
Downloaded from: http://sure.sunderland.ac.uk/id/eprint/3810/

Usage guidelines

Please refer to the usage guidelines at http://sure.sunderland.ac.uk/policies.html or alternatively contact sure@sunderland.ac.uk.
Graphical abstract

Synthesis and evaluation of halogenated nitrophenoxazinones as nitroreductase substrates for the detection of pathogenic bacteria

Alexandre F. Bedernjak,a Paul W. Groundwater,b Mark Gray,a Arthur L. James,c Sylvain Orenga,d John D. Perrye and Rosaleen J. Andersona*

aSunderland Pharmacy School, University of Sunderland, Sunderland SR1 3SD, UK; bPresent address: Faculty of Pharmacy, The University of Sydney, Sydney NSW 2006, Australia; cSchool of Life Sciences, Northumbria University, Newcastle upon Tyne NE1 8ST, UK; dDepartment of Microbiology, bioMérieux, 38390 La Balme-les-Grottes, France; eDepartment of Microbiology, Freeman Hospital, Newcastle upon Tyne NE7 7DN, UK
Synthesis and evaluation of halogenated nitrophenoxazinones as nitroreductase substrates for the detection of pathogenic bacteria

Alexandre F. Bedernjak,a Paul W. Groundwater,b Mark Gray,a Arthur L. James,c Sylvain Orenga,d John D. Perrye and Rosaleen J. Anderson*a*

*aSunderland Pharmacy School, University of Sunderland, Sunderland SR1 3SD, UK; bPresent address: Faculty of Pharmacy, The University of Sydney, Sydney NSW 2006, Australia; cSchool of Life Sciences, Northumbria University, Newcastle upon Tyne NE1 8ST, UK; dDepartment of Microbiology, bioMérieux, 38390 La Balme-les-Grottes, France; eDepartment of Microbiology, Freeman Hospital, Newcastle upon Tyne NE7 7DN, UK

Corresponding author:
Rosaleen J. Anderson
Sunderland Pharmacy School,
Science Complex
University of Sunderland
Sunderland, SR1 3SD, United Kingdom
roz.anderson@sunderland.ac.uk
Tel: 0044191 515 2591
Abstract

The synthesis and microbiological evaluation of 7-, 8- and 9-nitro-1,2,4-trihalogenophenoxazin-3-one substrates with potential in the detection of nitroreductase-expressing pathogenic microorganisms are described. The 7- and 9-nitrotrihalogenophenoxazinone substrates were reduced by most Gram negative microorganisms and were inhibitory to the growth of certain Gram positive bacteria; however, the majority of Gram positive strains that were not inhibited by these agents, along with the two yeast strains evaluated, did not reduce the substrates. These observations suggest there are differences in the active site structures and substrate requirements of the nitroreductase enzymes from different strains; such differences may be exploited in the future for differentiation between pathogenic microorganisms. The absence of reduction of the 8-nitrotrihalogenophenoxazinone substrates is rationalized according to their electronic properties and correlates well with previous findings.

Keywords: Chromogenic substrates; Nitroreductase; Phenoxazinones; Microbial identification

1. Introduction

The ability of nitroreductase and other enzymes to reduce an aromatic nitro group to the corresponding hydroxylamine and/or amine is of significant interest, with great potential for biomedical, biocatalyst and bioremediation applications.1-4 For example, the reduction of a nitroaromatic prodrug by a bacterial nitroreductase is central to the GDEPT anticancer therapeutic approach,5,6 for which the mechanism of the \textit{Escherichia coli} nitroreductase activation has been elucidated.7

Nitroreductase enzymes have been subdivided into two different classes,8,9 namely type I and type II nitroreductases, based on their relative sensitivity to oxygen. The type I nitroreductases are oxygen insensitive and can reduce nitro compounds to their corresponding amines \textit{via} the nitroso and hydroxylamine intermediates, using a two electron transfer mechanism.9-11 With the type II nitroreductases, which are oxygen sensitive, the reduction of nitro groups is initiated \textit{via} a single electron transfer process, forming a nitro radical anion, which either
accepts a second electron to form the nitroso intermediate and then follows the two electron reduction process, or is rapidly reoxidised to a nitro group in the presence of oxygen.8,9

The widespread distribution of nitroreductase enzymes in pathogenic bacteria and yeasts offers the potential to enhance the detection of such microorganisms in both clinical and food applications.11,12 The successful detection of pathogenic bacteria as a result of their nitroreductasc activity has been demonstrated in over thirty Gram negative and Gram positive microorganisms,11 using the fluorogenic 7-nitrocoumarin-3-carboxylic acid 1a or 7-nitro-4-methylcoumarin 1b (Figure 1). These compounds emit a strong fluorescent signal upon exposure to U.V. light ($\lambda = 365$nm) after incubation with the bacteria. Moreover, other fluorogenic compounds, such as the 4-nitrobenzylcarbamate derivatives of 7-aminocoumarins,13 and derivatives of nitrobenzoxazole 2a, nitrobenzothiazole 2b and nitrobenzimidazole 2c (Figure 1), were also shown to respond to nitroreductase activity, although with greater selectivity for Gram negative bacteria.14,15 The extension of this approach to chromogenic nitroaromatic substrates, including derivatives of 4-(4'-nitrostyryl)-pyridine 3a,16 4-(4'-nitrostyryl)-quinoline 3b17 and 2-(4'-nitrostyryl)-benzothiazole 3c18 (Figure 1), suggests a general application of nitroreductase enzyme substrates as detection agents, particularly for Gram negative pathogenic bacteria. It is interesting to note that more spatially compact nitroreductase substrates, such as nitrobenzenes and nitrocoumarins 1a and 1b,11,13 are reduced by a wider range of both Gram negative and Gram positive bacteria, while the more bulky nitroaromatic substrates, for example, the nitrobenzoxazole 2a, nitrobenzothiazole 2b and nitrobenzimidazole 2c derivatives, are less well reduced by the Gram positive bacteria,14-18 which may suggest differences in the active sites of Gram negative nitroreductases compared to those of Gram positive bacteria.

