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ABSTRACT This paper presents a novel approach, adaptive spectrum noise cancellation (ASNC), for motion
artifacts removal in photoplethysmography (PPG) signals measured by an optical biosensor to obtain clean
PPG waveforms for heartbeat rate calculation. One challenge faced by this optical sensing method is the
inevitable noise induced by movement when the user is in motion, especially when the motion frequency is
very close to the target heartbeat rate. The proposed ASNC utilizes the onboard accelerometer and gyroscope
sensors to detect and remove the artifacts adaptively, thus obtaining accurate heartbeat rate measurement
while in motion. The ASNC algorithm makes use of a commonly accepted spectrum analysis approaches in
medical digital signal processing, discrete cosine transform, to carry out frequency domain analysis. Results
obtained by the proposed ASNC have been compared with the classic algorithms, the adaptive threshold peak
detection and adaptive noise cancellation. The mean (standard deviation) absolute error and mean relative
error of heartbeat rate calculated by ASNC is 0.33 (0.57) beats · min−1 and 0.65%, by adaptive threshold
peak detection algorithm is 2.29 (2.21) beats ·min−1 and 8.38%, by adaptive noise cancellation algorithm is
1.70 (1.50) beats ·min−1 and 2.02%. While all algorithms performed well with both simulated PPG data and
clean PPG data collected from our verity device in situations free of motion artifacts, ASNC provided better
accuracy when motion artifacts increase, especially when motion frequency is very close to the heartbeat
rate.

INDEX TERMS Adaptive spectrum noise cancellation, heartbeat rate measurement, wearable device, PPG,
motion artifacts.

I. INTRODUCTION
In aging societies, stroke and cardiovascular diseases [1] have
become the main causes of disability and death [2]. Recent
figures showsmortality caused by diseases of the heart among
older people (≥60 years) constitute up to 70% of deaths
in the United States [3]. In addition, the aging population
creates unprecedented challenges for long-term care in many
countries around the world [4]. Heartbeat Rate (HR) is one
of the physiological parameters commonly used in medical
monitoring systems in older people, hence the continuous
monitoring of heart activities has been deemed as a key
enabler in tackling this challenge.

With advances in the development of microprocessors and
micro-sensors, many conventional medical measurements

can now be obtained using sophisticated clinical instruments.
The data from these measurements can be processed in real-
time using high-speed chips, with the data being transmitted
to mobile phones or personal computers through low-power
wireless communication technology [5]. Wearable medical
devices do not only provide low-load and non-invasive health
measurement, but also a long term and convenient way to
continuously monitor elderly people without disturbing their
life or impacting their normal lifestyle [6].

One of the methods used for non-invasive health mea-
surement is Photoplethysmography (PPG). This method is
considered to be the most effective and practical means
in wearable devices [7] for monitoring the cardiovascular
activities. PPG signal is often obtained using a biosensor
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that illuminates the skin via a light source and detects
the emission density reflected back or through body from
that light source. This method can detect blood volume
changes in the microvascular tissue based on the change in
blood color as the pulse wave travels through the tissue [8].
Cui et al. [9] showed experimental results that the peak wave-
length sensitivity to blood pulsations ranges from 510 nm to
590 nm, so green light with a wavelength of 525 nm is usually
chosen for the PPG light source in integrated biosensors.

The capability to detect subtle changes in heart activi-
ties requires accurate HR measurement. Due to the indirect
measurement nature, wearable devices inevitably face chal-
lenges caused by baseline drift and Motion Artifacts (MAs),
especially during exercise and under free living condi-
tions [10]. Although the classical Adaptive Threshold Peak
Detection (ATPD) algorithm is capable of resolving baseline
drift in PPG signal analysis by detection of peak positions
in the time domain [11], ATPD is extremely vulnerable
to MAs. Adaptive Noise Cancellation (ANC) has the abil-
ity to reduced unwanted MAs by introducing multi-sensor
accelerometer and gyroscope signals and it is being widely
used for cancelling MAs and noise in PPG signals [12].
However, the ANC algorithm fails if the MAs have a close
enough main frequency component to the heartbeat rate
in the PPG signal. Spectrum Subtraction (SS) has been
another stream of widely adopted noise cancellation method
in PPG signals analysis [13]–[15]. Fukushima et al. [14]
subtracted the spectrum of acceleration data from the
measured PPG signal to get the clean heartbeat signal.
Y. Zhang et al. [15] combined the Ensemble Empirical Mode
Decomposition (EEMD) with SS method to remove unde-
sirable MAs in a wrist-type device and track HR changes
during subjects’ physical activities. Subtraction of spec-
trum works if the amplitude and envelope of frequency
spectrum can be predefined but it is not suitable for
situations where signal amplitude and envelope changes
dynamically.

