.  

 

7.4. Conclusions of work 
This research extended the scope of BBIs, in terms of both the population who could 

use them and in terms of what users could do with them.  It developed, evaluated and 

refined two new complementary approaches to providing means to communicate, 

recreate and carry out some simple tasks for people who would otherwise remain 

unable to perform any such activities and were classified as vegetative. Doherty’s 

Tunnel interface was the baseline of this investigation (Field & Hole, 2004). The results 

from this research show that these two novel interaction paradigms significantly 

improved the performance of BBIs. 

 

This research built on Doherty’s work in three ways.  This study worked with a much 

larger group of severely impaired participants, especially in phase one (Chapter 4), and 

thus replicated Doherty’s results with a larger population in India and the UK.  

Secondly, it has combined discrete acceleration and personalised tiling to allow 

inclusive, faster and more extensive interaction.  Discrete acceleration has been shown 

to improve performance.  In addition, a flexible interface can be configured to suit each 

person, with targets positioned by either using the target test program or manually 

placing them as the participants wanted.  As a result, this research has extended 

effective interaction for some users to tasks beyond simple communication.  This was 

achieved with a reduced need for adjusting the Cyberlink™ settings before use.  BBIs 

for rehabilitation are still in their infancy, but we believe that our work could be the 

basis for their more widespread use in extensively extending the activities of severely 

impaired individuals.  This is seen as the main current viable application of BBIs, since 
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anyone who can use a more reliable and efficient alternative input device should do so. 

Thus it can be concluded that the performance of the BBI can be improved by the use 

of novel interaction paradigms. 

 

There were various challenges associated with the characteristics of these participants, 

such as individual disabilities and abilities, effect of medication on individual 

participants, attention span of an individual and emotions and frustrations when 

research is being carried out. The PDA interface gave the flexibility to address these 

issues. The PDA interface provided as essential facility to configure profiles with 

personalised timings and dimensions which catered for the needs of each participant. 

The doctors addressed the need for further medical assessment and the suitability of 

each participant. Hence the developed PDA interface was an inclusive interface that 

could be used by any brain-injured user, except comatose, severely visual impaired or 

individuals with adverse effect of daily medicine intake. The flexibility of the interface 

for personalised configuration to suit each individual gave the opportunity for grounded 

evidence based personalisation by the carers, parents/guardian and any support staff to 

improve the performance of the interface. The people around the brain-injured 

individuals had more knowledge of them than the researcher, and this knowledge was 

well utilised when configuring interfaces manually or using the automated processes. 

 

Another challenge faced was the type of novel interaction paradigms to be developed.  

Should it be a universal access, group or personalised interface? Can the developed 

interface offer a facility to re-configure the interface at any time, if the medical or 

physical condition of the user changes? The results from phase one and two of this 

research indicated that every brain-injured was an individual with no common attributes 

that could be grouped in any way, hence the PDA interface was chosen as the ultimate 

interface for this group of brain-injured individuals.  

 

There were various challenges faced when controlling the cursor driven by 

bio-potentials on a computer screen. The cursor had to be controlled in such a way it 

did not get stuck somewhere in the interface thus frustrating the user. This problem was 

addressed by the PDA interface which used tiles and a ‘Starting Area’ which delayed 

the user to a pre-configured time and also if the user did not reach the target in a 
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specified time the cursor was moved back to the ‘Starting Area’. Thus any possible 

frustration was dealt with using these techniques. Moving the cursor across a computer 

screen using low voltage bio-potentials (0 to 10 µV) is a slow process. A simple 

enhancement called discrete acceleration was introduced to push the cursor along the 

direction of travel thus improving the time to reach a target. Phase two of this 

investigation conducted studies to improve settings for the PDA interface so that a 

default interface could be produced that could be used as the initial interface for the 

brain-injured participants thus minimising training.  The designed interface was robust 

and portable to the field, and not just used in laboratory experiments, to enable realistic 

daily usage for communication. The developed interface also enabled independent 

carer-supported usage, enabling routine communications to take place in the 

brain-injured individual’s environment without the researcher being present.  



7.5. Contribution to Assistive Technology 
The application of novel interaction paradigms to this area of BBIs is an original 

contribution to knowledge. The results obtained showed that the performance of the 

BBI was improved by the use of novel interaction paradigms. This research extended 

the scope of BBIs, in terms of both the population who could use them and in terms of 

what some users could do with them.  Thus this research developed, evaluated and 

refined two new complementary approaches to provide means to communicate, recreate 

and carry out some simple tasks for people who would otherwise remain unable to 

perform any such activities and were classified as vegetative. These two paradigms 

could also be used with other BBIs to achieve similar results. The interfaces are by no 

means tied to Cyberlink™ only. These interfaces might also be used as diagnostic tools 

to distinguish between fully comatose and locked-in syndrome.   

