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Abstract— Imputation of missing data is important in many 

areas, such as reducing non-response bias in surveys and 

maintaining medical documentation. Estimating the uncertainty 

inherent in the imputed values is one way of evaluating the results 

of the imputation process. This paper presents a new method for 

the estimation of imputation uncertainty, which can be 

implemented as part of any imputation method, and which can be 

used to estimate the accuracy of the imputed values generated by 

both parametric and non-parametric imputation techniques. The 

proposed approach can be used to assess the feasibility of the 

imputation process for large complex datasets, and to compare the 

effectiveness of candidate imputation methods when they are 

applied to the same dataset. Current uncertainty estimation 

methods are described and their limitations are discussed. The 

ideas underpinning the proposed approach are explained in detail, 

and a case study is presented which shows how the new method 

has been applied in practice. 

 
Index Terms— Imputation evaluation, Missing data, 

Missingness patterns, Uncertainty estimation.  

 

I. INTRODUCTION 

  Imputation methods attempt to solve the problem of missing 

data by replacing missing values with plausible estimates. Rubin 

[1] points outs that the primary (usually achievable) objective of 

imputation is to ensure that data analysis tools “can be applied 

to any dataset with missing values using the same command 

structure and output standards as if there were no missing 

data”, and that a further, desirable (but not always achievable) 

objective is to allow statistically valid inferences to be drawn 

when analysing imputed datasets. However, [2] also points out 

that “a popular misunderstanding is that the goal of imputation 

is to predict individual missing values”,  and it is important to 

emphasise that imputed values should never be treated as if they 

are real values, since it is impossible to prove that they are 

accurate.  

This complex definition of imputation objectives presents the 

owners of missing value datasets with complex evaluation 

problems, such as;  How can the feasibility of the imputation 

project be assessed?  How can the results of the imputation 

process be evaluated? How can the effectiveness of candidate 
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imputation methods be compared? We argue that these 

problems have not been sufficiently addressed, and we present a 

new method for the estimation and reduction of imputation 

uncertainty, which helps to solve them. The proposed approach 

can be implemented as part of any imputation method, and can 

be used to estimate the accuracy of the imputed values 

generated by both parametric and non-parametric imputation 

techniques. 

Section II summarises current uncertainty estimation 

methods, and discusses their limitations. Section III explains the 

ideas underpinning the proposed method in detail. Section IV 

presents a case study which shows how the new method has 

been applied in practice. Section V summarises the paper and 

discusses the issues it raises. 

 

II. CURRENT METHODS FOR ESTIMATING IMPUTATION 

UNCERTAINTY 

Estimating the uncertainty inherent in the imputed values is 

one way of evaluating the results of the imputation process. 

Several methods for the estimation of imputation uncertainty 

have been proposed, and a good general overview of these can 

be found in [3]. The following sections summarise the most 

important methods, and discuss the limitations of these 

approaches. 

A. Bootstrap and Jackknife Variance Estimation 

Consider a variable ( )nyyY K,1=  where some of the 

values are missing. The bootstrap and jackknife variance 

estimation methods [4]–[7] can be used to estimate the 

uncertainty created by imputing the missing values in Y.  Where 

uncertainty is estimated by computing the variance of a set of 

parameter point estimates (such as the mean or standard 

deviation etc.), which describe a set of samples that are taken 

from  Y,  as follows; 

for   b  =  1  to  B 

1. Create a new bootstrap sample bY by randomly selecting a 

set of values (with replacement) from  Y  

2. Impute the missing values in bY using a suitable imputation 

method 

3. Compute a parameter point estimate bθˆ which describes the 

values in bY  

next   b 
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The procedure produces a set of estimates { Bθθ ˆ
1̂K } 

which describe the bootstrap samples { BYY K1 }. The 

bootstrap estimate of the variance  bootV̂ can then be used to 

estimate imputation uncertainty, as follows; 
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The method simply imputes the missing bY values B  times, 

then computes the variance of the resulting set of 

bθˆ estimates. The jackknife variance estimation method is 

similar. The difference lies in the method used to create the set 

of samples, which in turn requires a more complex method of 

computing the variance, as follows; 