In this paper, adaptive spectrum noise cancellation
approach is proposed to obtain accurate HR measurement
in free living condition or during physical exercise. ASNC
adaptively incorporates the motion artifacts spectrum data
obtained from a multi-sensor accelerometer and gyroscope to
remove motion noise contained in PPG signals in frequency
domain. Simulation and experimental results have shown that
ASNC performs more robustly than spectrum subtraction
method and outperforms the ATPD and ANC algorithms
quantitatively based on the measured HR in mean±standard
deviation matrix.

The rest of the paper is organized as following: Section II
states the background of the PPG foundation and the related
work about ATPD and ANC algorithms. Section III intro-
duces the ASNC algorithm theory and structure. Section IV
describes the simulation, experiment and comparison of
the algorithm. Section V concludes the paper with future
work.

II. BACKGROUND
A. PPG FOUNDATION
Since PPG was first proposed by Hertzman, it has gained
widespread use in recent years [16]. The PPG signal car-
ries information about the cardiovascular system such as
HR, oxygen saturation (SpO2), respiration and blood pres-
sure [17]. It is often applied to take measurement at the skin
surface, such as the fingertip, earlobe, forehead and wrist in
non-invasive, low-cost and portable biosensors [18].

FIGURE 1. PPG signal with heartbeat rate R-R time interval.

A typical PPG pulse signal measured by reflective sensor is
shown in FIGURE 1. The HR, which is the frequency of heart
contractions measured as the number of beats per minute
(beats ·min−1), is the basic vital sign extracted from PPG and
related to the safety and death of human beings [19]. HR is
normally calculated by using the R-R interval.

The normal resting HR of an adult human ranges
from 60-100 beats ·min−1 [3], which is defined in situations
when a person is awake and calm. For elite athletes, it is com-
mon to have a resting HR between 36 and 50 beats ·min−1.
The maximum HR (HRmax) is the highest HR that a per-
son can achieve during progressive maximal exercise, and
decreases with age [20] with an approximation formula
HRmax = 220− Age. It is often chosen 0.8 Hz – 3.0 Hz
representing a HR range from 48-180 beats · min−1 as the
pass band filter range.

FIGURE 2. PPG raw signal measured on the wrist by a wearable watch in
motion. The distortions include noise, motion artifact together with the
baseline drift.

There are other factors affecting the measurement of clean
PPG signals. Those challenges are the noise introduced by
respiration, ambient light disturbance from sunlight, electric-
ity frequency noise and motion artifacts [21]. FIGURE 2 is
a sample of PPG raw signal obtained from a wrist wearable
device, showing the distortions caused by noise and artifacts:

As shown in FIGURE 2, one can see that the baseline
drift varies severely and the HR peaks are merged within
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the MAs peaks. The baseline drift (a slowly varying signal
in PPG) originated from a low frequency disturbance in the
PPG signal caused by respiration and the autonomic ner-
vous system [22]. To overcome the baseline drift, researchers
have proposed many filtering approaches based on the fre-
quency characteristics of PPG signals and noise [23], such
as infinite impulse response (IIR) filter and finite impulse
response (FIR) filter. The IIR bandpass filter is easy to design
and performs well for detrending the baseline wander and
minimizing undesirable distortion [24], thus often chosen to
preprocess the PPG signal.

Researches have also been focused to overcome the MAs
due to movement of wrist or body that distort the PPG
raw signal [25]. Naraharisetti and Bawa [26] reviewed and
compared five common signal processing methods for MAs
cancellation, i.e. the ANC, Independent Component Anal-
ysis (ICA), Singular Value Decomposition (SVD), Wavelet
Transform (WT) and cycle by cycle Fourier Series Analy-
sis (FSA). It was shown that ANC has good tolerance to
relatively small distortions from MAs. Santos et al. [24]
presented a solution using accelerometer data to removeMAs
on a LAVIMO device for physical exercise utilizing ANC and
achieved a satisfactory result. Although ANC is a valuable
algorithm for MAs reduction, clean PPG signal and MAs
share a superimposed frequency zone whichmakes it difficult
for the general IIR filter, ATPD or ANC to suppress MAs.

B. ADAPTIVE THRESHOLD PEAK DETECTION
The ATPD algorithm has played important role for temporal
signal analysis that depends on peak positions [11], [27].
In mathematics, a peak is a local maximum point [27] that can
be identified by detections of zero-crossings in the differences
(slope sign change) between a point and its neighbors in the
time domain. The use of ATPD algorithm on PPG signal was
reported by H. S. Shin et al. in his work [28].