\textbf{Figure 1.} Examples of established fluorogenic and chromogenic nitroreductase substrates.
We previously reported the synthesis and the microbiological evaluation of the chromogenic 7-aminophenoxazinones 4 and their corresponding aminopeptidase substrates, which indicate the presence of certain bacteria by the intense colour released upon bacterial enzymatic action.\(^{19}\) By analogy, the corresponding 7-nitrophenoxazinone was a desirable target substrate as a potential marker of nitroreductase activity. Herein we report the preparation and evaluation of 7-, 8- and 9-nitro-1,2,4-trihalogenophenoxazin-3-ones 5-7, (Figure 2), for their ability to detect pathogenic microorganisms through nitroreductase activity.

Figure 2. 7-Aminophenoxazin-3-one chromogens 4 and nitrotrihalogenophenoxazinones 5-7.

2. Results and discussion

2.1 Synthesis

The nitrotrihalogenophenoxazinones were synthesized using the route described previously for the synthesis of 7-nitrohalogenophenoxazinones 5b, 5c and 8-nitro-1,2,4-trichlorophenoxazinone 6b\(^{20}\) without modification. With the availability of several 2-aminonitrophenol isomers, the opportunity was taken to include the synthesis of 8-nitro and 9-nitrophenoxazinones in this study. Following the general procedure, 2-aminonitrophenols 8-10 were condensed with tetrahalogeno-1,4-benzoquinones 11a-c in an ethanolic solution containing sodium acetate (Scheme 1). 7-Nitro 5a-c, 8-nitro 6a-c and 9-nitro-1,2,4-trihalogenophenoxazin-3-ones 7a,b were isolated in low to high yield (Table 1). The formation of the desired products was confirmed mostly by \(^{13}\)C NMR spectroscopy, with the characteristic C-F coupling observed in the \(^{13}\)C NMR spectra of fluorinated nitrophenoxazin-3-ones 5a, 6a and 7a assisting the characterization of these novel products.
Scheme 1. Synthesis of nitro-1,2,4-trihalogenophenoxazin-3-ones 5-7. Reagents and conditions: i) EtOH, NaOAc, RT.

Table 1. Yields of synthesized nitrohalogenophenoxazin-3-ones substrates 5a-c, 6a-c and 7a,b

<table>
<thead>
<tr>
<th>Compound</th>
<th>Nitro group position</th>
<th>X</th>
<th>Yield (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>5a</td>
<td>7-</td>
<td>F</td>
<td>12</td>
</tr>
<tr>
<td>5b</td>
<td>7-</td>
<td>Cl</td>
<td>90</td>
</tr>
<tr>
<td>5c</td>
<td>7-</td>
<td>Br</td>
<td>95</td>
</tr>
<tr>
<td>6a</td>
<td>8-</td>
<td>F</td>
<td>39</td>
</tr>
<tr>
<td>6b</td>
<td>8-</td>
<td>Cl</td>
<td>99</td>
</tr>
<tr>
<td>6c</td>
<td>8-</td>
<td>Br</td>
<td>72</td>
</tr>
<tr>
<td>7a</td>
<td>9-</td>
<td>F</td>
<td>15</td>
</tr>
<tr>
<td>7b</td>
<td>9-</td>
<td>Cl</td>
<td>45</td>
</tr>
</tbody>
</table>

The synthesis of fluorinated derivatives 5a, 6a and 7a proved to be problematic and all were isolated in poor yield, along with a highly insoluble solid, suspected to be triphenodioxazines 12a-c, respectively. Spectroscopic evidence for structure 12a was obtained alongside nitrophenoxazinone 5a. Mital and Jain have described the formation of triphenodioxazines under conditions similar to those described here (Scheme 1).²¹

A reaction mechanism for an analogous condensation of various aminophenols with 2,3-dichloro-1,4-naphthoquinone in an ethanolic solution containing sodium or potassium acetate has been reported by Agarwal and Schäfer.²² Deprotonation of the nitroaminophenol 8-10 is followed by a 1,4-Michael-type nucleophilic attack of the resulting phenoxide on
tetrahalogenobenzoquinone 11a-c, resulting in the formation of the corresponding 2-phenoxy-3,5,6-trihalogenoquinones 13a-c, 14a-c and 15a,b. These intermediates then undergo ring closure to form the nitro-1,2,4-trihalogenophenoxazin-3-ones 5a-c, 6a-c and 7a,b (Scheme 2).

Scheme 2. Suggested mechanism for the formation of nitrohalogenophenoxazin-3-ones 5a-c, 6a-c and 7a,b.

2.2 Microbiological evaluation

The chromogenic substrates 5-7 were evaluated for their suitability as nitroreductase substrates for the detection of microbial nitroreductase activity. The reduction of the weakly coloured compounds 5-7 by an unspecified nitroreductase was expected to produce the corresponding, intensely coloured, aminophenoxazin-3-ones 16a-c, 17a-c and 18a,b. This would result in a dramatic and readily visualised change in colour at the site of reduction (Scheme 3).

Scheme 3. Expected nitroreductase enzyme activity and reduction of substrates 5a-c, 6a-c and 7a,b.
Conditions: i) Bacterial nitroreductase enzymatic activity.
The halogenated nitrophenoxazin-3-ones 5-7 were evaluated for their suitability as nitroreductase substrates with a range of pathogenic microorganisms from the National Collection of Type Cultures (London, UK) and from the Freeman Hospital Microbiology Department (Newcastle upon Tyne, UK), including ten Gram negative and eight Gram positive strains and two yeasts (Table 2). All of these microorganisms had previously been shown to express nitroreductases and to have the ability to reduce a nitro-substituted aromatic fluorogenic compound.11

Table 2. Reduction of substrates 5-7 by selected clinically relevant Gram positive and Gram negative bacteria, and yeasts.

