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Abstract: Purpose: Hydrophobic drugs are facing a major challenge in dissolution rate enhancement and
solubility in aqueous solutions; therefore, a variety of methods have been used to improve dissolution
rate and/or solubility of bendroflumethiazide as a model hydrophobic drug. Methods: In this study,
two main methods (physical mixing and lyophilisation) were used with gluconolactone, hydroxyl propyl
-ccyclodextrin, and trehalose to explore this challenge. Bendroflumethiazide, practically insoluble
in water, was mixed with one of the three excipients gluconolactone, hydroxyl propyl -cyclodextrin,
and trehalose in three different ratios 1:1, 1:2, 1:5. To the best of our knowledge, the dissolution of the
drug has not been previously enhanced by using either these methods or any of the used excipients.
Samples containing drug and each of the excipients were characterized via dissolution testing,
Fourier Transform infra-red spectroscopy, differential scanning calorimetry, and scanning electron
microscopy. Results: The used methods showed a signi�cant enhancement in dug dissolution
rate; physical mixing signi�cantly, p < 0.05, increased the percentage of the drug released with
time; for example, bendro�umethiazide dissolution in distilled water was improved from less than
20% to 99.79% within 90 min for physically mixed drug-cyclodextrin 1:5. The lyophilisation process
was enhanced and the drug dissolution rate and the highest drug dissolution was achieved for
(drug-gluconolactone 1:1) with 98.98% drug release within 90 min. Conclusions: the physical mixing
and freeze drying processes signi�cantly increased the percentage of drug release with time.

Keywords: bendro�umethiazide; hydrophobic drug; lyophilisation; gluconolactone; hydroxyl propyl
-cyclodextrin; trehalose; dissolution rate

1. Introduction

For the pharmaceutical industry, one of the greatest challenges in the hydrophobic drug
development process is the water solubility, which is the key controlling dissolution rate, and hence
bioavailability [1]. Drug must be dissolved in the gastric �uids to be absorbed into the systemic
circulation following oral administration, incomplete absorption from the gastrointestinal tract leads
to disruption in drug distribution, reduced bioavailability and therapeutic failure [2]; hence, solubility
enhancement for hydrophobic drugs is essential. Oral intake is the most convenient and common
route of drug delivery because of its ease of administration, high patient compliance, cost effectiveness,
least sterility restraint, and �exibility in the design of dosage forms. Therefore, a lot of drug companies
are obsessed with producing bioequivalent oral drug products. However, the major challenge
with the design of oral dosage forms lies with their poor dissolution and bioavailability. The oral
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bioavailability relies on a few factors including aqueous solubility, drug permeability, dissolution rate,
and metabolism. The most frequent causes of low oral bioavailability are accountable to poor solubility
and low permeability.

Solubility is an important element to achieve the desired concentration of drugs in the systemic
circulation for achieving required pharmacological response. Poorly water soluble drugs often require
high doses to reach therapeutic plasma concentrations after oral administration. Low aqueous
solubility is the major problem encountered with formulation development of new drugs and
generic development [3]. To overcome this problem there are many techniques for: (i) solubility
and/or dissolution enhancement including, primarily: particle size reduction (see for example [4]),
co-solvents [5], pH adjustment [6], and (ii) dissolution rate enhancement including mostly: liquisolid
techniques (e.g., in [7�10]), solid dispersions [11], freeze drying [12], spray drying [13], emulsions [14],
nanosuspentions [15], liposomes [16], surfactant systems [17], complexation with cyclodextrins [18],
and hot-melt extrusion [19].

The choice of the enhancement method is crucial and depends on the drug and excipient
physicochemical properties. Lyophilisation has been used to enhance the solubility of some hydrophobic
drugs such as nifedipine [20]. Freeze drying can be used for formulations development of heat sensitive
drugs, where other heat base methods like hot-melt extrusion might fail [21].