Impute the missing values in  Y  using a suitable imputation method 

Compute a parameter point estimate θˆ which describes the values in  

Y 

for   j  =  1  to  n 

1. Delete value   j   from Y  to create a new jackknife sample )(\ jY  

2. Impute the missing values in  )(\ jY   using the same imputation 

method as above 

3. Compute the same parameter estimate as above )(\
ˆ

jθ  which 

describes  the values in )(\ jY  

next   j 

Where  n  is the number of values in ( )nyyY K,1=  

The procedure produces a set of estimates { )(\)1(\
ˆˆ
nθθ K } 

which describe the jackknife samples { )(\)1(\ nYY K } The 

jackknife estimate of the variance  jackV̂  can then be used to 

estimate imputation uncertainty, as follows; 
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The jackknife method can be much more computationally 

intensive than the bootstrap when n is large, since the 

imputation process must be repeated  n times. However, in these 

cases jackknife performance can be improved by deleting a  set 

of values  (not just one) at each iteration of the loop. 

B. Multiple Imputation 

Consider a variable ( )nyyY K,1=  where some of the 

values are missing. Multiple imputation (MI),  [1] and [8]–[10] 

can be used to estimate the uncertainty created by imputing the 

missing values in  Y,  as follows. 

 

for   d  =  1  to  D 

1. Impute the missing values in  Y  using a stochastic method to 

create a unique imputed dataset dY   

2. Compute a parameter point estimate dθˆ which describes the 

values in dY  

3. Compute the variance dV associated with dθˆ  

next   d 

The procedure produces a set of estimates { Dθθ ˆ
1̂K } and a 

set of associated variances { DVV K1 } which describe the 

imputed datasets  { DYY K1 }. The combined MI complete-data 

parameter point estimate for { DYY K1 } is then given by 
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The total variability DT , associated with Dθ , can then be 

used to estimate imputation uncertainty, as follows; 
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It is important to emphasise that MI is primarily an 

imputation method, rather than a technique designed for the 

estimation of imputation uncertainty. However, “When the D 

sets of imputations are repeated random draws from the 

predictive distribution of the missing values under a particular 

model for nonresponse, the D complete-data inferences can be 

combined to form one inference that properly reflects 

uncertainty due to nonresponse under that model”, as 

succinctly explained in [3]. 

C. Limitations of Current Methods 

The uncertainty estimation methods described above have 

their limitations, and they make certain assumptions about the 

nature of the missing value dataset. These issues have been the 

subject of some debate among statisticians [1] and [5]–[6]. The 

main points for discussion are summarised below. 

• All of the methods described above assume that the 

imputation process has removed the bias within the dataset 

that was caused by the missing values  [3]. 

• The resampling methods described in section IIA are based 

on large-sample theory - i.e. they will return more reliable 

variance estimates for larger samples  [3]. 

• The MI method assumes that the model describing the 

missing value dataset has been correctly specified.  i.e. the 

reliability of the variance estimates returned by the MI 

method is sensitive to model misspecification. However, 

resampling methods return consistent variance estimates 

with minimal modelling assumptions, so they are more 

robust to model misspecification [5]–[6] and [11]. 



 

 

 

• Resampling methods usually require several hundred 

executions of the imputation process, performed against 

an equal number of samples drawn from the missing value 

dataset. This can be impractical in some situations. 

However, MI is less computationally intensive, since it 

allows good inferences to be drawn for a wide range of 

estimands, using perhaps 10 (or less) imputed datasets  

[12]. 

• The methods described above make no provision for the 

reduction of imputation uncertainty. However, there seems 

to be no reason why they could not be adapted for this 

purpose. 

The following section presents a new method for the 

estimation and reduction of imputation uncertainty, which 

suffers from none of the above limitations. However, the 

proposed approach has its own limitations, and makes its own 

assumptions, which are also described below. 

 

III. A DYNAMIC METHOD FOR ESTIMATING AND REDUCING 

IMPUTATION UNCERTAINTY 

Consider a data matrix Y  which has one or more missing 

values in one or more of it’s columns, such as the matrix shown 

below. 
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The missing values are represented by  ?  symbols. 

The known values are represented by  –  symbols. 