 

There were three other contributions that were by-products of this research:  

• An interface for a brain-injured person to operate a robotic arm was developed 

and demonstrated at ICCIT' 2001 conference in New York (Gnanayutham et al.,  

2001). The interface could carry out some basic functions such as moving a cup 

to the mouth of a quadriplegic individual; 
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• A Soft-Keyboard for the disabled was developed and demonstrated at ICCHP 

2004 conference in Paris (Gnanayutham et al., 2004). This was an on-screen 

keyboard that can be used to type or convert text into sound using a BBI; 

• A Personalised Tiling Paradigm for Motor Impaired Users was developed and 

demonstrated at HCI International conference 2005 in Las Vegas 

(Gnanayutham, 2005). The developed interface enabled motor impaired users to 

navigate any computer screen in a controlled manner using the tiling paradigm.  

 

7.6. Possible Future work with PDA interfaces 
Vision impaired, comatose or individuals with adverse effects of daily medicine intake 

participants were the three groups of non-verbal quadriplegic brain-injured people who 

could not be included in this study. Comatose or individuals with adverse effects of 

daily medicine intake could not respond to any stimulus, but future work could include 

the vision impaired. This group of people might not be able to use their 

electrooculargraphic signals, but should be able to use their electroencephalalographic 

and electromyographic signals. Previous research with vision impairment shows that 

one way of including visually impaired non-verbal quadriplegic users will be to use 

musical guidance to direct them to the targets (Rigas & Alty, 1997). 

 

Use of interface agents to closely monitor user trends and change configuration 

parameters of the PDA could be considered as an enhancement in future. In the case of 

the PDA interaction paradigm, an adaptive interface could alter dimensions of target 

tiles and gap between tiles. It can also relocate the targets, change time on tiles, time in 

starting area and time to reach targets. The interface agent, after having monitored the 

user for a period of time, could make these changes.  There can always be a manual 

over-writing facility to over write any automatic changes made by the interface agent. 

Why should people have to adapt to a system, and should not the system adapt to 

people instead?   

 

The interface used in this research was developed only for the Cyberlink™. If it could 

be standardised in future to a standard like BCI2000 (a General-Purpose 

Brain-Computer Interface Application), then the PDA interface could be used with any 
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BBI. This influence of other BBIs using a PDA paradigm, could possibly further 

improve the performance of their interface. 

 

At present the text on the targets is fixed. Hence we have a vocabulary of two to six 

words per individual interface. In the future if we could have a provision for dynamic 

vocabulary selection, such as a target that opens into a list of words for the user to 

choose, we could increase the vocabulary of the communication tool by much more 

than six. Another area is the use of pictures instead of text. This might be the best 

communication media for some adults after brain injury or children who have brain 

injuries and cannot communicate using text.  

 

This research improved on the existing work of Doherty by developing a new 

interaction paradigm which could be fine-tuned using evidence based personalisation. It 

extended the scope of Brain-Body Interfaces, in terms of both the population who can 

use them and in terms of what users can do with them. The developed interaction 

paradigm was used for everyday communication by brain-injured individuals by means 

of independent usage. It improved control over the cursor extending the population of 

brain-injured who could use Brain-Body Interfaces, as well as the functionality that 

could be accessed through it.  This study created an inclusive interface which strives to 

accommodate all users, except the users with visual impairment, users in comatose or 

users with adverse effects caused by intake of medication. 

 

Thus research hypothesis: 

That the performance of the Brain-Body Interface can be improved by the use of 

novel interaction paradigms. 

was achieved in this research. The PDA interface was twenty times faster, reliable, 

inclusive and flexible than Doherty’s tunnel interface. The application of discrete 

acceleration and personalised tiling to Brain-Body Interfaces, was the original 

contribution to knowledge. This study took the BBI to the field and was not just a 

laboratory exercise. It also facilitated independent carer-supported usage of the BBI 

setup. Further research is being planned to develop an easy to use, portable BBI that 

could be left at hospitals, care homes and private homes where daily routine 

communications could be carried out. This study also contributed to Human Computer 
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Interaction with the methodology used in this research and also to Assistive 

Technology by the three by-products created en route towards proving the hypothesis.  
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Appendix 1 –   International 10-20 System 
  

 
 

Figure A1 1 – The International 10-20 System 

 

Figure A1 1 shows the location of electrodes on a head for the International 10-20 