Bendroflumethiazide is the active ingredient used in this research, the drug is practically insoluble
in water, soluble in ethanol; it is a diuretic, antihypertensive agent for blood pressure treatment,
it is available in the market as 2.5 mg and 5 mg dose tablets [22]. There were attempts in the
past to enhance this drug solubility/dissolution including spray drying process [12,23], using solid
dispersion formulations with polymers such as polyvinylpyrrolidone, polyethylene glycols [24];
however, these polymers have certain limitations, such as a tendency to crystallise and an inability to
stabilise some active ingredients in the solid phase [25]. In this current study, bendroflumethiazide
with various sugar molecules-based dissolution enhancing carriers (namely, hydroxyl-propyl gamma
cyclodextrin, gluconolactone and trehalose) were processed by the lyophilisation and physical mixing
techniques. Sugars are known to enhance dissolution of poorly water-soluble drugs [26], however, this is
based on drugs’ chemical structures hence each drug is unique in its own. To the best of our knowledge,
based on a literature search, there has been no attempt to enhance bendroflumethiazide dissolution
using physical mixing and freeze drying methods with the chosen sugar molecules-based excipients.

Cyclodextrin: (2-hydroxypropyl)--cyclodextrin is a family of cyclic oligosaccharides with a
hydrophilic outer surface and a lipophilic central cavity, with toroidal or cone shaped, as a result
of their molecular structure and shape, they possess a unique ability to act as molecular containers
by entrapping guest molecules in their internal cavity. Typical cyclodextrins, contain a number of
glucose monomers ranging from six to eight units in a ring molecular, they are � (alpha)-cyclodextrin:
6-membered sugar ring, � (beta)-cyclodextrin: 7-membered sugar ring,  (gamma)-cyclodextrin:
8-membered sugar ring [27], cyclodextrin has been used successfully as a solubiliser for many
hydrophobic drugs such as furosemide, diclofenac, ketoconazole [28].

Gluconolactone is a polyhydroxy acid, lactone or oxidized derivative of glucose, a white odourless
crystalline powder, freely soluble in water. It was utilized as a potential carrier to improve the
dissolution rate of carbamazepine from physical mixtures and solid dispersion formulations [29].

Trehalose is a disaccharide formed by a 1,1-glucoside bond between two �-glucose units,
freely soluble in water, and used as a carrier to increase protein stability, trehalose is used with protein
formulations to prevent degradation and to enhance proteins’ stability [30] and it was used in this study
to investigate its effect on drug dissolution.

The aim of this study was to evaluate the effectiveness of the above-mentioned excipients with
physical mixing and lyophilisation techniques on dissolution performance of bendro�umethiazide,
by tracking morphological and physicochemical drug characteristics during this enhancement process.
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2. Materials and Methods

2.1. Materials

Bendroflumethiazide is a white crystalline powder, obtained from Sigma-Aldrich (Dorset, UK).
Cyclodextrin: (2-hydroxypropyl)--cyclodextrin, gluconolactone is a polyhydroxy acid (PHA),
and trehalose (a disaccharide a white odourless crystalline powder) were obtained from Sigma-Aldrich
(Dorset, UK). All materials and chemicals were of analytical grade and used as obtained.

2.2. Methods

2.2.1. Calibration Curve

The calibration curve is needed to calculate the concentration of the drug. The calibration curve
(Figure 1) was constructed (by dissolving the drug in a solution of 0.1 M NaOH) to establish the
equation needed to calculate the drug concentration in relative to its absorbance at wavelength 273 nm
using M501 single beam scanning ultra-violet spectrophotometer, Spectronic Tudor (Leeds, UK).
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2.2.2. Physical Mixing

In physical mixing, the drug, bendroflumethiazide, was mixed with one of the three chosen excipients,
(2-hydroxy-propyl)--cyclodextrin, gluconolactone, trehalose, in three different drug-excipient w/w ratios:
1:1, 1:2, 1:5 using mortar and pestle. A pestle and mortar were used in the mixing process and a standard
operation procedure similar to that of extemporaneous dispensing powders’ manufacture was followed.
If sequential building up the amount of ingredients in the mortar took place, then the drug was initially
mixed with an approximately equal amount of diluent (excipient), and a further amount of the diluent,
equal to the amount of materials in the mortar, was added and mixed. This process was continued until
the full amount of the excipients had been added, then the full contents were mixed in the mortar for
10 min. This process resulted in a form of neutral mixture (the constituents have no tendency to mix
freely or segregate spontaneously once work has been input to mix them [31]) or mixture where two or
more substances are physically mixed but not chemically combined. This means that the change can
be reversed.