The rows are indexed as  i = 1  to  n 

The columns are indexed as  j = 1  to  p 

Rows 1 and 4 have missingness pattern  10101 

Rows 2 and 6 have missingness pattern  10011 

Fig. 1 – Missingness patterns in a data matrix 

A small proportion (perhaps up to 10%) of the known values 

are deleted at random from within the variable (column in Y) to 

be imputed. These values are recorded just before they are 

deleted, and a measure of how accurately they have been “put 

back” is taken when the imputation process is complete. This 

basic technique (with appropriate modifications) has been 

frequently employed to evaluate the success of various new, and 

existing, imputation methods [13]–[16], but it has not been 

utilised as a technique for the estimation and reduction of 

imputation uncertainty. However, the following equations can 

be used to estimate imputation uncertainty when this evaluation 

technique is employed. 

ijRD  =  
trueValY

imputedValYtrueValY

ij
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Where trueValYij . is the known (true) value that was 

deleted. And imputedValYij .  is the value generated by the 

imputation process. 
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Where  j  is the column in the  Y  matrix from which the values 

were randomly deleted and “put back”. And 

},....{ 1 mrrM =  is the set of rows in  Y  with a deleted 

value. And  i  indexes the set of rows in  M  (which will differ for 

every execution of the method). And },....{ 1 zrrZ =  is 

the set of rows in  Y  that have an  RD  outlier value. 

The RD gives the relative differences between the known 

(true) and imputed values in column  j of Y.  The  MRD  gives the 

mean RD value - where larger MRD values indicate greater 

imputation uncertainty within the set of imputed values. The  

SRD  gives the standard deviation of the RD  -  where larger SRD  

values indicate greater variability of the uncertainty. 

 Values of  RZ  within any required range, such as 3±  SRD’s 

above and below the MRD, define RD outliers. Essentially, the 

RZ is a measure of the number of  SRD’s  by which any 

particular value of  RD  deviates from the MRD -  where the set 

of RD values are assumed to be approximately normally 

distributed for this purpose. The  MRZ  gives the mean  RZ  

value  -  where  PZ = z / m   gives the proportion of  RD  outliers 

found within the set  M. 

Randomly deleting values from the variable to be imputed 

will produce a different set of uncertainty statistics each time the 

method is executed, which is an essential part of the proposed 

approach. The idea is to execute the method repeatedly, so that 

the variability of the statistics produced can be considered. For 

example, if large, but very similar, values of the MRD and SRD 

appear under repeated executions of the method, then the 

imputation process has high uncertainty, but this uncertainty 

does not depend on the particular set of values that are missing. 

This repetitive, stochastic approach is a key part of most modern 

imputation methods. For example, it is adopted (via repeated 

random sampling) as part of the bootstrap uncertainty 

estimation method described in IIA 



 

 

 

It is important to note that deleting values at random from the 

variable to be imputed increases the proportion of missing data 

in that variable. This affects the results of the imputation 

process, since more values need to be imputed. Further, since 

the method deletes values completely at random, it is assumed 

that the truly missing values (unknown values, rather than 

known values which have been deleted) are also missing 

completely at random (MCAR), in the rigorous sense defined in 

[17]. However, the MCAR assumption can never be proved or 

disproved, regardless of the uncertainty estimation method 

used, because it is impossible to find any sort of pattern within a 

set of unknown values, as pointed out in [18]. 

A. Estimating Uncertainty by Segmenting the Dataset 

Generally, larger MRD values indicate greater uncertainty 

within the set of imputed values. However, larger SRD values 

show that this uncertainty is highly variable, and therefore it 

may be localised within one or more clearly defined data 

segments within the variable to be imputed - such as a particular 

set of missingness patterns (see Fig. 1), or a set of categories 

with clearly defined boundaries. In these cases it can be useful 

to discover the distribution of the RD values across these data 

segments, or to discover whether some segments contain higher 

proportions of RD outlier values than others (using equations 

(4) and (5)). To achieve this it is essential to delete the same 

proportion of values from each segment before measuring the 

uncertainties, so that each segment can be assessed equally. 

Segmentation by category can be used to estimate the 

uncertainty created by imputation methods which do not utilise 

the missingness patterns within the data matrix - e.g. those 

methods which do not rely on regression based techniques to 

generate imputed values. When the dataset is segmented by 

category the process of deleting the same proportion of values 

from each category can be easily achieved by detecting the first 

and last rows of each category within the data matrix, as shown 

in the left hand part of Fig. 2, below. However, it should be 

ensured that the proportion of known values in each category is 

sufficient to support the imputation process (where this is 

required - depending on the imputation method used, and on the 

proportion of truly missing values in each category). In cases 

where this is not possible the offending categories should be 

excluded from the uncertainty estimation process. 