<table>
<thead>
<tr>
<th>Substratea 5a 5b 5c 6a 6b 6c 7a 7b</th>
<th>Bacterial Strain</th>
<th>Reference</th>
<th>Visualization of colouration after 24 hoursb</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gram negative bacteria</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1 Escherichia coli</td>
<td>NCTC 10418</td>
<td>+c</td>
<td>+ + - - - + +</td>
</tr>
<tr>
<td>2 Serratia marcescens</td>
<td>NCTC 10211</td>
<td>+</td>
<td>+ + - - - + +</td>
</tr>
<tr>
<td>3 Pseudomonas aeruginosa</td>
<td>NCTC 10662</td>
<td>+</td>
<td>+ - - - - + -</td>
</tr>
<tr>
<td>4 Burkholderia cepacia</td>
<td>LMG 1222</td>
<td>-</td>
<td>- - - - - -</td>
</tr>
<tr>
<td>5 Yersinia enterocolitica</td>
<td>NCTC 11176</td>
<td>+</td>
<td>- - - - - -</td>
</tr>
<tr>
<td>6 Salmonella typhimurium</td>
<td>NCTC 74</td>
<td>+</td>
<td>+ + - - - + +</td>
</tr>
<tr>
<td>7 Citrobacter freundii</td>
<td>Wild type 46262</td>
<td>+</td>
<td>+ - - - - - + +</td>
</tr>
<tr>
<td>8 Morganella morganii</td>
<td>Wild type 462403</td>
<td>+</td>
<td>+ + - - - + +</td>
</tr>
<tr>
<td>9 Enterobacter cloacae</td>
<td>NCTC 11936</td>
<td>+</td>
<td>+ + - - - + +</td>
</tr>
<tr>
<td>10 Providencia rettgeri</td>
<td>NCTC 7475</td>
<td>+</td>
<td>+ + - - - + +</td>
</tr>
<tr>
<td>Gram positive bacteria</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>11 Bacillus subtilis</td>
<td>NCTC 9372</td>
<td>NGd</td>
<td>- - NG - - -NG</td>
</tr>
<tr>
<td>12 Enterococcus faecalis</td>
<td>NCTC 775</td>
<td>-</td>
<td>- - NG - - - +</td>
</tr>
<tr>
<td>13 Enterococcus faecium</td>
<td>NCTC 7171</td>
<td>-</td>
<td>- - NG - - - +</td>
</tr>
<tr>
<td>14 Staphylococcus epidermidis</td>
<td>NCTC 11047</td>
<td>NG</td>
<td>NG NG NG - NG</td>
</tr>
<tr>
<td>15 Staphylococcus aureus (MRSA)</td>
<td>NCTC 11939</td>
<td>NG</td>
<td>- - NG - - - +</td>
</tr>
<tr>
<td>16 Staphylococcus aureus</td>
<td>NCTC 6571</td>
<td>NG</td>
<td>NG NG NG - -</td>
</tr>
<tr>
<td>17 Streptococcus pyogenes</td>
<td>NCTC 8306</td>
<td>NG</td>
<td>NG NG NG - NG</td>
</tr>
<tr>
<td>18 Listeria monocytogenes</td>
<td>NCTC 11994</td>
<td>+</td>
<td>- - - - - -</td>
</tr>
<tr>
<td>Yeasts</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>19 Candida albicans</td>
<td>ATCC 90028</td>
<td>-</td>
<td>- - NG - - - +</td>
</tr>
<tr>
<td>20 Candida glabrata</td>
<td>NCPF 3943</td>
<td>-</td>
<td>- - NG - - - +</td>
</tr>
</tbody>
</table>

aEach substrate was tested at a concentration of 50 mg/L.
None of the substrates were toxic to the Gram negative bacteria and growth was observed in the presence of all substrates; however, toxicity was observed towards some of the Gram positive bacteria and yeasts, resulting in the inhibition of the growth of these organisms. The most toxic substrate was 8-nitro-1,2,4-trifluorophenoxazin-3-one 6a, which was universally toxic to all Gram positive bacteria and the yeasts, while 9-nitro-1,2,4-trifluorophenoxazin-3-one 7a was toxic to most of these strains and 7-nitro-1,2,4-trifluorophenoxazin-3-one 5a also exhibited toxicity across many of the Gram positive bacteria. The growth of the two Enterococcal strains tested and *Listeria monocytogenes* (No. 18) was not inhibited by any of the substrates except 6a. The trifluorinated derivatives 5a, 6a and 7a were the most toxic compounds in the series.

Most Gram negative bacteria successfully reduced substrates 5a-c and substrates 7a,b. The enzymatic activity was witnessed by the generation of a red to orange colouration in the bacterial colonies for substrates 5a-c, brown for substrate 7a and lilac for substrate 7b. The most encouraging results were obtained with 7-nitro-1,2,4-trifluorophenoxazinone 5a, as this substrate produced the brightest and most strongly contrasting colour in the bacterial colonies, with minimal diffusion into the medium (*Figure 3*). Absence (or low diffusion) of the reduced substrate in the medium is essential for distinction and accurate localization of individual bacterial colonies expressing nitroreductase enzymes when several microorganisms are present in the culture medium.
Figure 3. (a) Inoculation pattern, referenced to the numbers of strains in Table 2; (b) Screening of 7-nitro-1,2,4-trifluorophenoxazinone 5a with ten Gram negative and eight Gram positive bacterial strains, and two yeasts.

None of these substrates were reduced at all by *Burkholderia cepacia* (No. 4), which can also metabolise certain nitroaromatic compounds, such as 2,4-dinitrotoluene, by an alternative defined oxidative pathway, leading to oxidative cleavage of the aromatic system. Burkholderia species exhibit high level intrinsic resistance to many antibacterial agents, even to colistin and gentamicin, due to their particularly impermeable membrane, so these substrates may not even reach the cytoplasm, where nitroreductase activity would be expected to occur. *Burkholderia cepacia* (No. 4) was the only Gram negative strain that did not reduce 7-nitro-1,2,4-trifluorophenoxazin-3-one 5a and thus distinguishes this bacterium from the other pathogenic strains tested. This substrate 5a also differentiates *Listeria monocytogenes* (No. 18) from the other Gram positive strains, being the only substrate reduced by this bacterium.

The chlorinated and brominated derivatives of 7-nitrophenoxazinone 5b and 5c and the chlorinated derivative of 9-nitrophenoxazinone 7b are able to differentiate MRSA (No. 16) from β-lactam susceptible *Staphylococcus aureus* (No. 15) and *Staphylococcus epidermidis* (No. 14); of these three strains, only MRSA was not inhibited by substrates 5b, 5c and 7b. Although few of the Gram positive bacteria and the yeasts were unable to reduce the nitro
substrates, it was not due to a lack of expression of nitroreductase, as it has been previously shown that they reduce other nitroreductase substrates.11

The three 8-nitrophenoxazinone substrates 6a-c were not reduced by nitroreductases from Gram negative bacteria, unlike their analogues 5a-c and 7a,b, despite good bacterial growth (Table 2). Catalytic reduction of the 8-nitrophenoxazinones 6a-c using hydrogen and either Pd/C or PtO2, followed by re-oxidation of the initial aminophenol product (19a-c) with manganese (IV) oxide, produced deeply coloured 8-aminophenoxazinones (17a-c), of which the most soluble example, 1,2,4-trifluoro-8-aminophenoxazin-3-one 17a, was isolated and characterized (Scheme 4). The lack of any colour after incubation of the 8-nitrophenoxazinones 6a-c with bacteria thus provides evidence that the three compounds were not substrates for nitroreductase activity.

