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ABSTRACT 
A key problem for handling multimedia data in the semantic web 
is finding a way to associate concepts from ontologies to 
multimedia data items at an acceptable cost. This paper describes 
experiments with a system to assign automatically keyword 
metadata descriptors to unlabelled images. Learning to 
automatically match low level image features, like colour or 
texture to high level concepts (the so called semantic-gap 
problem) is very challenging. The usual approach is to design a 
learning machine or classifier to learn low-level feature vectors 
for high-level concept classification as a single-step (direct) 
mapping function. These systems often do not perform well for 
large numbers of classes. We present a two-level supervised 
learning framework for effective image annotation. In the first 
level induction stage, colour and texture feature vectors are 
classified individually into their corresponding outputs, i.e. colour 
and texture terms. Then, the colour and texture terms as middle-
level features are classified into the target high-level conceptual 
classes during the second level induction stage. Three 
experimental studies are described in this paper. Experimental 
results using vocabularies of 60 and 150 keywords are reported, 
based on single step Support Vector Machines, two step Support 
Vector Machines, and k Nearest Neighbour. In the final 
experiment a comparison between human and automatic metadata 
annotation is described. Results show promise that the techniques 
will scale and perform acceptably for practical retrieval. 

Categories and Subject Descriptors 
H.3.1 [Content Analysis and Indexing]: Indexing methods; I.5.2 
[Design Methodology]: classifier design and evaluation;  

General Terms 
Design, Experimentation 

Keywords  
Content-based image retrieval, image annotation/classification, 
machine learning, support vector machines, k-nearest neighbour 

1. INTRODUCTION 
At the core of the problem posed by the semantic web paper [4] is 
the connection of the worlds of human perception and action, and 
of human communication with the kinds of unambiguous 
representation normally manipulated by computer software 
agents. 
This task, of connecting different forms of representation of 
perception, is highly challenging when dealing with hypertext on 
the web, but is still more challenging when considering other 
forms of data like images. 
One way to make progress in manipulating unknown still images 
in the semantic web would be to automatically assign keyword or 
concept terms to each image and then manipulate them within the 
text based infrastructure. 
This paper describes recent progress in constructing a system to 
perform such automatic keywording of still images. The heart of 
the approach adopted is to reformulate the keywording process 
from a process of identifying whether a keyword (say “lion”) 
applies to an image to a process of identifying that class of images 
to which a user is likely to find it acceptable to return the class in 
response to the keyword query, with some degree of liklihood. In 
this way the problems of full blown object recognition are 
replaced with a simpler image classification task. Furthermore the 
automatic keywording problem is now formulated in a way which 
makes it amenable to supervised learning, given a collection of 
images which have acceptable performance when preexisting 
keywords are used to query the image collection. 
A content-based image retrieval (CBIR) system which indexes 
and retrieves images by low-level image features cannot fully 
capture high-level concepts in humans’ minds. This gives rise the 
so called semantic-gap problem in which the CBIR does not deal 
with the contents of images as viewed by the human searcher. 
This is a very challenging problem [31]. However, image 
annotation or classification could provide a solution to bridge the 
gap between low-level features and high-level concepts. 
The literature shows a number of applications using machine 
learning techniques for this problem, such as Bayesian and 
probabilistic approaches [3, 8, 10, 20, 35], k-nearest neighbour (k-
NN) [32], neural networks [19], support vector machines [8, 29, 
34], combinations of different learning models for segmentation 
and classification processes respectively [6, 18, 33] and so on. 
Some of them classify each image into one category and some 
multiple categories per image.  For this image keywording 
problem, we consider each image should belong to multiple 
categories, i.e. each image has multiple keywords assigned. Note 

 

 



that as it has been addressed by supervised and unsupervised 
learning perspectives in which the former has better performances 
than the latter [25]. In addition, we are interested in extracting 
high-level concepts of images per se rather than extracting textual 
information associated with images, and furthermore trying to do 
this in a way which is compatible with proposals for the semantic 
web infrastructure like [14, 15]. 

1.1 Challenges 
In general, a learning machine/classifier is designed to 
recognise/classify images by learning the low-level features 
directly. That is, image classification is approached by 
representing different low-level features of an image by one 
feature vector that is fed to a single classifier [2]. However, many 
existing classifiers described above only solve small scale 
problems, i.e. small numbers of classes, where discrimination 
between those conceptual classes is usually high and thus helps 
them perform well. Very few works in image databases and 
retrieval have dealt with larger numbers of classes by using 
machine learning techniques. Moreover, as these classifiers learn 
the combination of different low-level feature vectors directly to 
recognise/classify images into conceptual classes via single-step 
learning as direct mapping, the following problems occur: 
• It is difficult to construct a metric which is simultaneously 

optimal for different features since features in colour, texture, 
and shape are extracted by different computational methods 
and thus may require different similarity measurements [32] 
and it is hard to lump several feature vectors together due to 
their diversified forms [16].  