System. The System has the following characteristics: 

• Even numbers- electrodes located on the right side of the head; 

• Odd numbers - electrodes on the left side;  

• The letter before the number indicates the general area of the cortex the 

electrode is located above: A stands for auricular, C for central, Fp for 

prefrontal, F for frontal, P for parietal, O for occipital and T for temporal; 

•  In addition, electrodes for recording vertical and horizontal 

(electrooculargraphic signals). Vertical electrooculargraphic electrodes are 

placed above and below an eye and horizontal electrooculargraphy electrodes 

are placed on the side of both eyes away from the nose.
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Appendix 2 –   Coordinates of the Cerebral Palsy Group 
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Figure A2 1 – Route taken to reach the target without Discrete Acceleration 
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With Discrete Acceleration Cerebral Palsy Group

0

500

1000

1500

2000

2500

3000

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000

X Coordinates of screen

Y
 C

o
o

rd
in

a
te

s
 o

f 
S

c
re

e
n

 
 

Figure A2 2 – Route taken to reach the target with Discrete Acceleration 
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Table A2 1 – With Discreet Acceleration Part A 
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Table A2 2 – With Discreet Acceleration Part B 
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Table A2 3 – Without Discreet Acceleration Part C 
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Table A2 4 – Without Discreet Acceleration Part A 
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Table A2 5 – Without Discreet Acceleration Part B 
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Table A2 6 – Without Discreet Acceleration Part C 
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Appendix 3 –    Data for optimising interface settings for phase three of the 
  research 

 

Please note the following when interpreting the results from the profiles tables: 

• Ten able-bodied participants; 

• Four profiles with 24 targets in each profile; 

• Time on ‘Starting Area’ = 0.1 minutes; 

• Maximum time to reach target = 1.0 minute; 

• Maximum time on each tile = 150 ms; 

• Blanking speed = 5 per second; 

• Maximum number of targets = 6; 

• No data in a cell indicated that the user did not reach the target; 

• Screen resolution 800 x 600. 

 

Table A3 1 – Profile 1 

Profile 1 - Data for Analysis (time in sec)     
           
Participant 35 36 37 38 39 40 41 42 43 44 
Target 1 10.861   4.810  17.076    17.357 
Target 2 23.409          
Target 3 6.102      14.388    
Target 4 16.710   4.349  16.324    0.580  
Target 5 3.045   1.415  2.529 4.795  1.276  0.211 
Target 6 6.224 4.665   0.740  8.765 1.820   9.175 
Target 7 4.614 15.111         
Target 8 25.540          
Target 9 5.615          
Target 10 5.415         8.892 
Target 11           0.759 
Target 12 15.148         14.245 
Target 13 4.965 1.817  5.690    1.930 3.530  0.455 
Target 14 3.024  2.107 1.505  5.745 3.575 3.411  7.662 
Target 15 5.930     5.685     
Target 16 8.437     14.393     
Target 17 28.740          
Target 18 10.685          
Target 19 15.840     13.466     
Target 20 50.013 1.135    5.895    10.031 
Target 21 5.063   10.869  2.545   5.179  0.667 
Target 22 5.555 4.459  3.711  3.479 6.620 1.227   
Target 23           
Target 24 21.673      13.955    
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Table A3 2 – Profile 2 

Profile 2 - Data for Analysis (time in sec)     
           
Participant 35 36 37 38 39 40 41 42 43 44 
Target 1  0.480 12.187   0.605  3.075 10.280   25.611 
Target 2 2.525 3.524     0.770 2.189   17.417 
Target 3 9.970      32.945   8.754 
Target 4 3.000       0.150   10.154 
Target 5     1.659 9.708  0.558 3.517   0.230 
Target 6 2.760    1.567 5.450 12.645   2.371 
Target 7 6.315      18.970   1.369 
Target 8 4.550    29.045  11.695   13.375 
Target 9 2.687      0.734 4.270  2.782 5.986 
Target 10 10.816    0.677  9.604 12.610   28.571 
Target 11 44.662    0.737  2.662 3.636   20.015 
Target 12 27.149 5.530    15.971  0.471   10.993 
Target 13 7.920    1.349 6.435  0.649    0.809 
Target 14 29.215     11.406 16.302    0.805 
Target 15 13.271   1.216   4.219   9.734 
Target 16 8.106   2.875  1.677 2.455   8.324 
Target 17 26.421  0.900  1.805  1.387 17.165  2.824 5.244 
Target 18 5.209 1.740    3.120 11.623  5.975 5.979 
Target 19 40.348 3.822    7.556 11.776   33.775 
Target 20 10.866   3.231  13.886  0.859   18.466 
Target 21 4.289    4.346  1.045   1.542 
Target 22 2.533   1.464  7.573 4.006   1.673 
Target 23 3.657    1.010  16.881   14.188 
Target 24      1.918    15.097 
 