The ATPD algorithm deals with local maxima or minima
detection in waveforms. When the algorithm is used to detect
the peaks in PPG signal to calculate HR, an adaptive thresh-
old needs to be applied to differentiate good (valid) or bad
(invalid) peaks that should contribute to count the number of
actual heartbeats. With the number of valid heartbeat peaks
in a given duration of time, HR can be calculated by (1):

HR = 60× Npeaks/1t (1)

where Npeaks is the number of valid peaks, and1t is the time
interval in seconds between the first peak and the last peak.

As shown in the FIGURE 3, ATPD algorithm performs
well in situations with baseline drift by elimination of the
smaller peaks based on the amplitude and time interval
from the local maxima. However, when the PPG signal is
mixed with strong MAs resulting in significant baseline
increment or decrement, the adaptive threshold method will
fail in correctly picking up the peaks, e.g. the peaks at
about 11 and 13 s are missed due to significant baseline
decrement.

FIGURE 3. The result by adaptive threshold peak detection for filtered
PPG signals in HR measurement.

C. ADAPTIVE NOISE CANCELLATION
ANC is a time domain approach to estimate clean signal
distorted by additive noise or interference [29]. The ANC
algorithm is widely used to remove noise in biological sig-
nals, especially PPG. The basic idea of the ANC algorithm
is to suppress the noise and MAs in the distorted PPG sig-
nal through an adaptive filter. The method uses a primary
input containing the expected signal and a reference input
containing noise highly correlated with the primary signal
in some unknown way [30]. The raw PPG signals measured
by optical biosensor is a mixture of primary and reference
input containing heartbeat and MAs; The data obtained by
accelerometer and/or gyroscope [24] can be used as reference
input to estimate MAs. As a result, MAs as the reference
signal are adaptively subtracted from the raw PPG signal to
reveal the primary input, i.e. the clean PPG signal.

FIGURE 4. The block diagram of the ANC algorithm. s0 is the clean PPG
signal and primary input of the system, s is the raw PPG signal measured
by a PPG sensor, m0 is the MAs and reference input of the system, m̄ is
the estimation of the MAs calculated by the adaptive filter. The output of
ANC is y which is the estimated data that best fit to clean PPG signal.

As shown in FIGURE 4, the raw PPG signal is calculated
by the following equation:

s = α(s0 + m0) (2)

where α is the gain factor between the PPG signal and
biosensor output. For simplicity without losing generality, the
multiplication factor α is assumed to be equal to 1 in the
digital signal processing computation.

Given= s−m̄, α = 1 and taking expectations of both sides
of (2), one has:

E(y2) = E[(s0 + m0 − m̄)2]

= E(s20)+ 2E[s0(m0 − m̄)]+ E[(m0 − m̄)2] (3)
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The signal energy E
(
s20
)
represents themean of the squared

amplitude [31]. The raw PPG signal s0 is independent from
the MAs disturbance m0 and estimation m̄ resulting in
2E[s0 (m0 − m̄)] approaches to 0. In the meantime, s0 has
no input to the adaptive filter, thus the adjustment of the
adaptive filter to minimize E

(
y2
)
will not affect the signal

energy E
(
s20
)
. Hence, the minimum output energy for (3) is:

min E
(
y2
)
= E

(
s20
)
+ min E[(m0 − m̄)2] (4)

Minimizing E
(
y2
)

corresponds to minimizing
E[
(
m0 − m̄)2

]
and MAs estimation will approach to m0.

In other words, y is the least-squares estimation of s0.
Based on the above correlation analysis, a dynamic adap-

tive model predicting the distortion of the PPG signal in
response to acceleration and rotation can be built. The adap-
tive filter model can be implemented as a Least Mean
Square (LMS) filter and Recursive Least Square (RLS) filter.
In practice, the adaptive filter is often based on a FIR-type
LMS filter with a specific time window. The coefficients of
the adaptive filter are then calculated in real-time to minimize
the output energy thus obtaining the MAs estimation.