• The direct relationship between low-level features and high-
level concepts usually does not exist because images which 
have similar visual contents may have different concepts, i.e. 
the feature vectors of some semantically dissimilar images 
may be located very close in the feature space [30].  

• The combination of different feature vectors into a higher 
dimensional space may introduce the curse of dimensionality 
problem [5].  

Therefore, computers have difficulty in learning a certain scale of 
high-level concepts by learning low-level features and need a 
more sophisticated learning strategy, such as active learning for 
relevance feedback [13, 34] for further improvement. However, a 
large number of initial training examples are required to ensure 
subsequent learning is efficient. The aim of this paper is to design 
a robust learning model to improve initial learning of keyword 
concepts. 

1.2 Proposed Solution 
Considering the above problems, we propose a two-level learning 
framework, namely a two-stage mapping model (TSMM) for 
reducing classification errors in a divide-and-conquer manner. 
The main idea is that colour and texture features are individually 
classified into colour and texture names/classes as mid-level 
features based on a colour and texture classifiers respectively. 
Either or both classifiers may sometimes classify new colour and 
texture vectors into incorrect (colour/texture) classes. However, 
we assume that to design a second-level classifier which learns 
the mapping between correct and/or error predictions of the two 
first-level classifiers and the desired outputs as high-level 
concepts could have a higher chance for correct classification.  
The consideration of using multiple learning model(s) for one 
classification task is not new in pattern recognition, such as 

mixture of experts, stacking and meta-learning [5, 7]. One early 
related work focuses on solving the indoor and outdoor 
classification problem [32]. The idea is that colour and texture 
classifiers are designed to classify colour and texture features for 
indoor and outdoor predictions and a combiner is designed to vote 
the predictions to make the final decision. In [10, 29], they use the 
same concept but different learning models/classifiers to solve the 
indoor and outdoor and/or close-up classification problem. 
Iyengar et al. [19] consider audio, speech, and visual models for 
video annotation and a combiner is designed to decide the final 
annotations based on the scores, i.e. confidence values as mid-
level features produced from the three models. Similarly, a meta-
classifier is built to decide the final annotations from two 
confidence values generated from  text- and image-based 
classifiers for unlabelled images [24]. In [8], an ensemble of 
binary-classifier is trained to give mutiple soft labels, i.e. class 
membership to an image and then, the most correct label(s) which 
have higer confidence values can be decided from these lables.  
The novelty of our proposed approach is composed of the 
following components:  
(1) first-level classification: the visual (colour and texture) 

features are decomposed for colour and texture 
classification instead of high-level concept classification 
directly,  

(2) fusion of the colour and texture names/classes: a data 
extractor is designed to fuse the colour and texture names 
(mid-level features) and select candidate training examples 
for second-level classification instead of voting from the 
outputs (high-level concepts) of first-level classification,  

(3) second-level classification: the colour and texture 
names/classes represented by binary feature vectors instead 
of confidence values are used to map into the final high-
level concepts.  

Therefore, this divide-and-conquer approach is new and different 
from the related work which designs multiple direct mapping 
classifiers for image annotation.  
In this paper, we conduct two quantitative experiments to 
compare the propsed approach with a base (single-step) learning 
approach under the scale problem of 60 and 150 categories 
respectively as follows: 
• For the 60-category problem, support vector machines (SVMs) 

[11, 36] are used for both approaches. This study is intended 
to investigate their error estimation and generalisation 
performances. The margin and number of support vectors of 
the hyperplane, and classification accuracy of these classifiers 
are examined. The contributions of this study are two fold. 
From the system performance perspective, we show that the 
two-level learning framework generalises better than the 
general single-step learning approach under 60-category 
classification in terms of classification accuracy and requires 
smaller numbers of training examples. In addition, it has 
better margin maximisation ability and reduces the number of 
support vectors for more effective classification. For the 
evaluation strategy using SVMs, the majority of related work 
only reports their classification accuracy, we further examine 
the margin and number of support vectors of an SVM with its 
relation to classification accuracy which is a simple but robust 
quantitative evaluation method.  