 

 

 

 

 

 

 

 

 

 

 

 



 xii 
 
 

 
 

Table A3 3 – Profile 3 

Profile 3 - Data for Analysis (time in sec)     
           
Participant 35 36 37 38 39 40 41 42 43 44 
Target 1  4.882     3.625    
Target 2 3.730      8.538    

Target 3 5.202 6.349         
Target 4 4.130          
Target 5 5.475 3.260     0.185    
Target 6       1.838    
Target 7 5.080      3.477    
Target 8       1.331    
Target 9 4.756      11.825 0.667   
Target 10 2.481          
Target 11       13.040 2.104   
Target 12  5.452         
Target 13 5.510 3.586     0.496 4.227   
Target 14       2.368 0.877   
Target 15 3.284      1.258    
Target 16       14.326    
Target 17 3.993      4.003    
Target 18  3.205     14.893    
Target 19 1.501          
Target 20 3.162      0.965    
Target 21 2.028 3.471     2.129    
Target 22 1.178 5.595     0.945    
Target 23       2.166    
Target 24       11.372    
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Table A3 4 – Profile 4 

Profile 4 - Data for Analysis (time in sec)     
           
Participant 35 36 37 38 39 40 41 42 43 44 
Target 1  0.448      39.804    
Target 2 2.943      15.975    
Target 3 1.176      3.702    
Target 4 3.260      2.915    
Target 5 4.494      0.135    
Target 6       0.448    
Target 7 2.478      22.637    
Target 8 1.876      10.383    
Target 9  0.809      29.262    
Target 10  0.619      6.415    
Target 11       2.542    
Target 12       4.141    
Target 13 2.587      1.193    
Target 14 5.355      0.545    
Target 15 3.037      1.059    
Target 16       49.369    
Target 17  0.615      4.298    
Target 18 4.825      3.675    
Target 19 3.586      10.060    
Target 20 3.224      24.180    
Target 21 3.017      5.478    
Target 22 2.805      0.829    
Target 23 5.585      23.086    
Target 24 4.121       9.24    
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Appendix 4 –   Brain Injury Assessments and Diagnostic Tests 
Patients with brain injury require frequent assessments and diagnostic tests (Sears 

and Young 2003). These include:  

• Neurological Exam: A series of questions and simple commands to see if the 

patient can open their eyes, move, speak, and understand what is going on 

around them, e.g. a standard way to describe patient responses may be used 

(Roy, 2004). Most hospitals use the Glasgow Coma Scale (very useful for 

predicting early outcome from a head injury, e.g. whether the person will 

survive) or Rancho Levels of Cognitive Functioning (have proven more 

valuable for predicting later outcomes of head injuries); 

• CT (Computed Tomography) Scan: An X-ray that takes pictures of the brain 

or other parts of the body from different angles (Beers, 2003); 

• MRI (Magnetic Resonance Imaging) Scan: Magnetism is used, instead of 

X-rays, to take pictures of the body’s tissues (Owen et al., 2005, Coleman,  

2005, Kitamura et al., 2003);  

• MRA (Magnetic Resonance Angiogram): A test to look at the blood vessels 

in the brain and neck. (Beers, 2003); 

• ICP Monitor: A small tube placed into or just on top of the brain through a 

small hole in the skull. This will measure the pressure inside the brain called 

intracranial pressure (Brettler, 2004); 

• EEG (Electroencephalograph): A test to measure electrical activity in the 

brain (Chatrian et al., 1996, Kostov & Polak, 1997b, Kotchoubey et al., 1997); 

• Spinal Cord Disruption: A head injury can be caused by damage to the spinal 

cord. Different injuries and degrees of spinal cord damage can be categorised by 

ASIA Impairment Scale (Dawodu, 2001); 

• PET (Positron Emission Tomography): A test of brain functions using 

radioactive molecules (Beers, 2003, Owen et al., 2005, Coleman, 2005);  

• Magnetoencephalography (MEG) is the study of visual evoked brain activity 

in the human fetuses (Eswaran, 2002a, 2002b); 

• Near-infrared brain imaging is the newest of a series of non-invasive methods 

for studying human brain function. It offers the possibility of combining 

neuronal and hemodynamic measures of brain changes in response to cognitive 

demands (Fabiani & Gratton, 2005). 
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Appendix 5 –   Recommendations and Standard for Monitoring Brain Injury 
There are various recommendations and standards for monitoring comatose and 

other unresponsive states (Chatrian et al., 1996) such as: 

• Detecting electroencephalographic signal (EEG), for a short period of thirty 

minutes or continuous monitoring of the electroencephalalographic signals. 