III. ADAPTIVE SPECTRUM NOISE CANCELLATION
A. OVERALL STRUCTURE
In this section, the ASNC approach for suppression of MAs
from distorted PPG signals in the frequency domain is pre-
sented to improve the accuracy of HRmeasurement. The pro-
posed ASNC algorithm is composed of three steps: (1) Raw
data collection and processing; (2) time domain to frequency
domain conversion and (3) adaptive MAs removal and HR
calculation. The flowchart is shown in Fig. 5.
Step 1: Raw data collection and preprocessing. The

onboard biosensor samples the raw PPG and the integrated
accelerometer and gyroscope tracks the motion acceleration
and angular velocity data. Both data sets are sent to mobile
devices over low energy Bluetooth ready for further analysis.
On mobile devices, PPG raw data is preprocessed by a band-
pass IIR filter to eliminate the low frequency baseline shift
and most of the high frequency noise whist the motion data is
pre filtered by a low-pass IIR filter. The filtered motion data
is referred as the MAs Estimation (MAE) in the paper.
Step 2: Time domain to frequency domain conversion.

All the pre-processed data are firstly segmented by sliding
windows whose size is chosen to be approximately twice
that of the maximum HR for adequate frequency resolution.
Then the segmented data are fed into Discrete Cosine Trans-
form (DCT) process to be converted into frequency domain.
Finally, the envelope detection smooths out the outline of the
signal envelop by cubic spline to compute the contours of
PPG and MAs spectrum in the frequency domain.
Step 3: Adaptive MAs removal and HR calculation. In this

step, the MAs spectral contour is adapted to an equivalent
amplitude and phase to the one contained in the PPG signal
so that by subtracting theMAs contour envelop from the PPG
spectral envelope in the frequency domain the clean PPG

FIGURE 5. Flowchart of the Adaptive Spectrum Noise Cancellation (ASNC)
algorithm.

can be revealed. Finally, a main-harmonic frequency peak
decision tree is used to pick up the appropriate peak in the
clean PPG within the HR frequency zone to calculate the HR.

B. ADAPTATION PROCESS
Assumption1:The clean PPG signal is independent fromMAs
disturbance andMAs disturbance is digitally overlapped with
the clean PPG signal through a linear physical process [32].
The noises introduced by respiration, environmental light
and electricity fluctuations can be filtered by appropriately
designed IIR band filter.

FIGURE 6 shows the proposed ASNC algorithm block
diagram.

The objective of the ASNC algorithm is to find an optimal
system output y that can best fit to the clean PPG signal s0.
The raw PPG data s compromises of the clean PPG signal s0,
MAD w and noise u:

s = α(s0 + w+ u) (5)

where u is the noise from environmental light disturbance and
baseline shift.

According to our Assumption, the MAE m read by
accelerometer and gyroscope can be linearly represented by

1Although moving bodies will affect one’s HR and cause the change of
clean PPG signal, this variance can be compensated by the rapid updated
measurements. There is a mechanism to avoid PPG signal saturation, hence
the measurement of PPG signal can be treated as a linear process. Wrist
motion can be measured by accelerometers and gyroscopes which are related
toMAs in linear fashion [40]. There are other kinds of noise as the secondary
disturbance in the algorithm.
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FIGURE 6. Adaptive spectrum noise cancellation algorithm block
diagram. The lowercase letters represent the continuous-time domain
signal and the capital letters represent the corresponding signal in the
frequency domain.

motion artifact m0 as below:

m = βm0 (6)

where β is a constant coefficient.
The MAD w is the motion interference contained in the

PPG biosensor readings through a physical process. w can be
linearly represented as following:

w = γm0 (7)

where γ is a constant weight factor.
The time to frequency domain transformation is performed

by the commonly used approach Fourier transform [33]
shown below:

X def
= X (ξ) = F[x (t)] =

∫
∞

−∞

x(t)e−2π itξdt (8)

where x(t) is the time domain signal; i is the imaginary
unit; the independent variable t represents time (in seconds),
the transform variable ξ represents frequency (in hertz). The
functions x(t) and X (ξ) are often referred as a Fourier trans-
form pair.

Taking the Fourier transform on (5) gives:

S = α(S0 +W + U ) (9)

where S, S0,W,U represent the corresponding signal in
spectrum s, s0,w, u respectively.
Substitute (9) with Y = S−W̄ and given the noiseU being

eliminated by band pass filter, one obtains:

Y = α(S0 +W )− W̄ (10)

Square both sides of (10):

Y 2
=
[
α (S0 +W )− W̄

]2
= (αS0)2 + 2αS0

(
αW − W̄

)
+
(
αW − W̄

)2
(11)

Taking expectations of both sides gives (12). As S0
is the clean PPG signal spectrogram that is uncorrelated
with the MAs spectrogram, expectation of 2αS0

(
αW − W̄

)
approaches to 0, hence it can be eliminated:

E[Y 2] = E[(αS0)2]+E[
(
αW−W̄

)2
]+E[2αS0

(
αW−W̄

)
]

E[Y 2] ≈ E[(αS0)2]+ E[
(
αW − W̄

)2
] (12)