• For the 150-category problem, SVMs constructed by the 
proposed approach are compared with a k-nearest neighbour 
(k-NN) classifier to examine their performances of both 



classification accuracy and numbers of classes with zero rate 
accuracy. The contributions of this study are twofold. First, 
we challenge the image classification problem of 150-
category that few or none of related supervised learning 
classifiers have tackled. Second, we further discover the 
reliability and extendibility of both classification techniques 
that SVMs perform better than k-NN only under smaller scale 
classification problems. On the contrary, k-NN performs 
stable under larger scale classification problems.   

In addition, a qualitative study is conducted by asking human 
subjects to annotate a set of images using the 150 categories. As 
many image annotation systems are evaluated by some chosen 
ground truth dataset(s), few studies consider user-centred 
evaluation. Moreover, human judgments are usually based on 
assessing the results/outputs of a system directly. Few studies 
focus on comparing the system performance with human 
annotations. 
The rest of this paper is organised as follows. Section 2 briefly 
describes the learning machine generation through inductive 
learning and the concept of support vector machines (SVMs) and 
k-nearest neighbour (k-NN). Section 3 presents the proposed two-
level learning framework. Section 4, 5, and 6 describe the three 
experiments including their experimental setup, comparison 
methodology, and the results. Section 7 and 8 provide discussions 
and conclusions of this study respectively. 
 

2. PATTERN CLASSIFICATION 

2.1 Learning Model Generation 
The goal of inductive learning or learning from examples is to 
build a general decision procedure based on a set of training 
examples. Given a training set with m examples, {(x1, y1), (x2, 
y2),…, (xm, ym)}, for some unknown function f(x) = y that xi is 
represented by k number attributes (feature) vectors of xi, i.e. {xi1, 
xi2,…, xik} and each yi represents a class label (high-level concept 
or keyword) associated with each xi, the learning task is to 
compute a classifier or model f’ that approximates f and correctly 
labels the training set. This can be called as the training stage. 
After the model f’ is generated or trained, it is able to classify an 
unknown instance, i.e. low-level feature vectors, into one of the y 
class labels. 

2.2 Support Vector Machines 
Support Vector Machines (SVMs) are one of the major machine 
learning techniques and have been used for image database and 
retrieval applications such as indoor/outdoor [29] and natural 
scene classification [8], colour histogram classification [9], 
texture classification [23], relevance feedback [13, 34], etc.  
An SVM is designed for binary classification. That is, to separate 
a set of training vectors which belong to two different classes, (x1, 

y1), (x2, y2),…, (xm, ym) where xi ∈ Rn denotes vectors in a n-

dimensional feature space and yi ∈ {-1, +1} is a class label. For 

any feature vector x R∈ n,  f(x) ∈ {-1, +1} is the predicted 
label for x. During the SVM model generation, the input vectors, 
i.e. low-level feature vectors, such as colour and texture, are 
mapped into a new higher dimensional feature space. Then, an 
optimal separating hyperplane in the new feature space is 
constructed by a kernel function. There are two most used kernel 
functions which are Polynomial and Gaussian Radial Basis 

Function (RBF) kernel functions. For detailed description, please 
consult [11, 36].  
Figure 1 shows two examples with different margins and the 
larger margin which is the distance between the two dashed lines 
is expected to provide better generalisation [26]. The larger 
margin can be interpreted as a ‘confident’ correct classification 
[28]. 
All vectors lying on one side of the hyperplane are labeled as -1, 
and all vectors lying on another side are labeled as +1. The 
training instances that lie closest to the hyperplane are called 
support vectors. The number of these support vectors is usually 
small compared to the size of the training set and they determine 
the margin of the hyperplane. If the optimal separating hyperplane 
can be constructed from a small number of support vectors, the 
generalisation ability will be high [11]. 

 
Figure 1. A separating hyperplane with a small margin shown in 
the left hand side and larger margin shown in the right hand side 

For M-class classification problems where M > 2, there are two 
general approaches [17]. The first one is ‘one-against-others’ that 
M SVMs are constructed and each of them is to classify one 
positive class and M-1 negative classes. The second one is ‘one-
against-one’ that 

2
)1( −MM  classifiers are constructed and each of 

them is to classify one positive and negative class. According to 
[9] the accuracies of both methods are almost the same, but Chang 
et al. [8] report that the former approach performs better than the 
latter one. Therefore, we chose the more computationally efficient 
method which is the ‘one-against-others’ approach for 
constructing a cascade of multiple binary SVMs. 