The method can also be used to compare and analyse the 

uncertainties within the missingness patterns found in the data 

matrix, as shown in the right hand part of Fig. 2. This can be 

implemented as part of any regression based imputation method 

which derives a different set of regression coefficients for each 

missingness pattern. 

For example, the expectation-maximisation (EM) imputation 

algorithm, as described in [19] and [20], estimates missing 

values by deriving a unique regression equation for each row 

within each missingness pattern. Where each term in this 

equation is formed using the product of one of the derived 

regression coefficients for the missingness pattern in question, 

and one of the known values in the row being imputed. 

However, if the known values within a particular pattern do not 

form any sort of order within themselves (if they cannot be used 

to predict one another), then the uncertainty within the imputed 

values in this pattern will be large. 

To properly compare and analyse the uncertainty within the 

imputed values in each missingness pattern it is essential to 

delete the same proportion of known values from all of the 

patterns to be evaluated. The algorithm used to perform these 

deletions must ensure that deleting values from the variable to 

be imputed does not create any new (and hence artificial) 

missingness patterns within the data matrix. A description of 

this algorithm, which is the most procedurally complex part of 

the proposed approach, is given below. 

 



 

 

 

 

 

Fig. 2 – Comparing and analysing the uncertainty in different data segments 

function    matrix   balanced_ random_deletion_across_all_missingness_patterns_in_the_data_matrix  

         ( matrix  data,   vector  patterns,   int  c,   int  d ) 

 dataMatrixRow   data_row 

 vector   match_rows 

 missPatternRow   patt 

 integer   rows_to_add,   random_row 

 boolean   match 

 

 for   i  =  1   to   num_rows_in ( patterns ) 

  patt   =   patterns ( i ) 

  if   ( patt ( c )  ==  missing   &&   some_values_are_present_in ( patt )  ==  true ) 

   match_rows  =  new  vector ( ) 

   for  k  =  1   to  num_rows_in ( data ) 

    data_row  =  data ( k ) 

    if   ( data_row ( c )  ==  present ) 

     match  =   true 

     for   j  =  1   to   num_columns_in ( data ) 

       if   ( patt ( j )  ==   present    &&    data_row ( j )  ==  missing ) 

       match  =  false 

      end  if 

     next   j 

     if   ( match  ==  true ) 

      match_rows . Add_To_End ( k ) 

     end  if 

    end  if 

   next  k 

 

   rows_to_add  =   ( d / 100 )  *  num_rows_in ( patt ) 

   if   ( num_rows_in ( match_rows )   >   rows_to_add  *  2 ) 

    for  k  =  1   to   rows_to_add 

     random_row  =  Random ( 1,   num_rows_in ( match_rows ) ) 

     data_row  =  data ( match_rows ( random_row ) ) 

     match_rows . Remove_Row ( random_row ) 

     for   j  =  1   to  num_columns_in ( data ) 

      if   ( patt ( j )  ==  missing ) 

       data_row ( j )  =  missing 

      end  if 

     next   j 

    next  k 

   end  if 

  end  if 

 next   i 

 return  data 

Pattern 1 
200  rows 

Pattern 2 
(not evaluated) 

Pattern 3 
500  rows 

Pattern 4 
1000  rows 

Pattern 5 
(not evaluated) 

Data matrix segmented into 

missingness patterns 

Category 1 
1000  rows 

Category 2 
300  rows 

Category 5 
400  rows 

Category 3 
500  rows 

Data matrix segmented 

into categories 

Category 4 
(not evaluated) 

Uncertainty statistics are 

computed separately for 

all categories that have 

missing values, so that 

they can be compared, 

and analysed separately 

Only those patterns that 

have missing values in the 

data matrix column being 

imputed are evaluated (by 

comparing and analysing 

the uncertainty statistics for 

each such pattern) 



 

 

 

end  function 

Algorithm 1 – A procedure to perform balanced random deletions across a set of missingness patterns 

 

The procedure increases the number of rows in each of the 

missingness patterns to be evaluated by the same proportion, i.e. 

the number of rows in each pattern that has missing values in 

column c is increased by d%. This is achieved by transferring  

data  matrix rows from one pattern to another. For example, 

when deleting from  data  column one the procedure might 

transfer a  data  row by changing it’s pattern from  “1111”  to  

“0111”. However, the data rows transferred must have known 

values in the same columns as the  data  rows in the pattern to be 

evaluated (the pattern with rows added to it). For example, if the 

pattern to be evaluated was  “0011”,  then  data  rows with the 

pattern  “1100” could not be transferred to that pattern, but  data  

rows with the pattern  “1111”, could be transferred to it. 

