

Statham, Louise, Aspray, T. and Abdy, S. (2016) Can bone turnover markers help to define the duration of biphosphonate drug holidays? In: 43rd Annual European Calcified Tissue Society, 15 May 2016, Rome, Italy.

Downloaded from: http://sure.sunderland.ac.uk/id/eprint/6354/

Usage guidelines

Please refer to the usage guidelines at http://sure.sunderland.ac.uk/policies.html or alternatively contact sure@sunderland.ac.uk.

Can bone turnover markers help to define the duration of bisphosphonate drug holidays? Louise Statham^{1,2}, Sharon Abdy¹, Terry Aspray^{1,3}

¹ The Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne, NE7 7DN, UK ² University of Sunderland, Dept. of Pharmacy, Health & Well-being, Sunderland, SR1 3SD, UK ³ Newcastle University, Institute of Cellular Medicine, Newcastle upon Tyne, NE2 4HH, UK

Background

Good evidence for 5 years bisphosphonate (BP) treatment^{1,2} but beyond this less clear

BP long half-life; stopping treatment \rightarrow wears off gradually²

Potential for harm

- Atypical fractures, osteonecrosis of the jaw (ONJ) \bullet
- Rare occurrence, \uparrow risk with increasing duration³ •

BPs impair Bone Turnover; CTX bone turnover marker (bone resorption)

- Start BP $\rightarrow \downarrow$ CTX
- Stop BP & CTX rises²

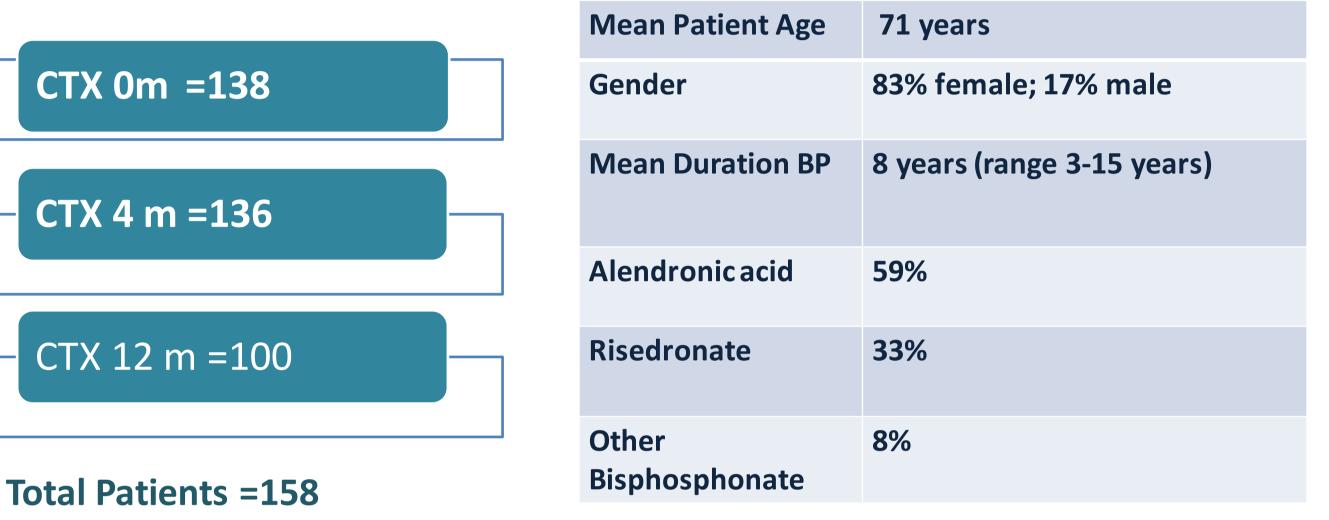
Drug holidays increasingly common - stop BP for period of time

Local practice since late 2012

- Review BP after 5 yrs
- Drug holiday
- Routine monitoring CTX at baseline, 4 months and 12 months \bullet

Our aim was to analyse changes in CTX on stopping long term bisphosphonate treatment to guide clinical decision-making on the duration of treatment cessation