2.3 k-Nearest Neighbours 
In pattern recognition, the k-NN (k-nearest neighbours) classifier 
is a conventional nonparametric classifier [5]. It is different from 
the inductive learning approach described previously which needs 
training as approximating a function of mapping between input 
feature vectors and their corresponding class labels. Therefore, k-
NN is computationally more efficient than inductive learning 
methods. This k-NN rule is assumed that a new instance belongs 
to the same class as its k nearest neighbours in the training data 
set (where k is an integer). A neighbour is deemed nearest if it has 
the smallest distance in the feature space. Therefore, the k-NN 
algorithm needs searching through all the examples of the given 
training set for classifying the new instance. That is, the main 
computation of k-NN is the on-line scoring of training examples 
to find the k nearest neighbours of the new instance.  
 

3. THE TWO-LEVEL LEARNING 
FRAMEWORK 
This section describes our two-level learning framework which 
aims at providing better generalisation performance for effective 
image classification. The first level inductive leaning stage is to 
generate two models which can predict colour and texture names 



of an image. Then, the second level inductive learning stage is to 
generate a model which gives the final prediction as the label 
from the first level predictions. 
Figure 2 depicts the first level induction framework. Given a 
training set P, i.e. P = {(x1, y1), (x2, y2),…, (xm, ym)} where m is 
the number of training examples and each image, xi, is 
represented by a k number attribute (feature) vectors of xi, i.e. 
{xi1, xi2,…, xik} and each yi represents a class label associated with 
each xi. Next, we partition P into Pc and Pt such that that P = 
Pc Pt and Pc Pt = empty_set, i.e. x∪ ∩ i = xci∪ xti and xci∩ xti 
= empty_set where ‘c’ and ‘t’ represent colour and texture 
features respectively. Therefore, Pc = {(xc1, yc1),( xc2, yc2),…,( 
xcm, ycm)} where each yci is a label of the colour names associated 
with each xci and Pt = {(xt1, yt1),( xt2, yt2),…,( xtm, ytm)} where 
each yti is a label of the texture names associated with each xti. 
While the models f’c and f’t are constructed, they are used to give 
level-0 predictions as colour and texture names of each xi. 

Level-0 Induction
f c(xc) = y c

Model
Colour Concept 

Predictor f' c

Data Extractor

Model
Texture Concept 

Predictor f' t

Level-0 Induction
f t(xt) = y t

Level-0 Training data
P t = {(xt1,y t1), 

(xt2,y t2),……(xtm ,y tm )}

Level-0 Training data
Pc  = {(xcc1,y c1), 

(xc2,y c2),……(xcm ,y cm )}

Figure 2. Level-0 model generation during first level learning 
The data extractor is to generate new training examples for level-
1 induction and model generation from the predictions of f’c and 
f’t. There is a major criterion to select candidate examples from 
the level-0 predictions. For example, if the predictions of colour 
and texture names are unique, i.e. there is just one xi with such 
colour and texture predictions, then, the two predictions are 
chosen as the inputs/training examples for the level-1 induction. 
This criterion is intended to correct some error predictions of 
level-0 model(s) to map into desired predictions if any. Figure 3 
shows the second level induction framework. The level-1 training 
data Q = {(z1, y1),(z2, y2),…,(zn, yn)} where n  m and z≤ i = {ci, 
ti}. Then the model f’ is constructed based on Q.  

Level-1 Training data
Q  = {(z1,y 1), (z2,y 2),……(zn ,y n )}

Level-1 Induction
f (z) = y

Model
High Level Concept

Predictor f'

 
Figure 3. Level-1 model generation during second level learning 

Table 1 gives an example of a sky class represented by ci and ti. 
The dimensionality of ci and ti depends on the pre-defined number 
of colour and texture concepts. After the training or model 
generation phase is done, the classification procedure (assigning 
keywords to images) shown in Figure 4 can be summarised as 
follows: given an unlabelled image which is represented by the 
colour and texture feature vectors. Then, the colour and texture 

feature vectors are first fed into the f’c and f’t models respectively. 
Next, the predictions (mid-level features) of both level-0 models 
are fed into the f’ model for the final prediction. 

Table 1. The middle-level feature vector for the sky class 
ci and ti Feature vector 

white, blue, red, … colours (ci) {0, 1, 0, …} 
sky, grass, tree, … textures (ti) {1, 0, 0, …} 

 

keyword/
new image class

Colour vectors

Texture vectors

f 'c 

f 't 

Mid-level vectors f '

Figure 4. The classification procedure 
 

4. EXPERIMENT I 
This section describes the first experimental study including 
experimental setup and evaluation methodology by comparing our 
proposed two-level learning framework with the general single-
level learning framework to construct SVMs. The margins and 
numbers of support vectors of hyperplanes of the SVMs are 
examined. In addition, some images are used to test their 
classification accuracies to see the relationship between the 
margin and number of support vectors and classification 
accuracies. The aim of this study is to see whether the proposed 
approach outperforms the general single-step learning one by 
using SVMs. 