Scheme 4. Catalytic reduction of 8-nitrophenoxazinones 6a-c and oxidation of the resulting aminophenols 19a-c to 8-aminophenoxazinones 17a-c.

Reagents and conditions: i) H2, Pd/C 10% or PtO2, EtOAc : MeOH (1:1); ii) MnO2, MeOH.

*aUsed for the reduction of 6c.

Early work by McCormick28 and later studies by Kitamura,29 testing a wide range of variously substituted nitrocompounds for their suitability as nitroreductase substrates, showed that the position of the nitro group with respect to other substituents, alongside their electronic properties, is a determining factor in the bacterial reduction of nitroaromatic compounds. For example, nitroreductase activity was generally higher for nitrobenzenes bearing a para-electron withdrawing group. Consideration of the substituents at the para-position to the nitro group in each of the present substrates reveals that compounds 5a-c, with the nitro group in the 7-position, have the electron withdrawing quinone-imine system in the para-position. In compounds 7a,b, the 9-nitro group is conjugated at the ortho-position to the quinone-imine system and C9 may be considered to be similarly electron deficient to C7 in 5a-c. Conversely, in compounds 6a-c, the 8-nitro group is para to the potentially electron releasing ether
Overall then, the electron density at C8 in the case of substrates 6a-c can be expected to be considerably higher than C7 and C9 in the case of substrates 5a-c and 7a,b, respectively. The electron withdrawing effect of the quinone-imine portion of the phenoxazinone ring affects the 7- and 9-positions primarily and would thus be expected to facilitate the reduction of substrates 5 and 7 (Scheme 5), the oxygen bridging atom can contribute to some extent to the higher electron density at the 8-position, thereby reducing the propensity for reduction of substrates 6a-c (Scheme 5).

Scheme 5. Key resonance forms that contribute to differentiation of nitroreductase activity in (a) 7-nitrohalogenophenoxazin-3-ones 5a-c, and (b) 8-nitrohalogenophenoxazin-3-ones 6a-c

The 13C NMR data provide support for these electronic differences (Table 3): in compounds 5a-c and 7a,b, the chemical shifts of C7 and C9, respectively, show greater deshielding than C8 of the corresponding halogenated compounds 6a-c.

Table 3. 13C NMR data for C-NO$_2$ of nitrotrihalogenophenoxazin-3-ones 5a-c, 6a-c, and 7a,b

<table>
<thead>
<tr>
<th>Compound</th>
<th>C-NO$_2$</th>
<th>a X = F</th>
<th>b X = Cl</th>
<th>c X = Br</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>C7</td>
<td>149.1</td>
<td>(147.9a)</td>
<td>149.8</td>
</tr>
<tr>
<td>6</td>
<td>C8</td>
<td>145.2</td>
<td>(143.4a)</td>
<td>145.3</td>
</tr>
<tr>
<td>7</td>
<td>C9</td>
<td>147.8</td>
<td>(146.4a)</td>
<td>147.8</td>
</tr>
</tbody>
</table>

a NMR solvent was THF-d$_8$.

b N.D.: not done.

These observations correlate well with Kitamura’s experiments29 and help to explain the absence of visible reduction for substrates 6a-c, while substrates 5a-c and 7a,b were reduced to some extent.
3. Conclusions

Although some substrate selectivity has been previously observed with the nitroreductase from the food and gastrointestinal bacterium, *Lactobacillus plantarum*\(^{30}\), the differences in the reduction of the substrates, particularly by the bacteria used in the current work, suggest that, rather than detecting a wide range of Gram negative and Gram positive microorganisms, nitroreductase activity on substituted 7- or 9-nitrophenoxazinones could be used to distinguish certain pathogenic strains. Furthermore, differences in the nitroreductase enzymes, or in the nitro group metabolic pathways, between strains can be inferred by the variations in reduction of a particular nitroaromatic substrate.

The 8-nitro-1,2,4-trihalogenophenoxazin-3-ones 6a-c proved to be unsuitable for the detection of bacterial nitroreductase; the electronic factors associated with the position of the 8-nitro group on the phenoxazin-3-one ring appear to be very unfavourable for enzymatic reduction. These observations correlate with results previously published.\(^{28,29}\)

7-Nitro-1,2,4-trihalogenophenoxazin-3-ones 5a-c and 9-nitro-1,2,4-trihalogenophenoxazin-3-ones 7a,b showed positive results for the general detection of Gram negative bacterial nitroreductase, excepting *Burkholderia cepacia*, which was distinguished by its lack of reduction of 7-nitro-1,2,4-trifluorophenoxazin-3-one 5a. Exploration and exploitation of the differences in substrate structure and properties, such as replacement of the halogen atoms by other substituents, could reduce the toxicity of the substrates and improve enzymatic reduction. Such modifications could also assist in distinguishing pathogenic strains by conferring even greater selectivity for the nitroreductase enzymes of particular microorganisms.

4. Experimental section

4.1. General methods

All commercially available reagents and solvents were obtained from Sigma-Aldrich, Fluka or Riedel-de-Haan and were used without further purification. Melting points were recorded on a Reichart-Kofler hot-stage microscope apparatus and are uncorrected. Infrared spectra were recorded in the range 4000 – 600 cm\(^{-1}\) using a Perkin Elmer Spectrum BX FT-IR instrument with internal calibration and a Pike sampling system. NMR spectra were obtained using a Bruker Ultrasound 300 spectrometer at 300 MHz for \(^1\)H spectra, 75 MHz for \(^{13}\)C
spectra or at 282 MHz for 19F spectra or a Bruker Ultrashield 500 spectrometer at 500 MHz for 1H spectra or at 125 MHz for 13C spectra. High-resolution mass spectra were obtained from the EPSRC National Mass Spectrometry Facility Swansea, using a Thermofisher LTQ Orbitrap XL. Elemental analyses were performed using an Exeter Analytical CE-440 Elemental Analyzer.