The final pair of nested  for  loops perform the random row 

transfers. However, this can only be achieved for a particular 

pattern if the number of  data  rows available for transfer (as 

stored in the  match_rows vector) is more than double the 

number of rows to be added to the pattern to be evaluated. This 

ensures the stochastic nature of the row transfer process under 

repeated executions, which is an essential part of the method. If 

the number of data rows available for transfer is too small, then 

the uncertainty in the pattern to be evaluated cannot be 

estimated separately. However, this should only occur very 

rarely  - i.e. when the proportion of missing values in column  c  

is large (perhaps above 80%), or when the number of 

missingness patterns is a small proportion of the number of 

possible patterns. In these cases the method of comparing the 

uncertainty across a set of categories should be preferred. 

B. Reducing Imputation Uncertainty 

The method described in the preceding section allows the 

uncertainty in each data segment (see Fig. 2) to be estimated 

separately - i.e. the method allows the statistics returned by 

equations (1) to (5) to be computed separately for each segment. 

Further, since the same proportion of values were deleted from 

each segment, an additional uncertainty statistic can be 

computed for each segment, as follows; 

Let  j  =  the column in the Y  matrix from which the 

values were randomly deleted and  “put back”. 

Let D = the data segment being evaluated for uncertainty  

(see Fig. 2). 

Let },....{ 1 srrS = be the set of rows in D with a 

deleted value, where  i  indexes these rows. 

Let },....{ 1 mrrM =  be the set of  all rows in Y  with a 

deleted value, where  i  indexes these rows 

The expected uncertainty for the data segment D  is then 

given by  

∑
∈

=
Mi

ijRD
m

s
EU  

Where each ijRD value is computed using equation  (1) 

The expected uncertainty is simply a device which enables 

the calculation of a useful uncertainty statistic. In fact, one 

would expect the uncertainty within the imputed values in each 

segment to be very different, rather than conforming to some 

expected value. For example, one would expect the regression 

equations derived for each missingness pattern to have different 

predictive powers. Therefore, one would expect the imputed 

values generated using these equations to have varying degrees 

of uncertainty. However, the idea is to use the notion of the 

expected uncertainty to compute the statistic described below. 

This is achieved by comparing the expected and actual 

uncertainties for the data segment D, where the actual 

uncertainty is given by 

∑
∈

=
Si

ijRDAU  

Where each  ijRD  value is computed using equation  (1) 

It follows that the equation EUAUSU = can be used to 

discover whether the data segment  D  has contributed more or 

less than it’s expected proportion of the overall uncertainty 

within the imputed values in column  j  of the Y  data matrix.  For 

example, 

If   SU = 0.5  then  D  has contributed half of it’s expected 

proportion of the overall uncertainty. 

If  SU = 10 then D has contributed ten times it’s expected 

proportion of the overall uncertainty. 

Consequently, all of the data segments which contribute more 

than their expected share of the overall uncertainty can be 

discovered. The MRD and SU for each segment can then be 

used to estimate the uncertainty in those segments. And in cases 

where the uncertainty for a particular segment is 

disproportionately large, the overall uncertainty can be reduced 

by discarding all of the imputed values in that segment. This 

approach can be beneficial in cases where the proportion of 

imputed values in the offending segments is relatively small  - 

i.e. in these cases the overall uncertainty will be reduced by 

discarding a small proportion of the imputed values. However, 

in cases where the proportion of imputed values in the offending 

segments is relatively large, a much larger proportion of the 

imputed values would be discarded - and in the most extreme 

cases the best decision could be not to proceed with the 

imputation process at all. 



 

 

 

The fundamental argument underpinning this method of 

uncertainty reduction is as follows. If the deleted values in a 

particular segment were “put back” very inaccurately, then it is 

probable that the truly missing values in this segment will 

contain imputation errors of a similar magnitude. However, it is 

impossible to prove, or disprove, this assertion, because the 

imputation of truly missing values can never be proven to be 

accurate using any approach - since the true values are 

unavailable for comparison. 