4.1 Experimental Setup 
The Corel stock photo library is used for the dataset. Due to the 
lack of standard data sets for evaluation, for the first study we 
manually identified 60 categories for training and testing. We 
only chose suitable patches of images for training. For example, 
in Figure 5 the down-left tile is used for training the beach class. 
Note that these categories are concrete classes, each of which 
means a physical object or entity defined by WordNet [38], such 
as tree, car, building, etc. The number of examples in the training 
set is 1,639 in which the training examples per category range 
from 8 to 62.  

 
Figure 5. The tiling scheme 

Each image is divided into five equal area tiles illustrated in 
Figure 5. The input vectors of each example are composed of 
colour and texture vectors, in which HSV (hue, saturation, value) 
and three levels of Daubechies-4 wavelet decomposition [12] are 
the colour and texture representations respectively. 
Consequently, the general single level learning approach 
constructs 60 high-level concept SVMs and the proposed 
approach constructs 10 colour and 60 texture SVMs for the first 
level induction and 60 high-level concept SVMs for the second 
level induction by 226 training examples generated from the data 
extractor. All of the classifiers are produced by the Matlab 



Support Vector Machine Toolbox 1 . We apply a degree 2 
Polynomial and sigma 2 RBF kernel functions to design different 
SVMs for further comparisons and the C parameter is 1 as the 
default of the SVM toolbox. It should be noted that the ten colour 
names are based on the colour perceptual model of CHROMA [22] 
which has a fixed set of colour names, such as white, blue, green, 
etc. However, the defined colour names are sufficient to express 
the colour information [39] and the high-level concept SVMs will 
decide the final answer based on the training set Q. These inputs 
will be mapped into desired target conceptual classes. For the 
definition of texture names, as texture is one of the most 
important characteristics which has been directly used to classify 
and recognise objects and scenes (e.g. [1]) but it is difficult to 
describe in terms of a generally understood fixed set of 
descriptors. The number of texture classes defined here is the 
same as the one of conceptual classes, i.e. the texture names are 
only thought of as middle-level concepts in the first prediction 
stage. 

4.2 Performance Evaluation 
To evaluate the classification performances, i.e. error estimation 
and generalisation, we examined the margin of the hyperplane 
and its number of support vectors for each of the 60 high-level 
concept SVMs of the two approaches, i.e. the f’ models. We 
manually selected 60 unknown images which contain all the 60 
concepts as the test set. Each of these images is partitioned into 
five equal sized regions/zones (i.e. centre, up-left/right, and 
down-left/right square subimages) and thus contains five sets of 
unseen colour and texture vectors per image. Therefore, there are 
300 sets of colour and texture future vectors and each test image 
will be classified into five categories, i.e. each image has five 
keywords assigned. We also examined the classification 
performances of both approaches in terms of the number of 
training examples. Note that the ground truth answer of the test 
set, i.e. five keywords per image, is manually defined by the 
authors since each image of Corel only belongs to one category. 

4.3 Results 
For the training results, Table 2 shows the averaged results of the 
60 high-level concept SVMs where ‘TSMM’ represents the 
proposed approach and ‘DM’ represents the general direct 
mapping one. (For more detailed information of each of the 60 
SVMs, please refer to the Appendix I).  

Table 2. Average Margin and number of support vectors  
 Average Margin Average No. of Support 

Vectors 
TSMM (Poly) 1.3 27 
DM (Poly) 1.13 86 
TSMM (RBF) 1.16 159 
DM (RBF) 0.9 83 
They indicate that the Polynomial (Poly) kernel function 
outperforms the Gaussian Radial Basis Function (RBF) one. In 
addition, the SVMs trained by the proposed learning framework is 
expected to have better generalisation performances than the 
SVMs trained by the general approach because of their larger 
margins and smaller numbers of support vectors. Therefore, we 
used the trained Polynomial SVMs of both approaches to compare 
                                                                 
1The Matlab Support Vector Machine Toolbox is downloaded  

from http://www.isis.ecs.soton.ac.uk/isystems/kernel/. 

their classification accuracies based on the test set. Figure 6 
shows classification accuracies of both approaches for some 
classes. Figure 7 shows some classification results of both 
approaches. TSMM outperforms DM which is significant at the 
0.01 level. 
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Figure 6. Classification accuracies of some classes 

 
(a) TSMM: ‘harbour, building, 

sky, wild cat, plane’; DM: 
‘trees, grass, sky, flowers, 

trees’ 

 
(b) TSMM: ‘clouds, sand, 
clouds, sky, trees’; DM: 

‘beach, clouds, beach, beach, 
beach’ 