2.2.3. Lyophilisation-Freeze Drying

Lyophilisation or freeze-drying process, is a dehydration process used to preserve a perishable
material. Freeze-drying works by freezing the material and then reducing the surrounding pressure
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to allow the frozen water in the material to sublimate directly from the solid phase to the gas phase.
Once the ice is sublimated, the contents of the solutions are freeze-dried and can be removed from the
freeze dryer. In this research, lyophilisation was conducted on powdered formulations, by dissolving
the powder admixtures in ethanol: water (50:50, this ratio was chosen as it resulted in complete
solubility of the powders), and then the solutions were subjected to freezing at �85 �C, then lyophilised
using a freeze drier (VirTis freeze drier, BioPharma, Boston, MA, USA).

3. Characterisation of Physically Mixed and Lyophilised Bendro�umethiazide Samples

3.1. Dissolution Studies

In vitro drug dissolution studies were performed on pure drug (5 mg) and each of the lyophilised
and physically mixed formulations equivalent to 5 mg drug in hard capsules size 0, using USP
dissolution apparatus II (Caleva Ltd., Dorset, UK). In this method, distilled water was used as a
dissolution medium. The capsules containing formulations were placed in a dissolution medium of
900 mL at a temperature of 37 � 1 �C and stirred at a paddle speed of 100 rpm. Moreover, ten millilitres
of the samples were collected at intervals 5, 10, 15, 20, 25, 30, 45, 60 and 90 min and were replaced by
10 mL (an equal amount) of distilled water to maintain a constant volume. Then the collected samples
were analysed via UV spectrophotometer at 273 nm for determination of the drug content using the
calibration curve (Figure 1); the absorbance of the used excipients in the dissolution medium at 273 nm
has been checked and there was no absorbance interference from those excipients. The dissolution
experiment was performed in triplicate to compare the percentage drug released from lyophilised or
physically mixed formulations and pure drug forms.

3.2. Fourier Transform Infra-Red Spectroscopy (FT-IR)

After freeze-drying or physical mixing, where the drug and three different vehicles were mixed
in different ratios, it was essential to con�rm how the structure and �nger print area of the drug was
affected during these processes. Fourier Transform Infra-Red spectroscopy (FT-IR) was performed
using SHIMADZU (Buckinghamshire, UK), class 1 laser product (Buckinghamshire, UK). The spectra
were measured over the range between 4000�500 cm�1, and the resolution used was 4 cm�1. FT-IR has
two main advantages: �rstly, the results are obtained very quickly, and secondly, the required amount
of the sample is relatively small.

3.3. Scanning Electron Microscopy�SEM

SEM, Hitachi S3000N model (Hitachi High-Technologies UK-Electron Microscopes, Wokingham,
Berkshire, UK) was used to investigate the effect of the freeze drying process on the surface morphology
of the powdered formulations. Alongside other analyses, a comparison of the shape and morphology
of pure drug crystals, before and after lyophilisation, helps to make further interpretations and gain a
deeper understanding the drug dissolution rate enhancement after freeze drying process. Each sample
was attached, using a double sided carbon adhesive tab, to a 15 mm diameter aluminium specimen
stub (Mikrostik adhesive, Agar Scienti�c, Stansted, UK), then the samples were sputter-coated with a
mixture of thin layer Gold/Palladium to allow samples to be electrically conductive. This was carried
out using a Quorum technology (Polaron range) SC760 (East Sussex, UK), whereby the samples are
exposed to Argon atmosphere at 10 Pa. The samples were coated at a process current of 18�20 mA for
2 � 105 s with a turning through 180 degrees in between, the magni�cation was �200.