It is important to emphasise that the decision to discard the 

imputed values in a particular data segment must be taken by the 

user of the imputation software. This decision is complex and 

difficult to automate, because all of the uncertainty statistics for 

all of the segments need to be considered and compared. For 

example, an examination of the uncertainty statistics could 

reveal that the uncertainty in a particular segment has been 

caused by one or two extreme outlier RD values (see equations 

(4) and (5)). In such cases the user of the software might decide 

to examine the data rows in the offending segment in detail, to 

discover why this has occurred. This could reveal some hidden 

characteristics of the missing value dataset, which could not be 

discovered using any other approach. 

 

IV. APPLYING THE METHOD IN PRACTICE:  A CASE STUDY 

This section describes how the method was used to estimate 

uncertainty when imputing missing data in a survey dataset 

which describes 61,389 small to medium-sized business 

enterprises (SME’s), within the United Kingdom (UK). The 

imputation process was expected to produce high levels of 

uncertainty within the imputed values because of the poor 

quality of the dataset, as described below. 

 

Table I – Variables in the case study dataset 

Dataset  variable % missing 

UKSIC Category 0 % 

OS Easting 0 % 

OS Northing 0 % 

Number of Employees 0 % 

Payroll 63.08 % 

Sales 67.50 % 

Net Worth 40.69 % 

Profit Before Tax 58.16 % 

Directors Pay 59.40 % 

Depreciation 63.90 % 

• The financial variables all have large proportions of 

missing data. 

• 39% of the SME’s have no known financial figures 

whatsoever. 

• The known values within the financial variables contain 

small proportions of extreme outlier values. 

• There are 24 missingness patterns within the dataset, but 

these are unbalanced, with some patterns containing very 

few SME’s. 

• There are 479 different UKSIC categories within the 

dataset, but approximately 11% of these have more than 

80% missing values. 

• The quality of the UKSIC categorization is poor, with 

some categories containing SME’s that could not be 

properly classified. 

Where the SME’s in each UKSIC (United Kingdom Standard 

Industrial Classification) category carry out the same 

commercial activities, such as “Publishing of software” etc. And 

where the OS Easting and OS Northing variables specify the 

geographical location of each SME, using UK Ordnance Survey 

mapping co-ordinates.  

The imputation experiments described below were designed 

to discover whether imputation of the missing financial figures 

was feasible, and to discover whether a parametric imputation 

method (the EM algorithm) or a non-parametric imputation 

method (K nearest neighbors (KNN), [15], [16] and [21]) would 

produce the least uncertainty within the imputed values. For EM 

imputation a matrix was formed (see Fig. 1) with 61,389 rows 

and 7 columns - i.e. the 6 SME financial variables and the 

number of employees. The EM algorithm was then used to 

impute all of the missing values in the matrix using a single 

execution of that algorithm. The following distance function 

was employed for nearest neighbor imputation 
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Where mS  is the SME with the missing financial value, and 

iS  are the set of k nearest neighbor SME’s (donors), which are 

taken from the same UKSIC category as mS , and which have 

the same (or the closest available) number of employees as 

mS And where ( )im SSd ,  gives the geographical 

(Euclidean) distance between mS  and iS , so that financial 

values in geographically closer SME donors are given more 

weight. 

The results of the Payroll imputation evaluation experiments 

are tabulated below - i.e. Tables II and III show the uncertainty 

statistics that were produced (using equations (1) to (5)) when 

imputing the missing Payroll figures for 61,389 SME’s, using 

the EM and KNN imputation methods described above. 



 

 

 

Table II – Evaluation of the EM imputation process. 

MRD SRD MRZ % Outliers 

6.75 97.03 14.22 0.27 

5.65 67.13 14.01 0.32 

6.50 55.34 8.63 0.80 

7.13 65.20 8.92 0.75 

6.22 67.29 10.78 0.48 

5.29 57.01 11.38 0.43 

3.85 30.68 7.68 0.91 

8.92 111.07 10.76 0.54 

7.38 76.39 9.23 0.70 

7.35 93.14 11.02 0.37 

6.50 72.03 10.66 0.56 

Table III – Evaluation of the KNN imputation process. 