 
(c) TSMM: ‘plane, clouds, 

cityscape, train, grass’; DM: 
‘trees, clouds, trees, flowers, 

trees’ 

 
(d) TSMM: ‘cityscape, birds, 

sky, cathedral, trees’; DM: 
‘boats, wild, cat, grass, grass, 

trees’ 

Figure 7. Some classification examples by the two approaches 
Figure 8 shows the relationship between classification accuracies 
and numbers of training examples of both approaches. By using 
different numbers of training examples, on average our proposed 
approach shows promise. The general direct mapping approach 
needs a large training set to give comparable performance with 
the two-stage mapping approach. In addition, the performance of 
the proposed approach when using small numbers of training 
examples is better than the direct mapping one. This further 
implies that the error correction mechanism of the second-level 



classifier is able to improve the performance of image 
keywording. As larger numbers of training examples may be 
difficult to obtain in practice and they are computationally 
demanding during training, the proposed approach is a suitable 
solution for classifying image databases in a scale of at least 60 
conceptual categories. 
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Figure 8. Classification accuracy vs. numbers of training 
examples 

We found another interesting result about the number of 
unpredictable classes to which no examples from the test set have 
been assigned, i.e. those classes have zero rate classification 
accuracy. There are 19 and 28 classes out of 60 which have zero 
classification rates for TSMM and DM respectively. This may be 
caused by the imbalance of training examples for each class. 
However, this result can further indicate that under a certain scale 
problem, our proposed approach has more discriminative power 
or provides better mapping between low-level features and high-
level concepts than the general single-step learning one. We 
believe that the above results can be improved by using more 
detailed colour and texture features and setting better parameters 
of SVMs, which will be considered in our future work. 
 

5. EXPERIMENT II 
This section presents the second experimental study including 
experimental setup and evaluation methodology by comparing the 
proposed approach using SVMs with a k-NN classifier. Both 
classification accuracy and numbers of classes with zero rate 
accuracy under the scale of 10, 30, 50, 70, 100, and 150 
categories are examined. Section 4 has shown promising 
performances of our proposed approach by using SVMs, the aim 
of this study is to see the performance of SVMs under larger scale 
problems by comparing with a general classification approach, k-
NN. 

5.1 Experimental Setup 
The dataset is based on Corel and the classification problem is 
scaled by 10, 30, 50, 70, 100, and 150 categories. In order to be 
more realistic, these categories include not only concrete classes 
but also abstract classes which mean abstraction, human activity, 
or an assemblage of multiple physical objects/entities defined by 
WordNet [38], e.g. festival, parade, and studio for the first, 
second and final cases respectively. They are based on the pre-
classified categories of Corel. (Appendix II lists the chosen 100 
concrete and 50 abstract classes.). 

The proportion of training and testing examples per class is 30:20 
and each example is composed of HSV colour and wavelet texture 
feature vectors which is the same as the previous study. For 
classifier design, the degree 2 Polynomial SVMs and a k-NN 
classifier (k = 1 to be the simplest classifier) are constructed.   

5.2 Performance Evaluation 
To evaluate the classification performances of both classifiers, we 
examine their classification accuracy and numbers of classes 
which have zero rate accuracy. Each test image is partitioned into 
five patches which are the same as the first study, and each image 
has five keywords assigned. For simplicity, we define accuracy as 
if at least one out of the five assigned keywords to an image is 
correct, then the image has correct keyword(s) assigned.  

5.3 Results 
The classification performance of both classifiers is shown in 
Figure 9 in which there are two numbers on each plot. The first 
one represents the rate of classification accuracy and the second 
one the number of classes which have zero rate accuracy.  
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Figure 9. Performances of SVMs and k-NN 

This result shows that SVMs outperform k-NN below the scale of 
70 categories in terms of classification accuracy. However, both 
classifiers have the same performance for the difficult to identify 
classes, i.e. zero rate classification accuracy. When the scale 
problem increases to 100 and 150 categories, k-NN has higher 
classification accuracy and smaller numbers of difficult to 
identify classes than SVMs. 
We believe that the poorer performance of SVMs under larger 
scale classification problems is caused by its learning structure 
since an SVM is trained by ‘one-against-others’ for binary 
classification. If the positive class closes to one or some of the 
negative classes in the feature space, i.e. feature overlapping, then 
this SVM would not perform as good as other classification 
approaches, such as k-NN. However, we could further draw a 
conclusion that SVMs have better classification performances 
than other learning models under smaller scale classification 
problems since the discrimination of smaller numbers of classes is 
high and the learning structure of SVMs makes them easier to be 
identified. On the contrary, k-NN has a great potential in dealing 
with larger scale classification problems. 
 