EEG is measured with electrodes on the scalp. The pattern of changes in the 

signals reflects some brain activity; for example the occurrence of certain 

kinds of oscillation patterns is known to be correlated with certain vigilance 

states of the subject.  (Niedermeyer, 1987); 

• Detecting signals when a person concentrates on an object termed evoked 

potential (EP) also called event-related brain potential (ERP). P300 signal 

(Kalat, 1995) is also a form of evoked potential (Donchin et al., 2000). A 

signal termed N400 (negative potential) can also be elicited by faces and 

knowledge inhibition (activation of a visual or auditory word representation 

would induce the activation of knowledge). ERPs were recorded with a 

longitudinal and a transverse branch of w x electrodes placed according to 

the 10–20 system (Debruille et al., 1996);  

• Obtaining signals when users can indicate their interest in specific stimuli 

by choosing to attend or ignore it. Steady-State Visual Evoked Potential or 

SSVEP (Cheng et al., 2002); 

• Monitoring respiration, limb and body movements using stimuli applied to 

cardiac pace maker electrodes, termed electrocardiogram or ECG  

(Strum, 2002); 

• Detecting limb and body movements (Fridlund, 1994, Berkow et al., 1997) 

termed Electromyography (EMG); 

• Detecting eye movements (Knapp et al., 1995) termed electrooculargraphy 

(EOG); 

• Detecting mental natural activity such as motor imagery (Pfurtscheller & 

Neuper, 2001); 

• Detecting activity recorded from the cortical surface, termed 

electrocochleography (ECoG), which has a higher spatial resolution than 

electroencephalalographic signals (Lal et al., 2005).
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Appendix 6 –   Glossary 
 

Assistive technology Device - Any assistive, adaptive or rehabilitative device that 
enables independence for the disabled  
 
Bio-potential  - an electrical potential that is measured between points in living 
cells, tissues and organisms. 
 
Brain-Body Interface (BBI) - is a real-time communication system designed to 
allow a user to voluntarily send messages without sending them through the brain’s 
normal but only using bio-signals from the brain 
 
Comatose - condition after a traumatic brain injury, which makes people 
completely paralysed, unable to speak or respond to anything  
 
Cyberlink™ - a BBI Brain-Body Interface (manufactured by Brain Actuated 
Technologies) that detects bio-potentials using three silver chloride plated, carbon 
filled, plastic sensors in a headband and sends it to the interface unit 
 
Discrete Acceleration - a paradigm that pushes the cursor in the direction of travel 
 
Electroencephalalography (EEG) - Electroencephalalography measures electrical 
brain activity that results from thoughts or imagined movements 
 
Electromyography (EMG) - Electromyography measures an electrical signal 
resulting from a contracted muscle 
 
Electrooculargraphy (EOG) - Electrooculargraphic signals are low frequency 
signals derived from the resting potential (Corneal-Retinal Potential) by ocular or 
eyeball movements 
 
Evoked Potential (EP) - a signal detected in the electroencephalalographic range is 
the evoked potential, also known as an event related brain potential (ERP), e.g. 
P300 and N400 
 
Interaction paradigm  - a pattern underlying an open family of interaction 
techniques that exploit common knowledge of effective user interface features 
 
Invasive Brain-Body Interface - signals obtained by surgically inserting probes 
inside the brain 
 
Local Field Potential (LFP) - signals in a human frontal cortex using implanted 

microwires in the sensorimotor regions of the neocortex. 
 
Locked-in syndrome - condition after a traumatic brain injury, which makes 
people completely paralysed, unable to speak or respond to anything, but are 
cognitively intact. 
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Low Frequency Asynchronous Switch Design (LF-ASD) - a low-frequency 
asynchronous switch design is based on electroencephalalographic signals in the 
1 - 4 Hz frequency range 
 
Non-invasive Brain-Body Interface - electrodes placed externally on part of the 
body 
 
PDA - a personalised interfaces using discrete acceleration 
 
Slow Cortical Potentials (SCP) - Slow cortical potentials are signals of the 
cerebral cortex, which can be collected from the scalp surface 
 
Steady-State Visual Evoked Potential (SSVEP)/ Steady State Visual Evoked 
Responses (SSVER) - responses obtained when users can indicate their interest in 
specific stimuli by choosing to attend or ignore it 
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