4.2. Synthesis of nitrohalogenophenoxazin-3-ones 5-7: general procedure20,31

2-Aminonitrophenol 8-10 (1 mol equivalent), p-tetrahalogenobenzoquinone 11a-c (1.1 mol equivalent) and sodium acetate (1.2 mol equivalent) were suspended in ethanol. The solution was stirred for 24 hours or until no more 2-aminonitrophenol was detected by TLC. For the brominated and chlorinated derivatives, a red precipitate progressively appeared as the reaction neared completion. Water was then added to precipitate completely the red solid out of solution. The solid was recovered by filtration and washed with water and a little ethanol, then either recrystallised from acetic acid or purified by column chromatography.

4.2.1. 7-Nitro-1,2,4-trifluoro-33H-phenoxazin-3-one (5a) and 3,10-dinitro-6,13-difluorotriphenodioxazine (12a).

The title compounds were prepared from p-fluoranil 11a (1.90 g, 10.57 mmol) and 2-amino-5-nitrophenol 8 (1.42 g, 9.61 mmol) according to the general procedure. Water (100 mL) was added to the reaction mixture and the resulting mixture was extracted with EtOAc (3 × 60 mL). The emulsion was filtered through a sintered funnel and the insoluble residue was washed several times with EtOAc, giving 12a as a dark violet solid (1.91 g, 4.63 mmol, 48%). Dark violet microcrystalline solid was obtained from nitrobenzene, mp: 315°C (dec.); (found: (MH)$^+$, 413.0324. Calc. for C$_{18}$H$_7$F$_2$N$_4$O$_6$: (MH)$^+$, 413.0328); ν_{max}/cm$^{-1}$ 3104 (C-H), 1622 (C=N), 1595 and 1579 (C=C), 1515 and 1332 (NO$_2$). The aqueous layer was discarded and the combined EtOAc filtrates and layers were washed with water (150 mL) and brine (150 mL), and dried (MgSO$_4$). The solvent was removed in vacuo and the residue subjected to column chromatography on silica, eluting with petroleum ether 60-80°C : EtOAc (80 : 20). 5a was isolated as a dark purple solid (0.35 g, 1.19 mmol, 12%). Dark red-purple needle-like crystals were obtained from glacial acetic acid, mp: 218-220°C; (found: C, 48.5; H, 1.05; N, 9.15%. C$_{12}$H$_3$F$_3$N$_2$O$_4$ requires C, 48.7; H, 1.0; N, 9.5%); (found: (MH)$^+$, 297.0118. Calc. for C$_{12}$H$_4$F$_3$N$_2$O$_4$: (MH)$^+$, 297.0118); ν_{max}/cm$^{-1}$ 3104 (C-H), 1660 (C=O), 1596 (C=C), 1531 and 1312 (NO$_2$), 1003 (C-F); δH (300 MHz, THF-d$_8$) 6.41 (1H, d, J = 8.7 Hz, 9-H), 6.58 (1H, dd, J = 8.7, 2.4 Hz, 8-H), 6.74 (1H, d, J = 2.4 Hz, 6-H); δC (75 MHz, THF-d$_8$) 110.3 (CH, 6-C), 118.6 (CH, 8-C), 129.4 (CH, 9-C), 130.1 (quat., ddd, J = 8.5, 5.2, 1.4 Hz, 10a-C), 134.1 (quat., 9a-C), 136.0 (quat., dd, J = 262.7, 6.1 Hz, 4-C), 141.3.
(quat., dt, J = 273.4, 6.9 Hz, 2-C), 142.2 (quat., dd, J = 273.4, 12.2 Hz, 4a-C), 141.4 (quat., d, J = 1.5 Hz, 5a-C), 141.7 (quat., ddd, J = 273.4, 6.9 Hz, 2-C), 142.2 (quat., dd, J = 9.3, 2.0 Hz, 2-F), 141.4 (quat., d, J = 9.3, 2.0 Hz, 1-F); δF (282 MHz, THF-d8) -282.17 (1F, t, J = 2.3 Hz, 4-F), -271.89 (1F, dd, J = 9.3, 2.0 Hz, 2-F), -265.41 (1F, dd, J = 9.3, 2.0 Hz, 1-F);

δH (300 MHz, d6-DMSO) 8.24 (1H, d, J = 9.0 Hz, 9-H), 8.29 (1H, dd, J = 8.7, 2.4 Hz, 8-H), 8.44 (1H, d, J = 2.4 Hz, 6-H); δC (75 MHz, d6-DMSO) 111.6 (quat., 4-C), 112.7 (CH, 6-C), 121.5 (CH, 8-C), 132.1 (CH, 9-C), 136.6 (quat., 5a-C), 137.2 (quat., 1-C or 2-C), 138.5 (quat., 1-C or 2-C), 143.5 (quat., 9a-C), 146.4 (quat., 2 × C, 4a-C and 10a-C), 149.8 (quat., 7-C), 171.2 (quat., 3-C).

4.2.3. 7-Nitro-1,2,4-tribromo-3H-phenoxazin-3-one (5c). The title compound was prepared from p-bromanil 11b (3.52 g, 14.32 mmol) and 2-amino-5-nitrophenol 8 (1.97 g, 12.78 mmol); 5c was isolated as a bright red solid (1.10 g, 2.30 mmol, 95%). A microcrystalline dark red solid of 5c was obtained from glacial acetic acid, mp: 263-264°C; (found: C, 30.1; H, 0.7; N, 5.6%. C12H3Br3N2O4 requires: C, 30.1; H, 0.6; N 5.85%); (found: (MH)+, 476.7716; found: (MH)+, 478.7692. Calc. for C12H3Br3N2O4: (MH)+, 476.7714. Calc. for C12H3Br3N2O4: (MH)+, 478.7696; found: (MH)+, 480.7669. Calc. for C12H3Br2Br2N2O4: (MH)+, 480.7676; found: (MH)+, 482.7646. Calc. for C12H3Br2Br2N2O4: (MH)+, 482.7658; νmax/cm⁻¹ 3101 (C-H), 1641 (C=O), 1529 and 1346 (NO2); δH (300 MHz, d6-DMSO) 8.24 (1H, d, J = 9.0 Hz, 9-H), 8.29 (1H, dd, J = 8.7, 2.4 Hz, 8-H), 8.44 (1H, d, J = 2.4 Hz, 6-H); δC (75 MHz, d6-DMSO)
103.2 (quat., 4-C), 112.5 (CH, 6-C), 121.4 (CH, 8-C), 131.9 (CH, 9-C), 134.9 (quat., 1-C or 2-C), 137.0 (quat., 1-C or 2-C), 137.1 (quat., 5a-C), 143.6 (quat., 9a-C), 147.2 (quat., 4a-C or 10a-C), 148.3 (quat., 4a-C or 10a-C), 149.7 (7-C), 171.5 (quat., 3-C).