6. EXPERIMENT III 
This section presents a qualitative study for performance 
evaluation of the 150 SVMs. The aim of this study is to compare 
the performance of the learning machine with human annotators 
performance. Corel has just a single conceptual class assigned to 
each image, and it might be that our results were in some 
dependent on the this (or other particular) characteristics of the 
Corel collection rather than the actual process of annotating this 
particular set of images with the 150 conceptual keywords in the 
test. 

6.1 Experimental Setup 
We asked five judges (PhD research students) who are not experts 
in image indexing and retrieval to annotate the images. There 
were three male judges and two females who were all English 
first language speakers. 
They were asked to annotate 60 images each (two images from 
each of 30 Corel categories) and assign between two and five 
keywords from a vocabulary of the 150 words drawn from the 
Corel classes used in previous experiment. 

6.2 Performance Evaluation 
The annotation results of the 150 SVMs for the 60 images are 
compared with each of the five human annotations. The definition 
of accuracy used is the same as Experiment II, that is if at least 
one of the five assigned keywords to an image is correct, then the 
image is regarded as having correct keyword(s) assigned.  

6.3 Results 
Table 3 shows the classification accuracy based on each of the 
five judges’ annotations. On average, the system provides 22.27% 
classification accuracy. The correlation coefficient of the human 
annotations is moderately correlated, i.e. r = 0.678 at the 
significant level of 0.01 based on Pearson Product-Moment 
Correlation Coefficient [27]. 

Table 3. System performance based on the five judges 

 Judge1 Judge2 Judge3 Judge4 Judge5 

Accuracy 28% 20% 16.67% 21.67% 25% 

It is interesting that the system performance is around twice as 
accurate measured in this way as compared to the accuracy results 
using Corel’s classification as the ground truth. This qualitative 
study is encouraging that although the system has quite inaccurate 
annotation, i.e. 5.63% classification accuracy under the Corel data 
set, this is likely to be quite a stringent test of performance. 
 

7. DISCUSSION 
The advantages of the proposed approach over the general single-
step learning one are that it has larger margin and smaller number 
of support vectors by using SVMs. In addition, by using the small 
test set the proposed approach shows better classification 
performances and needs smaller numbers of training examples. 
Furthermore, it has small numbers of unpredictable classes, i.e. 
zero classification rates. 
Superficially, it may be thought of as a disadvantage that 
additional training for second level induction is required. On the 
contrary, the additional training is more than worthwhile since not 
only will it improve overall classification accuracy it can also 
actually overcome errors in first level training and classification. 

This accords with previous results using stacked generalisation 
[37]. 
The proposed approach could be considered for some early work 
which only employs a single low-level features for indexing and 
retrieval, such as colour [7, 19] and texture [1, 20]. That is, 
colour- and texture-based CBIR systems can be combined for 
image annotation. 
For the choice of classification techniques, different classifiers 
have various performances under different scale classification 
problems. Therefore, it depends on the problem domain. In our 
study, we suggest that if the problem domain is under smaller 
scale classification problems, i.e. smaller numbers of classes, such 
as indoor/outdoor, natural/manmade classification, etc., SVMs 
have better performance. If the problem domain is to deal with 
larger numbers of classes, k-NN has a potential to perform better 
at least than SVMs although classification accuracy of current 
machine learning techniques is unlikely to be compatible with 
humans. 
The experimental results of user-centred evaluation point out 
problems of current quantitative studies which are based on some 
chosen ground truth data sets. Although have not yet had the 
opportunity to fully analyse the reasons for the improved 
performance of the learning system against this test, it may be on 
occasions the Corel category is not an obvious one to the human 
annotator, and correspondingly this keyword/concept is difficult 
for the automatic system to assign. We therefore conclude that to 
make a full assessment and/or understanding of the performance 
of an image annotation system, user-centred studies need to be 
undertaken as well as more system centred ones.  
 