Similar to (4), the objective of minimizing the error
between MAE and MAD is equivalent to minimizing the
output energy E

[
Y 2
]
:

min E[Y 2]≡ E[(αS0)2]+ min E[
(
αW − W̄

)2
] (13)

When E[Y 2] is minimized by the adaptive filter, the output
W̄ is then a best least squares estimation of αW . Further-
more, from (10), there is Y − αS0 = αW − W̄ , that is
when E[

(
αW − W̄

)2] is minimized, E[ (Y − αS0)2] is also
minimized.
Let h(t) be the adaptive filter:

w̄ = h ∗ m (14)

With the convolution theorem property of the FT:
X (ξ)Y (ξ) = F [x (t) ∗y (t)], the Fourier transform form
of (14) can be expressed as:

W̄ = HM = βHM0 (15)

Similarly, (7) can be turned into W = γM0, thus:

αW − W̄ = αγM0 − βHM0 = (αγ − βH )M0 (16)

When equation E[
(
αW − W̄

)2] = 0 is satisfied, the output

energy E[Y 2] = E[(αS0)
2
] reaches its minimum. The follow-

ing key formulas can be concluded:

αγ − Hβ = 0 (17)

H =
αγ

β
(18)

Equation (18) indicates thatH can be evaluated by constant
variables, and the adaptive filter can lead to satisfy αW ≈ W̄
and Y≈ αS0. As a result, the output will present the noise free
clean signal.

C. MAS ESTIMATION
To evaluate the MAs signal which distorts the clean PPG
signal, both the accelerometer and gyroscope are used in the
device.

Micro tri-axial accelerometer is used to detect magnitude
and direction of the three dimensional accelerations. It mea-
sures all forces that being applied on the sensor including
the gravity vector. It works reliably over long time period.
Every small force acting on the sensor will have effects on the
measurements, hence the following formula is used to fuse
the amplitudes of all acceleration components:

a =
√
a2x + a2y + a2z (19)

where ax , ay, az are the components of the three axes, a is
the amplitude of acceleration.

A gyroscope is a spinning wheel or disc where the axis
of rotation is free. The orientation of the spinning axis is
unaffected by tilting when the wheel is spinning due to the
conservation of angular momentum. Although the gyroscope
can obtain accurate angular momentum that is not susceptible
to external forces, the angular momentum calculated over
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time by a gyroscope tends to drift. So, the gyroscope data is
reliable only over the short term. The amplitude of gyroscope
sensor readings is fused as following:

g =
√
g2x + g2y + g2z (20)

where gx , gy, gz are the components of three axels, g is the
amplitude of angular momentum.

By combing accelerometer and gyroscope, the MAs can be
estimated as following:

m = ` · a+ (1− l) · g (0 ≤ l ≤ 1) (21)

where m is the estimation of MAs, i.e. MAD, ` is a weight
factor to fuse accelerometer and gyroscope measurements.

D. ENVELOPE DETECTION
In digital signal processing, the transformed frequency spec-
trum from time data series by spectral analysis process
using component frequencies identification is discrete and
unsmooth. It is common practice to use envelope detector
which connects all the peaks in the signal to smooth the
contour of the discrete spectrum so that we can subtract two
spectrums directly, e.g. the raw PPG and the noise contained
in PPG signal.

There are two common methods of envelope detection,
peak detection with interpolation [34] and Hilbert trans-
form [35]. The first envelope detectionmethod involves peaks
detection by down sampled signal to reduce the sampling
frequency, then intermediate values interpolation by a linear
or spline method to smooth the signal. Then the signal is pro-
cessed through a minimum-phase, lowpass filter to eliminate
the high frequency energy to obtain the envelop.

The Hilbert transform envelope detection method involves
creation of the analytic signal from the input using the Hilbert
transform. An analytic signal is a complex signal, where
the real part is the original signal and the imaginary part is
the Hilbert transform of the original signal. Mathematically
the envelope e (t) of a signal x (t) is defined as the magnitude
of the analytic signal as shown in the following equation:

e (t) =
√
x2 (t)+ x̂2(t) (22)

where x̂(t) is the Hilbert transform of x (t). However,
the envelope amplitude does not always match the actual
signal and is computational power intensive. Hence, the peak
detection with interpolation is selected in our system.