4.2.4. 8-Nitro-1,2,4-trifluoro-3H-phenoxazin-3-one (6a). The title compound was prepared from p-fluoranil 11a (1.51 g, 8.39 mmol) and 2-amino-4-nitrophenol 9 (1.27 g, 8.22 mmol) according to the general procedure. The precipitate was taken into EtOAc (100 mL) and the resulting mixture filtered through a sintered funnel. The insoluble residue was washed several times with EtOAc and discarded. The combined organic filtrates were washed with 10% aq. NaOH solution (4 x 100 mL) and dried (MgSO4). The solvent was removed under reduced pressure and the residue subjected to column chromatography, eluting with a gradient mixture of petroleum ether 60-80°C : Et2O (50:50 to 0:100). Compound 6a was isolated as a red solid (0.94 g, 3.17 mmol, 38.5%). An orange crystalline solid of 6a was obtained from glacial acetic acid, mp: 212-214°C; (found: C, 48.6; H, 1.05; N, 9.1%; C12H3F3N2O4 requires C, 48.7; H, 1.0; N, 9.5%); \(m/z \) 295.9 (M+); \(\nu_{\text{max}} \) / cm\(^{-1} \) 3093 (C-H), 1648 (C=O), 1608 (C=C), 1518 and 1308 (NO2), 1004 (C-F); \(\delta_H \) (300 MHz, THF-d8) 6.03 (1H, d, \(J = 9.3 \) Hz, 6-H), 6.80 (1H, dd, \(J = 9.0, 2.7 \) Hz, 7-H), 7.06 (1H, d, \(J = 2.7 \) Hz, 9-H); \(\delta_C \) (75 MHz, THF-d8) 115.4 (CH, 6-C), 123.8 (CH, 9-C), 126.2 (CH, 7-C), 129.9 (quat., ddd, \(J = 9.6, 5.1, 1.3 \) Hz, 10a-C), 130.2 (quat., 9a-C), 136.0 (quat., dd, \(J = 262.4, 6.5 \) Hz, 4-C), 141.3 (quat., dt, \(J = 272.7, 6.9 \) Hz, 2-C), 142.2 (quat., dd, \(J = 273.9, 12.0 \) Hz, 1-C), 140.8 (quat., ddd, \(J = 18.3, 5.5, 1.1 \) Hz, 4a-C), 143.4 (quat., 8-C), 145.3 (quat., d, \(J = 1.6 \) Hz, 5a-C), 166.8 (quat., td, \(J = 21.0, 5.6 \) Hz, 3-C); \(\delta_F \) (282 MHz, THF-d8) -282.05 (1F, t, \(J = 2.8 \) Hz, 4-F), -271.73 (1F, dd, \(J = 9.6, 1.7 \) Hz, 2-F), -266.07 (1F, dd, \(J = 9.3, 2.5 \) Hz, 1-F); \(\delta_H \) (300 MHz, d6-DMSO) 7.93 (1H, d, \(J = 9.0 \) Hz, 6-H), 8.56 (1H, dd, \(J = 9.0, 2.4 \) Hz, 7-H), 8.76 (1H, d, \(J = 2.4 \) Hz, 9-H); \(\delta_C \) (75 MHz, d6-DMSO) 118.4 (CH, 6-C), 125.9 (CH, 9-C), 129.0 (CH, 7-C), 132.1 (quat., 9a-C), 132.5 (quat., dd, \(J = 8.8, 5.2 \) Hz, 10a-C), 137.8 (quat., dd, \(J = 256.3, 6.45 \) Hz, 4-C), 143.2 (quat., dt, \(J = 267.75, 6.8 \) Hz, 2-C), 144.2 (quat., dd, \(J = 270.4, 11.9 \) Hz, 1-C), 142.8 (quat., d, \(J = 14.1 \) Hz, 4a-C), 145.2 (quat., 8-C), 147.3 (quat., 5a-C), 169.5 (quat., td, \(J = 20.0, 4.9 \) Hz, 3-C); \(\delta_F \) (282 MHz, d6-DMSO) -279.65 (1F, s, 4-F), -268.13 (1F, d, \(J = 11.3 \) Hz, 2-F), -264.22 (1F, d, \(J = 11.8 \) Hz, 1-F).

4.2.5. 8-Nitro-1,2,4-trichloro-3H-phenoxazin-3-one (6b).21 The title compound was prepared from p-chloranil 11b (1.74 g, 7.07 mmol) and 2-amino-4-nitrophenol 9 (0.991 g, 6.43 mmol); 6b was isolated as a red solid (2.19 g, 6.34 mmol, 99%). Red plates of 6b were obtained from glacial acetic acid; mp: 261-263°C [lit.: 248-250°C21 (from acetone)]; (found: C, 41.7; H, 0.9; N, 7.9%. C12H3Cl3N2O4 requires: C, 41.7; H, 0.9; N 8.1%); (found: (MH)+, 344.9229. Calc.
for C12H335Cl2N2O4: (MH)+, 344.9231; found: (MH)+, 346.9197. Calc. for C12H335Cl237ClN2O4: (MH)+, 346.9202; found: (MH)+, 348.9164. Calc. for C12H335Cl37Cl2N2O4: (MH)+, 348.9172; νmax/cm-1 3088 (C-H), 1649 (C=O), 1597 (C=C), 1510 and 1331 (NO2);

δH (300 MHz, d6-DMSO) 7.95 (d, 1H, J = 9.0 Hz, 6-H), 8.57 (dd, 1H, J = 9.0, 2.7 Hz, 7-H), 8.73 (d, 1H, J = 2.7 Hz, 9-H); δC (75 MHz, d6-DMSO) 111.8 (quat., 4-C), 118.3 (CH, 6-C), 125.9 (CH, 9-C), 129.1 (CH, 7-C), 132.6 (quat., 9a-C), 137.2 (quat., 1-C or 2-C), 138.2 (quat., 1-C or 2-C), 145.3 (quat., 8-C), 145.6 (quat., 4a-C or 10a-C), 146.2 (quat., 4a-C or 10a-C), 147.7 (quat., 5a-C), 171.1 (quat., 3-C).