The Newcastle upon Tyne Hospitals NHS Foundation Trust



Methods

- Patients on BP drug holiday via outpatient Bone Clinic identified from monitoring records
- Data extracted; patient age, sex, serum CTX levels 0, 4, 12 months, bisphosphonate and ۲ duration of use
- Excluded if baseline (0m) CTX ≥0.51 ug/L (higher fracture risk) lacksquare
- Data analysis using Stata Statistics software.
- *Offset* of action defined as
 - a rise by the Least Significant Change (LSC=33%*) in CTX and CTX above the pre-menopausal mean (0.19ug/L)

*LSC=2.33xV(CVa²)+(CVi²): CVa is analytical coefficient of variation, CVi is intra-individual CV

Figure 1: All patient characteristics

Results

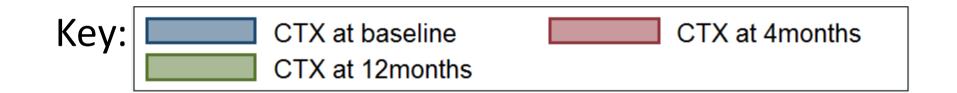
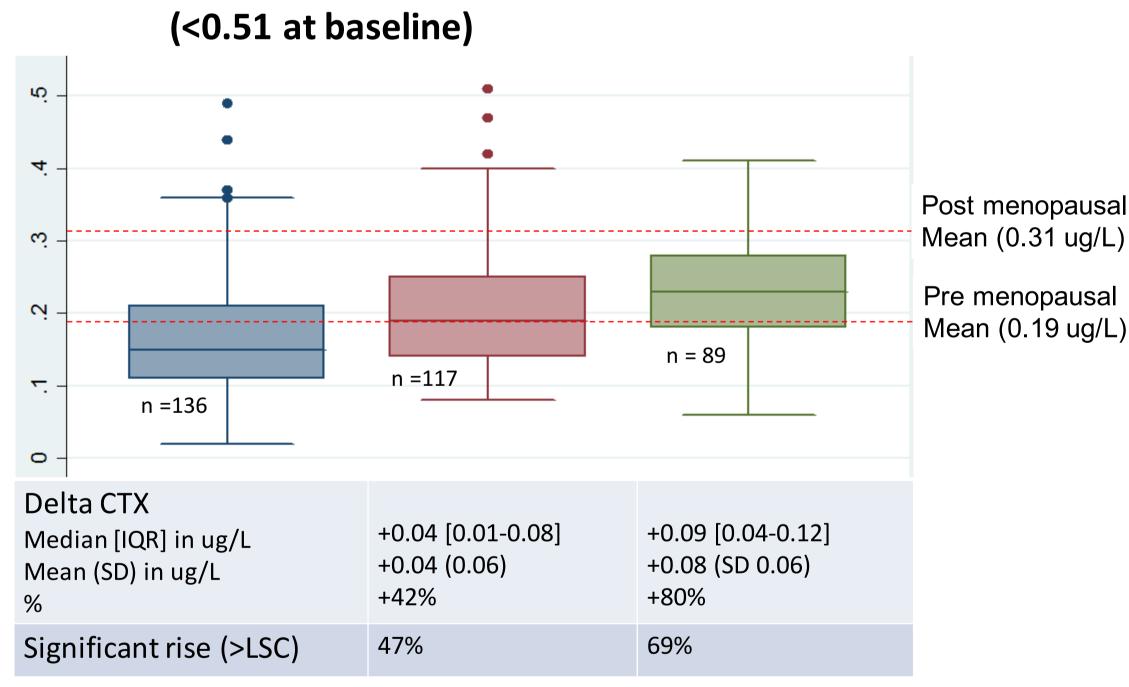
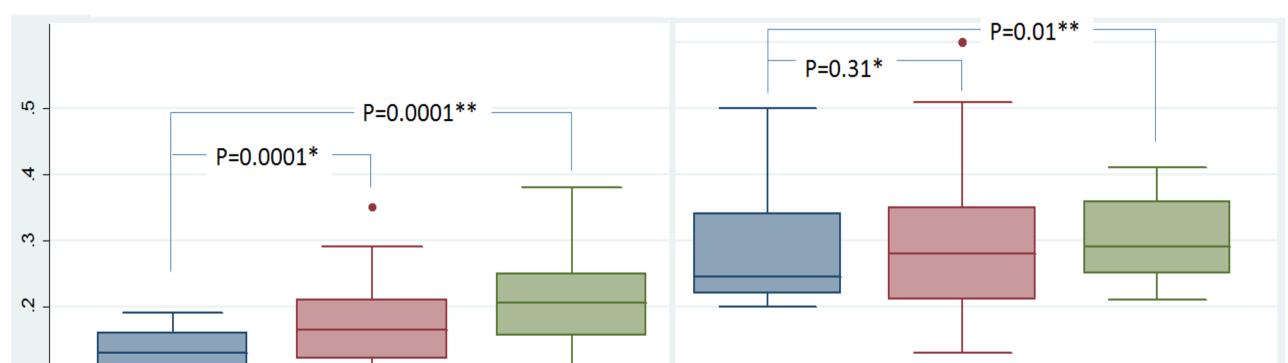