MRD SRD MRZ % Outliers 

7.23 64.72 10.64 0.58 

9.65 116.04 9.96 0.47 

11.19 245.05 11.15 0.25 

5.14 43.99 8.93 0.68 

22.01 484.75 14.01 0.22 

5.35 54.95 9.29 0.54 

6.66 78.53 11.29 0.40 

6.76 65.32 10.66 0.58 

8.78 174.69 12.83 0.22 

12.95 249.70 18.25 0.18 

9.58 157.78 11.70 0.41 

 

A. Interpreting the Experimental Results 

5% of the known Payroll values were randomly deleted for all 

experiments, so that a measure of how accurately they were “put 

back” could be taken. The experiments were repeated 10 times 

for each of the imputation methods, so that the variability of the 

uncertainty statistics produced could be considered. The bottom 

rows of Tables II and III give the mean values of the statistics 

produced for all 20 experiments. A reasonable uncertainty 

benchmark for any imputation process would be an MRD value 

of less than one - i.e. the deleted values should be “put back” (on 

average) to within 100% of their true values. However, Tables II 

and III show that the MRD values returned for the SME dataset 

were 6.50 (for the EM imputation process) and 9.58 (for KNN)  

-  i.e. the expected high uncertainty levels appeared, because of 

the overall poor quality of the data. 

The MRD values in Table II show that the EM imputation 

process created less uncertainty than the KNN process, and the 

SRD values show that EM also produced less variable 

uncertainty than KNN - i.e. the uncertainty for the KNN process 

was much more dependant on the particular set of values that 

were deleted. The MRZ and % Outliers show that a small 

proportion of the deleted values were “put back” very 

inaccurately for every experiment. Further investigation 

revealed that these inaccurately replaced values were causing 

the major portion of the uncertainty - i.e. equation (1) returned 

RD values of between zero and one for at least 83% of the 

deleted values for every experiment, but the MRD values were 

always much larger, as Tables II and III show. 

For EM, the same two missingness patterns were found to be 

causing the major portion of the overall uncertainty for every 

experiment. However, these patterns contained most of the 

SME’s, and discarding the imputed values in them would have 

removed over 80% of the imputed values, so this was not 

attempted. For KNN the UKSIC categories causing the most 

uncertainty differed for every experiment  -  i.e. they depended 

on the particular set of values that were deleted  -  so there was 

no point in discarding the imputed values in any of these 

categories. 

It was therefore concluded that the high proportion of missing 

Payroll values, combined with the overall poor quality of the 

dataset, made the feasibility of Payroll imputation questionable, 

and that in this case discarding the imputed values in selected 

data segments could not be effectively used to decrease 

imputation uncertainty. It was further concluded that if 

imputation was to be attempted, a parametric method should be 

used, but the simple EM method described above should be 

improved. For example, the missing values within each UKSIC 

category could be imputed separately, and some way of utilising 

the geographical information could be built into the process. 

 

V.  SUMMARY AND DISCUSSION 

How can the feasibility of the imputation project be assessed?  

How can the results of the imputation process be evaluated? 

How can the effectiveness of candidate imputation methods be 

compared? We argue that these problems have not been 

sufficiently addressed, and we have presented a new method for 

the estimation and reduction of imputation uncertainty, which 

helps to solve them. All imputation methods have the same basic 

objective - i.e. they try to make the best possible use of the 

information content (the patterns etc.) within the known values, 

to generate the best possible estimates for the missing values. 

We argue that uncertainty evaluation methods should also make 

the best possible use of the known values, and the method 

described in this paper does just this. 

Current uncertainty estimation methods have their 

limitations. In particular, they take no account of the accuracy of 

the imputed values, and they make no provision for the 

reduction of imputation uncertainty. The proposed approach 

addresses these problems, and we argue that the new method is 

fully consistent with imputation objectives, since it would be 

very hard to deny the success of any imputation method which 

can be shown to have repeatedly “put back” a set deleted values 

with a high degree of accuracy. 

The proposed approach allows the uncertainty within 



 

 

 

different data segments (such as missingness patterns) to be 

estimated separately. And in cases where the uncertainty for a 

particular segment is disproportionately large, the overall 

uncertainty can be reduced by discarding all of the imputed 

values in that segment. Current uncertainty estimation methods 

do not adopt this approach, but there seems to be no reason why 

they could not be adapted for this purpose. However, is 

important to emphasise that the decision to discard the imputed 

values in a particular segment must be taken by the user of the 

imputation software. We argue that there is no substitute for 

human judgment when considering these matters, and that the 

proposed method simply facilitates the decision making 

process, by automating the calculation and display of various 

uncertainty statistics. 
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