3.4. Differential Scanning Calorimetry�DSC

Differential scanning calorimetry, or DSC, is a thermal analysis technique in which the difference
in the amount of heat required to increase the temperature of a sample and reference is measured as a
function of temperature. Both the sample and reference are maintained at nearly the same temperature
throughout the experiment. Generally, the temperature programme for a DSC analysis is designed
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such that the sample holder temperature increases linearly as a function of time. The reference sample
should have a well-de�ned heat capacity over the range of temperatures to be scanned. The used DSC
was Q 1000 TA (TA Instruments, Ghent, Belgium). The DSC was calibrated for temperature using
pure Indium standard. DSC hermetically sealed aluminium sample pans were used with powdered
formulations weighing about 3 mg and loaded under nitrogen at a �ow rate of 50 mL/min. The pans
were scanned from 0 �C�300 �C, with a rate of 10.0 �C/min.

3.5. Statistical Analysis

The t-test was applied and results are quoted as statistically signi�cant when p < 0.05.

4. Results and Discussion

4.1. Dissolution Studies

For physically mixed samples, the dissolution studies (Figure 2) show that physical mixing
signi�cantly increased the percentage of drug release with time, where the p value was <0.05,
with nearly a 100% release within an hour, compared with just less than 20% for the pure
drug without enhancing excipients. All drug vehicles formulas showed more than 55% release
within 30 min and by the end of this test, after 90 min the dissolution extents were as follows:
(drug-cyclodextrin 1:5 (99.79%)), (drug: trehalose 1:2 (99.69%)), (drug: gluconolactone 1:2 (97.85%)).
Gluconolactone has been used to be a potential hydrophilic carrier to improve the dissolution
rate of a hydrophobic drug such as carbamazepine, using physical mixtures and solid dispersion
formulations [29]. Moreover, gluconolactone improved the dissolution rate of a poorly water soluble
piroxicam [32]. Cyclodextrins were used as solubilisers and successfully enhanced poorly soluble
drugs (as a result of complex formations due to their unique molecular structures which act as
containers for entrapping guest molecules in their internal hydrophilic cavities) such as Nor�oxacin,
Meloxicam, Celecoxib, Valsartan, Glibenclamide and many others [17,28,33], To the best of our
knowledge, Trehalose has not been used as a drug solublizer before, and its dissolution enhancements
for bendro�umethiazide show a promising opportunities to be used with other poorly soluble
drugs. Generally, physical mixing of the drug and excipients did not exhibit signi�cant dissolution
improvement; however, in this study, the chosen excipients with the physical mixing process were
successful at enhancing bedro�umethazide dissolution.
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For freeze dried drug samples, there has been a considerable improvement for drug dissolution
rate (Figure 3) via lyophilisation process within quiet short period; 66�97% of the drug was released
within an hour, compared to 20% for the pure unprocessed drug. Gluconolactone and trehalose were
superior over cylodextrin at its lower ratios. After 90 min the dissolution pro�les reached 99.75% for
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(drug-cyclodextrin 1:5); 98.98% for (drug-gluconolactone 1:1); 97.23% for (drug-cyclodextrin 1:5) and
93.18% for (drug-trehalose 1:5). There were no signi�cant differences (p > 0.05) for drug dissolution
pro�les using gluconolactone at all used ratios 1:1, 1:2 and 1:5. Also, there were no signi�cant
differences (p > 0.05) for drug dissolution pro�les using trehalose at all used ratios. However, there
were signi�cant differences (p < 0.05) for drug dissolution using drug-cyclodextrin 1:1 or 1:2 versus
drug-cyclodextrin 1:5.
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4.2. Fourier Transform Infra-Red Spectroscopy (FT-IR) Results