4.2.6. 8-Nitro-1,2,4-tribromo-3H-phenoxazin-3-one (6c). The title compound was prepared from p-bromanil 11c (4.05 g, 9.57 mmol) and 2-amino-4-nitrophenol 9 (1.34 g, 8.70 mmol). Elution with petroleum ether 60-80°C : EtOAc (60:40) gave 6c as a red solid (3.01 g, 6.29 mmol, 72%). Lustrous cardinal red crystals of 6c were obtained from glacial acetic acid, mp: 285-287°C [lit.: 287°C21 (from acetone)]; found: C, 30.1; H, 0.6; N, 5.6%. C12H379Br3N2O4 requires: C, 30.1; H, 0.6; N 5.85%; (found: (MH)+, 476.7716. Calc. for C12H379Br3N2O4: (MH)+, 476.7716; found: (MH)+, 478.7694. Calc. for C12H379Br381Br3N2O4: (MH)+, 478.7696; found: (MH)+, 480.7676. Calc. for C12H379Br381Br3N2O4: (MH)+, 480.7676; found: (MH)+, 482.7646. Calc. for C12H381Br3N2O4: (MH)+, 482.7658; νmax/cm-1 3078 (C-H), 1638 (C=O), 1581 (C=C), 1508 and 1328 (NO2); δH (300 MHz, d6-DMSO) 7.82 (1H, d, J = 9.0 Hz, 6-H), 8.47 (1H, dd, J = 9.3, 2.7 Hz, 7-H), 8.60 (1H, d, J = 2.7 Hz, 9-H); δC (75 MHz, d6-DMSO) 103.4 (quat., 4-C), 118.1 (CH, 6-C), 125.6 (CH, 9-C), 129.0 (CH, 7-C), 133.0 (quat., 9a-C), 134.8 (quat., 1-C or 2-C), 136.5 (quat., 1-C or 2-C), 145.3 (quat., 8-C), 146.5 (quat., 4a-C or 10a-C), 147.9 (quat., 4a-C or 10a-C), 148.2 (quat., 5a-C), 171.6 (quat., 3-C).

4.2.7. 9-Nitro-1,2,4-trifluoro-3H-phenoxazin-3-one (7a). The title compound was prepared from p-fluoranil 11c (0.90 g, 5.00 mmol) and 2-amino-3-nitrophenol 10 (0.74 g, 4.82 mmol) according to the general procedure. The precipitate was taken into EtOAc (100 mL) and the resulting mixture filtered through a sintered funnel. The insoluble residue was washed several time with EtOAc and discarded. The combined organic filtrates were washed with water (1 x 100 mL), brine (1 x 100 mL) and dried (MgSO4). The solvent was removed under reduced pressure and the residue subjected to column chromatography, eluting with petroleum ether 60-80°C : EtOAc (80 : 20). 7a was isolated as a dark red solid (0.22 g, 0.73 mmol, 15%). Ruby red prisms of 7a with a metallic lustre were obtained from glacial acetic acid, mp: 216-218°C; (found: C, 48.5; H, 1.0; N, 9.2%. C12H3F3N2O4 requires C, 48.7; H, 1.0; N, 9.5%); (found: (MH)+, 297.0118. Calc. for C12H4F3N2O4: (MH)+, 297.0118; νmax/cm-1 3084 (C-H),
1649 (C=O), 1603 (C=C), 1530 and 1313 (NO2), 1004 (C-F); δH (300 MHz, THF-d8) 6.04-6.13 (m, 3H, 6-H, 7-H and 8-H); δC (75 MHz, THF-d8) 117.6 (CH, 8-C), 117.9 (CH, 6-C), 123.0 (quat., 9a-C), 130.0 (quat., ddd, J = 10.0, 5.0, 1.2 Hz, 10a-C), 131.5 (CH, 7-C), 135.8 (quat., dd, J = 261.9, 6.3 Hz, 4-C), 140.7 (quat., ddd, J = 18.2, 4.8, 1.2 Hz, 4a-C), 141.4 (quat., dt, J = 273.2, 6.8 Hz, 2-C), 141.5 (quat., d, J = 1.7 Hz, 5a-C), 142.1 (quat., dd, J = 274.7, 12.2 Hz, 1-C), 146.4 (quat., 9-C), 166.7 (quat., td, J = 21.1, 5.5 Hz, 3-C); δF (282 MHz, THF-d8) -282.53 (1F, t, J = 2.3 Hz, 4-F), -271.43 (1F, dd, J = 9.0, 2.3 Hz, 1-F), -265.36 (1F, dd, J = 9.3, 2.3 Hz, 2-F); δH (300 MHz, d6-DMSO) 7.95 (1H, t, J = 8.4 Hz, 7-H), 8.01 (1H, dd, J = 8.4, 1.8 Hz, 8-H), 8.08 (1H, dd, J = 7.5, 1.8 Hz, 6-H); δC (75 MHz, d6-DMSO) 120.5 (CH, 8-C), 120.7 (CH, 6-C), 124.8 (quat., 9a-C), 132.8 (quat., dd, J = 9.0, 4.5 Hz, 10a-C), 134.6 (CH, 7-C), 137.5 (quat., dd, J = 255.0, 6.0 Hz, 4-C), 142.7 (quat., ddd, J = 17.3, 4.5, 1.5 Hz, 4a-C), 143.2 (quat., d, J = 0.8 Hz, 5a-C), 143.3 (quat., dt, J = 267.8, 7.5 Hz, 2-C), 144.0 (quat., dd, J = 270.0, 10.5 Hz, 1-C), 147.8 (quat., 9-C), 169.4 (quat., td, 21.0, 6.0 Hz, 3-C); δF (282 MHz, d6-DMSO) -280.98 (1F, t, J = 2.3 Hz, 4-F), -268.59 (1F, dd, J = 11.0, 2.3 Hz, 1-F), -262.77 (1F, dd, J = 11.0, 2.3 Hz, 2-F).