8. CONCLUSIONS 
In order to integrate multi-media data within the semantic web, it 
is necessary to find some mechanism, ideally automatic, to relate 
concepts in the ontology to items of multimedia data.  
In this paper we have presented a series of experiments which 
show that an approach based on supervised learning in the context 
of a two stage learning model show promise for the purpose of 
automatically assigning keywords or concepts to still images. 
It might be thought that a classification accuracy of as little as one 
in eight is not adequate for practical purposes. However, in 
practice the most likely use of such a system is in the context of a 
retrieval system supporting analytic metadata/keyword querying, 
browsing and query refinement techniques like relevance 
feedback. Unlike text, users can very rapidly assess the relevance 
or otherwise of large numbers of images presented to them in 
parallel. Presenting 24 thumbnail images on an initial query result 
screen appears not to be too many. On average, then, around three 
relevant images should be presented using the learning techniques 
we propose which provides an adequate starting point for 
relevance feedback. 
The two prime issues of concern at the present time include the 
number of concepts for which no relevant images will be retrieved 
and the feasibility of obtaining training sets matched to concepts 
in ontologies.  
Our future work will address the issue of “unreachable” concept 
classes by looking at working with more discriminating feature 
spaces: for example better regioning, using information gain and 
perhaps latent semantic analysis to use different feature spaces for 
different classes (either at the first or second level of the learning 
model). We also intend to investigate the use of concepts of 



information gain and of generality/speciality in ontologies to 
organize the learning model to avoid this problem. 
Tsai, McGarry and Tait [33] have investigated a mechanism to 
combine supervised and unsupervised learning to generate 
training sets of sufficient scale where only small samples of 
classified images are available. We propose also to investigate 
this approach to the problem of availability for suitable training 
sets. 
Other avenues of future work include using higher k’s in the k-NN 
algorithm to provide a degree of generalization, user and task 
centred retrieval studies and dealing with larger number of 
concepts. 
To conclude then, in this paper we have shown the feasibility of 
assigning conceptual classes from a vocabulary of 150 keyword 
terms to still images using a combination of fairly simple image 
processing and a two level learning classifier. The system is 
shown to be sufficiently effective to form the basis of a practical 
web image retrieval system in the future. 
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11. APPENDIX I 

11.1 Margins of the 60 high-level concept SVMs 

w
at

er
fa

lls
w

at
er

ve
ge

ta
bl

es
tre

e
tr

ai
n

to
w

n
tig

er
te

m
pl

e
su

ns
et

su
n

su
bs

ea
st

re
et

st
on

e

sn
owsk

y
sc

ul
pt

ur
e

sa
nd

sa
ili

ng
ro

ck
s

py
ra

m
id

s
pl

an
ts

pl
an

e
pe

ta
ls

pe
op

le
pe

ng
ui

n
oc

ea
n

m
ou

nt
ai

n
lio

n
le

af
ho

us
e

ho
rs

es
ha

bo
ur

gr
ou

nd
gr

as
s

ga
rd

enfo
x

fo
odfr
ui

t
flo

w
er

s
fa

ce
el

ep
ha

nt
ea

gl
e

do
g

co
w

co
ra

l
co

as
t

cl
ou

ds
ci

ty
sc

ap
e

ca
ve

w
ild

 c
at

ca
rs

ca
th

ed
ra

l
ca

st
le

bu
tte

rfl
y

bu
ild

in
g

bo
at

s
bi

rd
s

be
ar

be
ac

h

sn
ow

y 
m

ou
nt

ai
n0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

M
ar

gi
n

TSMM (poly) TSMM (rbf) DM (poly) DM (rbf)

 

11.2 Numbers of support vectors of the 60 high-level concept SVMs 
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12. APPENDIX II 

12.1 The Concrete Classes 
Agates Buses Coast Firework Homes Monuments Perennial Reptile Subsea War plane 

Antelope Butterfly Cuisines Flags Horses Mountain Pills Road Tall ship Waterfall 

Antique Cactus Dessert Flora Jewelry Mushroom Plants Rock form Texture Waves 

Balloon Car Dogs Flower Lighthouse Offices Polo Rodeo Things Wildcats 

Beach Cards Dogsled Flower bed Machinery Old dish Predator Roses Tools Wild bird 

Bobsled Castles Doors Foliage Mammals Old doll Primates Sail  Train Wild fish 

Bonsai Cats Drinks Fractals Man Orchids Pub signs Sculpture Tulips Wild goat 

Botany Children Everglade Fruit Marble Owls Puma Shells Valley Whale 

Beads Churches Fabric Graffiti Masks Palaces  Pyramids  Stamps  Vegetable Work ship 

Building  Clothing  Firearms  Hawk  Minerals Penguin Race car Steam 
engine 

Volcano Women  

 

12.2 The Abstract Classes 
Architecture Barnyard Cruise Fashion Game Harbours Nature Pastoral Space Tropical  

Autumn Battles Dawn Festival Gardens Industry Night Rafting Sports Vineyard  

Aviation Compete Desert Fitness Glamour Interior Old works Ruins Summer Waterway  

Ballet Computer 
technology 

Estate Forests Golf Leisure Parades rural Sunsets Wet sports 

Barbecue Couples Farm Fountain Hanover Market Park  Scene Surfing Winter  
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