The FT-IR is essential to establish any changes within characteristic functional group area, peaks
movement, reduction, shifting or any altering to the characteristic peaks within finger printing area
(a specific unique characteristic region of peaks for each compound in the FT-IR spectrum) should be
notified. These changes reflect what happened to specific functional group, and how they were affected
to that change. According to Beer’s law, the absorptivity of a material is related to the concentration of
that material. Concentration is very important for the peak intensity; bonds between atoms vibrate in
a specific way depending on other connecting atoms and their concentration [34]. The FT-IR test for
physically mixed and lyophilised samples (Figures 4�6) did not show any shifting in the peaks location
(Figures 4 and 5), a part from drug-gluconolactone physical mixtures and lyophilised samples. A new
peak appeared between 1715�1730 cm�1 due to ketone functional group C=O stretching (Figure 6),
but the intensity varied depending on the added excipients and their ratios. The FT-IR spectrum of the
drug showed reduced peak intensity after adding gluconolactone, cyclodextrin, and trehalose in ratio 1:1,
1:2, 1:5. The drug’s peak intensities reacted in inverse proportion to the concentration of the excipients,
and proportionally to a mount of the drug, i.e., for higher drug-excipient ratios, the amount of drug was
less, therefore, the drug peak intensities were reduced. A similar phenomenon occurred in the literature,
supporting the explanation that, when the concentration of carriers in solid dispersion formulations of
carbamazepine-gluconolactone increased to 1:4, the intensity of the drug peak significantly reduced,
and it was similarly explained that this could be due to the presence of less carbamazepine in these
samples [29]. Dissolution studies supported this phenomenon as the dissolution rate was higher when
the excipients ratio was increased. The spectra of drug-cyclodextrin and drug-gluconolactone, show how
significantly the peak intensity was reduced compared to the spectrum of pure drug, meaning that
excipients may solubilise the drug within them at the molecular level to large extent as confirmed by
DSC data as well. Drug-cyclodextrin peaks in the finger print area between 3263.56 cm�1�3439.08 cm�1,
and characteristically for primary Amine (N�H) stretching, the vibration was reduced significantly in
direct proportion to the concentration. In the range between 1516.05 cm�1�1616.35 cm�1 there were
significant reductions for the aromatics in ring C�C stretching and other clear reductions in the area
between 1250 cm�1�1335 cm�1 C�N aromatic amine stretching [34].
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colour): Drug: gluconolactone 1:2; 3 (red colour): Drug: gluconolactone 1:1.

4.3. Differential Scanning Calorimetry (DSC)

DSC was used for the investigation of any interaction between the drug and the used
excipients [6,20,35]. The DSC thermogram for the pure drug shows a sharp endothermic peak at
235.71 �C corresponding to its melting point Tm, and a high enthalpy of 769.81 J/g. This peak is an
important indication of any changes to the physical or chemical characteristics of peak loss or peak
shifting; this indicates the drug’s change in nature. The Bendro�umethiazide peak was shifted to
lower Tms from 235.71 �C as a pure drug to 211.17 �C, 206.99 �C, 203.70 �C after physical mixing
with gluconolactone 1:1 1:2, 1:5 respectively and a reduction to the enthalpy was shown (Figure 7A).
The signi�cant reduction in Tm and enthalpy energy after physical mixing does indicate that the drug
crystallinity was reduced with the presence of excipients or some of the drug was soluble at a molecular
level in the excipient. In addition, a eutectic mixture of bendro�umethiazide and gluconolactone
may be formed [29], and from the literature, eutectics have been shown to have many advantages
including improved thermodynamic functions due to greater molecular mobility, high free energy,
and weaker intermolecular interactions. Therefore, they should exhibit high solubility and faster
dissolution [36,37]. Dissolution testing supports this result, as gluconolactone shows a signi�cant
improvement in the dissolution of the drug. The drug behaviour with cyclodextrin physical mixing
was not different (Figure 7B), Tm shifted to lower temperatures and the enthalpy reduction was up to
305.25 J/g, 159.7 J/g, 44.64, J/g in drug -excipient ratio 1:1, 1:2, 1:5 respectively (Figure 7B), suggesting
a reduction in the drug crystallinity and hence improvement of its dissolution pro�le. In the same way,
DSC thermograms for trehalose samples have approved the enhancement for the drug dissolution,
as Tm and enthalpy were reduced (please refer to Figure 7C).