E. SPECTRUM ANALYSIS
The DFT is a common approach used to transform time series
digital signals to the frequency domain [36]. DFT is defined
as the following equation:

XDFT (k)
def
= F [x (n)] =

∑N−1

n=0
x (n) e−2π ikn/N (23)

where i is the imaginary unit; x (0), x (1), x (2) , . . . ,
x (N − 1) are the N signal samples. These samples are
further transformed into N periodic complex numbers:

XDFT (0), XDFT (2) , . . . ,XDFT (N − 1). The customary
domain k = 0, 1, . . . ,N − 1 is the frequency index.
In DFT, each X (k) is a complex number that encodes

both amplitude and phase. Since PPG and MAs signals are
real valued data while DFT represent the transformed result
in complex value form, half of the result in the frequency
domain are redundant due to conjugate symmetry feature of
the transformation.

The DCT converts a finite discrete sequence of data to
a sum of real valued cosine function and is more suitable
for handling the frequency domain data directly [37]. DCT
also has ideal frequency filter characteristics [21] where
frequencies are more concentrated on the major frequency
components. Various forms of DCT definitions are designed
for different applications. Below, the most commonly used
DCT in signal processing is given:

XDCT (k) =
∑N−1

n=0
x(n)cos[

π

N

(
n+

1
2

)
k] (24)

where XDCT is the DCT frequency domain data. The DFT is
normally implemented by the Fast Fourier Transform (FFT)
algorithm which has a complexity of O(nlogn). DCT is a
real number transform with better computational efficiency,
whereas the Fast Discrete Cosine Transform (FDCT) algo-
rithm takes only 1/6 as many steps as the FFT [38].

FIGURE 7. The comparison of DFT and DCT analysis. The spectrum of the
DFT is symmetrical around the center frequency point, while the spectrum
of the DCT only has a half of the frequency zone, i.e. the DCT is more
efficient for spectrum analysis.

FIGURE 7 shows the comparison result of DFT and DCT
frequency analysis.

Due to the dynamics of theMAs and individual differences
in the PPG, the transformed amplitudes of PPG and MAs
frequencies are often on different scales. The objective of
the ASNC algorithm is to adjust the adaptive filter h(t) to
adaptively subtract the MAs signal from the distorted PPG
signal.

Let Ŝ be PPG spectrum envelope, M̂ be MAs spectrum
envelope. What we need to find out is a suitable gain H that
matches the spectrum amplitude of PPG and MAs in order to
remove the M̂ contained in Ŝ. According to (13), this can be
achieved by minimizing E[Y 2], and we can calculate Y by the
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smoothed spectrum envelope data as below:

min E[Y 2] ≡ min E(Ŝ − M̂H )
2

(25)

The objective is to minimize (Ŝ− M̂H )
2
. Inverting the

matrix of the normal equations, the algebraic solution of the
normal equations can be written as:

H = M̂+Ŝ (26)

where M̂
+
is the Moore–Penrose pseudoinverse of M̂ and H

is proper adaptive least mean squares filter.
The adaptive filter simulates the desired filter by searching

the filter coefficients that minimize the least mean squared
error signal (difference between the desired and the actual
signal) in the frequency spectrum. It is a stochastic gradient
descent method that the filter is only adapted based on the
error.

IV. SIMULATION AND EXPERIMENT
In this section, we verify the efficacy of ASNC by applying it
in both simulated and real life scenarios for HRmeasurement.

FIGURE 8. Verity wrist-wearable watch.

A. ADAPTIVE SPECTRUM NOISE
CANCELLATION ON VERITY
The experimental platform is the Verity watch [1] shown
in Fig. 8. Verity is a wrist-wearable device intended for
continuous monitoring of users’ HR. The optical biosensor
on the back measures the PPG signal while the onboard
tri-axial accelerometer and gyroscope sensors measure the
MAs. The embedded 560 nm green light has been used for
improved environmental noise tolerance compared to red
light source. As the MAs introduced to the PPG have the
same effects on the accelerometer and gyroscope sensors, the
motions extracted can be used to compensate the MAs by
using ASNC.

Data measured by Verity is transmitted to mobile devices
using the Bluetooth low energy wireless protocol and seg-
mented into chunks of 60s. The amplitude is normalized
to 1.0. The sampling rate is 100 Hz for both PPG and MAs.

Fig. 9 shows a snapshot of both PPG signal and MAs taken
by Verity when the hand is still. As seen in the figure, their
amplitudes are in different order of scales, therefore the MAs
contained in the PPG signal cannot be subtracted directly.
However, the ANC algorithmwill still try to amplify the noise
signal to match the amplitude of the PPG signal causing an
invalid extraction of the real PPG signal.

FIGURE 9. PPG and MAs signal envelope in DCT analysis, the PPG and
MAs data are sampled at 100 Hz for 20s when the wrist is kept in still.

FIGURE 10. The result of ASNC with white noise artifacts.