4.2.8. 9-Nitro-1,2,4-trichloro-3H-phenoxazin-3-one (7b). The title compound was prepared from p-chloranil 11c (1.17 g, 7.61 mmol) and 2-amino-3-nitrophenol 10 (1.07 g, 6.92 mmol); 7b was isolated as a dark purple solid (1.08 g, 3.13 mmol, 45%). Lustrous deep purple needles of 7b were obtained from glacial acetic acid, mp: 254-258°C; (found: C, 41.6; H, 0.9; N, 7.8%. C12H3Cl3N2O4 requires C, 41.6; H, 0.9; N, 8.1%); (found: (MH)⁺, 344.9227. Calc. for C12H3Cl3N2O4: (MH)⁺, 344.9231; found: (MH)⁺, 346.9197. Calc. for C12H3Cl3N2O4: (MH)⁺, 346.9202; found: (MH)⁺, 348.9165. Calc. for C12H3Cl3N2O4: (MH)⁺, 348.9172); νmax/cm⁻¹ 3100 (C-H), 1647 (C=O), 1590 (C=C), 1532 and 1331 (NO2); δH (300 MHz, d6-DMSO) 7.97 (1H, t, J = 8.4 Hz, 7-H), 8.02 (1H, dd, J = 8.4, 2.1 Hz, 8-H), 8.09 (1H, dd, J = 7.5, 2.1 Hz, 6-H); δC (75 MHz, d6-DMSO) 111.2 (quat., 4-C), 120.6 (CH, 8-C), 120.8 (CH, 6-C), 125.3 (quat., 9a-C), 134.6 (CH, 7-C), 136.9 (quat., 1-C or 2-C), 138.6 (quat., 1-C or 2-C), 143.7 (quat., 5a-C), 145.5 (quat., 4a-C or 10a-C), 146.3 (quat., 4a-C or 10a-C), 147.8 (quat., 9-C), 171.0 (quat., 3-C).

4.3. Catalytic hydrogenation of 8-nitrohalogenophenoxazin-3-ones 6a-c: general procedure
Nitro-1,2,3-trihalogeno-3H-phenoxazin-3-ones 6a-c were dissolved in a solvent mixture of EtOAc : MeOH (1:1) and either Pd/C 10% or PtO₂ (10% of the reactant mass) was added to the solution. The reaction mixture was then hydrogenated for 2 to 20 hours, the initial hydrogen pressure being set at 2.4 bars. Hydrogenation was continued until the hydrogen
pressure was steady, after which the catalyst was removed from the reaction mixture by filtration through Celite 451. The Celite cake was washed several times with methanol. MnO₂ (3 mol equivalent) was added to the clear solution and the resulting mixture stirred until no more amino-3-hydroxyphenoxazine was observed by TLC. The reaction mixture changed to a deep colour, ranging from blue to blue-violet, and was again filtered through Celite 451 to remove inorganic insoluble materials and the cake was washed several times with THF, until the filtrate was clear of colour. The solvent mixture was evaporated in vacuo and the residue was subjected to column chromatography on silica.

4.3.1. 8-Amino-1,2,4-trifluoro-3H-phenoxazin-3-one (17a)

The title compound was prepared from 8-nitro-1,2,3-trifluoro-3H-phenoxazin-3-one 6a (0.38 g, 1.29 mmol) using Pd/C 10%. Elution used a gradient mixture of petroleum ether (60-80°C) : EtOAc (30:70 to 10:90). 8-Amino-1,2,4-trifluoro-3H-phenoxazin-3-one 17a was isolated as a dark violet solid (0.34 g, 1.27 mmol, 98.0 %); m.p. : 277°C (dec.); (found: C, 54.2; H, 2.1; N, 10.1%. C₁₂H₅F₃N₂O₂ requires C, 54.15; H, 1.9; N, 10.5%); (found: (MH)⁺, 267.0373. Calc. for C₁₂H₆F₃N₂O₂: (MH)⁺, 267.0376); νmax/cm⁻¹ 3503, 3358 and 3230 (NH₂), 1638 (C=O), 1610, 1575 and 1513 (C=C), 1002 (C-F); δH (500 MHz, d1-TFA) 8.17 (1H, d, J = 9.0 Hz, 6-H), 8.35 (1H, dd, J = 9.0, 2.0 Hz, 7-H), 8.74 (1H, d, J = 1.5 Hz, 9-H); δC (125 MHz, d1-TFA) 119.1 (CH, 6-C), 125.7 (CH, 9-C), 127.1 (quat., 9a-C), 129.4 (CH, 7-C), 132.5 (quat., dd, J = 16.5, 3.9 Hz, 10a-C), 132.8 (quat., 8-C), 138.2 (quat., dd, J = 263.5, 5.4 Hz, 4-C), 141.6 (quat., dd, J = 18.0, 7.8 Hz, 4a-C), 143.9 (quat., dt, J = 275.0, 5.4 Hz, 2-C), 144.2 (quat., 5a-C), 144.4 (quat., dd, J = 279.2, 13.2 Hz, 1-C), 172.3 (quat., td, J = 19.0, 6.6 Hz, 3-C).

4.4. Microbiological methods

Test compound 5-7 was dissolved in a small volume of N-methylpyrrolidone (100µL) and Tween 20 (100µL) and incorporated into molten Columbia agar (Oxoid, Basingstoke) to give a final concentration of 50mg/L; the use of a surfactant (Tween 20) was necessary to avoid precipitation of the substrates during incorporation into the agar medium. The resulting chromogenic media were poured into Petri dishes and each solution dried to a gel. The resultant agar plates were each inoculated with ten Gram negative, eight Gram positive bacteria and two yeasts (from the National Collection of Type Cultures, London, UK): colonies of each strain were suspended in sterile deionised water to generate a suspension with a turbidity equivalent to 0.5 McFarland units (approximately 1.5 × 10⁸ colony forming units per mL), as confirmed with a densitometer. One microliter of this suspension was inoculated onto the agar plates containing the various substrates using an automated
multipoint inoculator. All inoculated plates were incubated at 37°C for 24h and then examined visually for the presence of growth and colouration of bacterial colonies.

Conflict of interest
No conflicts of interest are noted. The synthetic chemistry and characterisation were conducted at the University of Sunderland; the microbiological evaluation was carried out (by AB) at Freeman Hospital (Newcastle-upon-Tyne, UK); the analysis and rationalisation of data were the responsibility of the team at University of Sunderland; the final decision to submit these data and the rationalisation for publication were taken by bioMérieux.

Acknowledgements
We are grateful to bioMérieux and the University of Sunderland for their generous financial support of this project (AB).
We also thank the EPSRC UK National Mass Spectrometry Facility, Swansea University, for providing all accurate mass measurements.

References and notes
31. Although some of the compounds described herein have been previously synthesized and reported in the literature, few analytical data are available (NMR characterization was not reported) and, for that reason, a full characterization of each compound is provided.