For lyophilised samples (Figure 8), the peaks behaviours were different. In addition to Tm and
enthalpy reduction, some peaks disappeared and others were shown to melt with decomposition.
The reason for this might be that the drug is completely solubilised in the formulations and molecularly
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dispersed within their excipients. This led to an improvement in the drug dissolution characteristics
after addition of the excipients in different ratios. In drug-gluconolactone 1:1, 1:5, the drug peaks
disappeared, for ratio 1:2 Tm shifted down to 206.09 �C, and enthalpy to 188.1 J/g (Figure 8A)
compared to the pure drug. For drug-cyclodextrin Tm was reduced to 224.55 �C, 221.59 �C, 219.96 �C,
and enthalpy was reduced up to 152.9 J/g, 87.78 J/g, 38,01 J/g for the ratio of 1:1, 1:2, 1:5 respectively
(Figure 8B). DSC data for drug-trehalose samples (which are in agreement with the drug dissolution
results versus pure drug) are shown in Figure 8C. DSC thermograms of the used excipients are
shown in Figure 9 for comparison with those after inclusion of the drug in either physically mixed or
lyophilized samples.Pharmaceutics 2018, 10, x FOR PEER REVIEW  11 of 18 
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Figure 8. DSC data for lyophilised drug with excipients. (A) DSC for drug-gluconolactone after
freeze drying; (B) DSC for drug-hydroxyl propyl -cyclodextrin after freeze drying; (C) DSC for
drug-trehalose after freeze drying.
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4.4. Scanning Electron Microscopy—SEM 

SEM (Figure 10) was used to investigate the morphology changes on the drug and used 
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drug is a white powder, containing rectangular pr ism crystals [38]. Two excipients (gluconolactone 
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Figure 9. DSC data for pure excipients. (A) DSC for pure gluconolactone; (B) DSC for hydroxyl propyl
-cyclodextrin; (C) DSC for trehalose.

4.4. Scanning Electron Microscopy�SEM

SEM (Figure 10) was used to investigate the morphology changes on the drug and used excipients,
prior to and after lyophilisation to see the morphological changes after this process. The drug is a white
powder, containing rectangular prism crystals [38]. Two excipients (gluconolactone and trehalose) are
amorphous powders. The morphology of the drug and excipients does not show a big change in the
shape of drug prism crystals in the amorphous state of the excipients (Figure 10A�G). This is a good
indication that the drug was stable during the lyophilisation process, and did not greatly change, as it
kept its crystallinity to a large extent after this process.
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5. Conclusions 

The used methods showed a significant enhancement in dug dissolution rate, p < 0.05. The 
dissolution studies showed that physical mixing significantly increased the percentage of drug 
release with time. Accordingly, it is feasible to apply physical mixing of this drug with the used 
excipients in the pharmaceutical industry and, hence, this will be cost effective. However, 
lyophilisation also enhanced the drug dissolution  rate and the highest drug dissolution was for 
(drug-gluconolactone 1:1) with 98.98% release within 90 min, followed by (drug-cyclodextrin 1:5) 
with 97.23%, and the lowest drug dissolution extent  was exhibited with (drug-trehalose 1:5) 93.18% 
drug release. Freeze drying is a lengthy process compared to the physical mixing. The used excipients 
and methods (physical mixing and freeze drying) pr oved their success at enhancing the dissolution 
rate of bendroflumethiazide and they might be promising methods and excipients that can be used 
to enhance dissolution of other hydrophobic drugs. 
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5. Conclusions

The used methods showed a signi�cant enhancement in dug dissolution rate, p < 0.05.
The dissolution studies showed that physical mixing signi�cantly increased the percentage of drug
release with time. Accordingly, it is feasible to apply physical mixing of this drug with the used
excipients in the pharmaceutical industry and, hence, this will be cost effective. However, lyophilisation
also enhanced the drug dissolution rate and the highest drug dissolution was for (drug-gluconolactone
1:1) with 98.98% release within 90 min, followed by (drug-cyclodextrin 1:5) with 97.23%, and the lowest
drug dissolution extent was exhibited with (drug-trehalose 1:5) 93.18% drug release. Freeze drying is a
lengthy process compared to the physical mixing. The used excipients and methods (physical mixing
and freeze drying) proved their success at enhancing the dissolution rate of bendro�umethiazide and
they might be promising methods and excipients that can be used to enhance dissolution of other
hydrophobic drugs.
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