By applying ASNC, the resultant spectrum are shown in
FIGURE 10. The shape of MAs spectrum is adjusted by
the adaptive algorithm to the same scale of noise in PPG,
and can be eliminated properly via subtraction. The ASNC
algorithm shows robust property based on the ‘long tail’ from
1.5 Hz to 4 Hz, and the HR frequency is the highest peak in
the PPG spectrum.

This shows the robust performance of ASNC is irrelevant
of the existence of noise compared to ANC.

To address the capability of ASNC dealing with chal-
lenges where MAs and HR have close enough frequency,
FIGURE 11 data has been used. Both MAs and HR have
frequency peaks around 1.3 Hz.

In Fig. 12, the MAs spectrum is adjusted through adaptive
filtering and matched to its counterpart in the PPG spectrum.
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FIGURE 11. PPG and MAs signal envelope in DCT analysis. The peak
frequency of PPG and motion artifacts are very close.

FIGURE 12. The result of ASNC with close frequency peak between PPG
and motion artifacts.

Fig.12 shows the MAs has been removed from the raw PPG
signal successfully and revealed the correct real PPG peaks.

As a real time HR measurement experiment. The HR
was measured simultaneously by a CE marked medical
device, called EIMO, designed and developed by iMonSys
ltd. [39], [41].

Fig. 13 shows a frame of raw PPG signal sampled from
Verity. Fig. 14 shows the PPG and MAs signal envelope in
frequency domain. There are two peak frequencies in the
PPG spectrum and both are within the range of human HR.
The lower figure shows the details of MAs in the frequency
domain, with a peak close to HR and some high frequency
noise.

Fig. 15 shows the result after applying the adaptive filter.
By the removal of MAs from the PPG signal, the second

FIGURE 13. Raw and bandpass filtered PPG signal measured by Verity.

FIGURE 14. The envelope of PPG and MAs frequency spectrum.

highest peak was eliminated and the HR can be correctly
identified and calculated.

From Fig. 13, we can observe that the distortion is much
more pronounced than the PPG signal without motion arti-
facts in the time domain. In Fig. 15, the motion peak is around
1.5 Hz and at the same time there are also 1.5 Hz peak in the
PPG signal. Following application of the ASNC algorithm,
the HR peak is revealed as 1.2 Hz. Measured by the EIMO
device, the heart rate is 72 beats ·min−1 which means 1.2 Hz
is the frequency component for actual HR.

B. COMPARISON OF ATPD, ANC AND ASNC
To validate our proposed ASNC algorithm’s performance
against ATPD and ANC algorithms systematically, sim-
ulation models of PPG, MAs and baseline wander have
been proposed for distorted PPG signal generation [21].
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FIGURE 15. PPG raw data measured in wrist with motion artifact in time
domain and displayed after discrete Fourier Transform in frequency
domain.

By altering the parameters of the models, we can examine
different combinations of HR and noises in a controlled
manner.

1) SIGNAL MODELS
The major frequency component of a PPG signal is around
0.8-3.0 Hz. The low frequency wander component gener-
ally reflects the respiration (0.15–0.4 Hz) and baseline drift
(0-0.1 Hz), and the MAs frequency is possible from 0 to
signal sampling rates. The PPG signal is periodic and can be
represented with the model below:

s0 = A0f (t0, f0,HRa) (27)

where f is the model of the simulated clean PPG signal, Ab
is the amplitude and assume it is 1.0, td is time duration set
to 20 s, f0 is sample frequency set to 100 Hz, HRa is the
actual HR.

The low frequency component of PPG contains the respi-
ration effect which is measured when a person is at rest and
involves counting the number of breaths for one minute. The
respiration is removed by low-pass filter from the standard
PPG signal, so we do not need to add extra signal to the PPG.
Hence only baseline drift ub is simulated and defined as
below:

ub =
∑0.1

fs=0
Abcos(2π fbt + ϕb) (28)

where Ab is the random amplitude of every frequency com-
ponent from 0 to 1, fb is the series of frequency points
from 0 to 0.1 Hz which is the main baseline shift frequency
component, t is the time series, ϕb is the random phase shift
from 0 to π rad.
MAs are the dominant influential noise in PPG signals

in the moving state. Therefore, the mathematical expression
of MAs effect is designed by a frequency center-moving

digital signal, and cannot be easily removed by band pass
filter. The MAs simulation model is defined as the following
equation:

ms = Ascos (2π fst + ϕs) (29)

where ms is the noise of MAs simulation, fs is the MAs
frequency point which ranges from 0.5 Hz-10 Hz overlap-
ping with the PPG signal. As is the random amplitude from
0 to 1.0 which is the same amplitude as the PPG signal. The
phase delay ϕs is random from 0 to π rad.
The raw PPG signal is then the addition of all three signals:

s = s0 + ms + ub (30)

FIGURE 16. Simulated PPG signal with baseline wander and MAs.