Figure 2: CTX at 0, 4, 12 months all patients


Overall population (figure 2):

•Detectable rise in CTX seen from as early as 4 months in 47% patients; 69% at 12 months

Figure 4: CTX monitoring outcomes at baseline, 4 and 12 months


At Baseline

Review (32%)

Figure 3: CTX at 0, 4, 12 months for defined populations

a) ≤ pre-menopausal mean at baseline

Subpopulations (figure 3):

•If CTX ≤ pre-menopausal mean (i.e. treatment target) at baseline, statistically significant increases in CTX seen at 4 and 12 months

•If CTX > pre-menopausal mean at baseline, no significant change at 4 months, significant by 12 months

•No significant difference between Alendronic acid and Risedronate seen (data not shown)

Monitoring outcomes using population data (figure 4):

 Baseline CTX not suppressed to premenopausal mean level after 5 yrs of BP use in 32% patients

•Where CTX suppressed at baseline:

- At 4 months 28% had significant rise in CTX that was also above mean level (?consider re-start)

- At 12 months this had risen to 53%; 47% CTX still suppressed at this stage

<u>At Baseline</u> CTX ≤ pre-menopausal mean*		I N	 Adherence Renal function 	
(68%)			Recent fractureAbsorption	
		/		
			<u>ith Reviev</u> pressed?	<u>N</u>
(i.e. ≤ mean or (i.		i.e. ≤ n	nean or	.1.)
LSC HOL ac		SC NOT	: achieved	(ג
	N			N
Delay	Consider	De	elay	Consider
restart restart (72%) (28%)			start 7%)	restart (53%)
(12/0)	(20/0)	(4	, ,0,	(3370)

a) *0-4m mean CTX + 0.05ug/L (95% CI 0.04-0.06) **0-12m mean CTX +0.09ug/L (95% CI 0.07-0.10) b) *0-4m mean CTX + 0.01ug/L (95% CI -0.01-0.04) **0-12m mean CTX +0.05ug/L (95% CI 0.01-0.09)

b) > pre-menopausal mean at baseline

Conclusion

0

- After at least 5 years of treatment, CTX may not be adequately suppressed in a third of patients. Drug adherence and therapy choice should be reviewed in this group.
- Less significant changes in CTX seen if levels not adequately suppressed at baseline ?adherence
- Treatment effects can wear off as quickly as 4 months, but may also be maintained for 12 \bullet months
- Monitoring of CTX can potentially be used to identify these patients, some of whom may need to re-start treatment earlier

References

1.Sorensen OH et al (2003) Long-term efficacy of risedronate: a 5-year placebo-controlled clinical experience. Bone;32(2):120-6.; 2.Black DM et al (2006) Effects of continuing or stopping alendronate after 5 years of treatment: the Fracture Intervention Trial Long-term Extension (FLEX): a randomized trial. JAMA ; 296; 24;2927-2938; 3.MHRA Drug Safety Update June 2011, vol 4 issue 11: A1; 4. Gossiel F et al (2014) Establishing reference intervals for bone turnover markers in healthy postmenopausal women in a nonfasting state. BoneKEy Reports 3, article no: 573.

Conflicts of interest: None declared