Fig. 16 shows a resultant PPG signal with a duration of 20 s
sampled at 100 Hz. The HR randomly changes at every step.
Variable s is the simulated signal which is the input of the
three algorithms.

2) EVALUATION
Each simulated PPG signal is fed to all ATPD, ANC and
ASNC algorithms for processing to obtain HR. Three criteria,
the absolute error, relative error and standard deviation are
used in our comparison. These criteria define a mathemati-
cal method for deriving the accuracy and uncertainty in the
measurement, i.e. the difference between the calculated HR
and the given HR used to generate the simulated PPG signal.
The absolute error of HR shows the actual scale of measured
error off the actual HR value, and the relative error shows how
large the error is in relation to the true value.

The mean of the absolute error Eabsolute is defined as:

Eabsolute =
1
N

∑N

i=1
|HRm(i)− HRa(i)| (31)

where the relative error is the ratio of the absolute error
of the measured HR to the actual HR. The relative error
expresses the ‘relative size of the error’ of the measurement
in relation to the measurement itself.

The mean of the relative error Erelative is calculated by the
following equation:

Erelative =
1
N

∑N

i=1

|HRm(i)− HRa(i)|
HRa(i)

× 100% (32)
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FIGURE 17. Comparison of the three algorithms in HR measurement
against the simulated PPG signals with baseline shift and Mas. The HR
ranges from 48 to 180 beats ·min−1.

The standard deviation (SD) denoted as σ is a measure to
quantify the dispersion or variation of a set of data values
around the mean:

σ =

√√√√ 1
N

N∑
i=1

(HRm(i)− HRa(i))2 (33)

In the experiment, the actual HR in the simulate PPG signal
is simulated from 48 to 180 beats ·min−1, with each sample
having a duration of 20 s. FIGURE 17 shows the results of the
calculatedHRm by ATPD, ANC and ASNC algorithms with a
mean of 10 attempts. One can see that the measured HR using
the ASNC approach is much closer to the actual HR than the
ATPD and ANC methods.

TABLE 1. The absolute error, relative error and standard deviation of the
ATPD, ANC and ASNC algorithms with 10 different simulation datasets.

Table 1 shows the results of Eabsolute and the mean rela-
tive error Erelative. The mean (SD) absolute error Eabsolute of
0.32 (0.57) beats · min−1 for the proposed ASNC algorithm
shows a significant improvement compared to ATPD and
ANC methods.

TABLE 2. The mean Absolute Error, Relative Error and Standard Deviation
of the ATPD, ANC and ASNC algorithm.

The following Table 2 shows the mean (SD) of the
result:

All three algorithms work well without the presence
of MAs, however the proposed new ASNC approach has
shown a significant improvement for reducing baseline shift
andMAs cancellation with more accurate HRmeasurements.

V. CONCLUSION
In this paper, the ASNC algorithm was proposed to remove
MAs noise from raw PPG signals to obtain accurate HRwhen
a human is in motion. The ASNC method consists of three
key steps: obtain and preprocess raw PPG data; transform
PPG and MAs signal from time domain to the frequency
domain; adaptive spectrum subtraction to obtain the cleaned
PPG spectrum profile for HR calculation.

We tested the ASNC algorithm on our wrist wearable
platform Verity. This algorithm is able to remove MAs and
calculate HR while in motion. In the ASNC algorithm, DCT
shows more advantages than DFT in real number computing
on magnitude response and phase distortion respects.

The ASNC algorithm has also been compared with ATPD
and ANC using simulated PPG signals with motion. The
ASNC achieves the lowest mean (SD) absolute error of 0.33
(0.57) beats · min−1 and mean relative error of 0.65%, com-
pared to those obtained using ATPD (mean absolute error
2.29 (2.21) beats · min−1; mean relative error 8.38%) and
ANC (mean absolute error 1.70 (1.50) beats·min−1; mean rel-
ative error 2.02%). The ASNC therefore shows a significant
performance improvement compared with ATPD and ANC.

Despite the efficacy of DCT in the ASNC algorithm, com-
pared with the time domain algorithmATPD, the ASNC algo-
rithm needs more memory and computational resource which
currently hinders the adoption of the algorithm process on the
Verity watch directly due to its limited hardware resources.
The combination of ASNC with ATPD and ANC may be a
direction for future research.
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