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Abstract

The objective of drug repositioning is to apply existing drugs to different diseases or medical conditions than the original
target, and thus alleviate to a certain extent the time and cost expended in drug development. Our system RESKO,
REpositioning drugs using Side Effects and Knowledge from Ontologies, identifies drugs with similar side-effects which
are potential candidates for use elsewhere, the supposition is that similar side-effects may be caused by drugs targeting
similar proteins and pathways. RESKO, integrates drug chemical data, protein interaction and ontological knowledge.
The novel aspects of our system include a high level of biological knowledge through the use of pathway and biological
ontology integration. This provides a explanation facility lacking in most of the existing methods and improves the
repositioning process. We evaluate the shared side effects from the eight conventional Alzheimer drugs, from which
sixty-seven candidate drugs based on a side-effect commonality were identified. The top 25 drugs on the list were further
investigated in depth for their suitability to be repositioned, the literature revealed that many of the candidate drugs
appear to have been trialed for Alzheimer’s disease. Thus verifying the accuracy of our system, we also compare our
technique with several competing systems found in the literature.

Keywords: side-effects; graph theory; pattern matching; protein targets; ontologies

1. Introduction

In this paper we demonstrate how adverse drug side-
effects can be used to identify potential candidates for
drug repositioning for a variety of diseases. Drug re-
purposing or repositioning involves using existing pharma-
ceutical products for diseases or problems they were not
specifically designed for. There are many advantages since
off-the-shelf drugs have undergone extensive testing and
their toxicological properties are well known, therefore the
costs are greatly reduced and also time to product delivery
[31]. Thus it is more economical to re-purpose an exist-
ing drug than develop one from scratch [16]. Difficulties
in drug development arise because diseases are often com-
plex with multi-factorial components such as interactions
between genes, proteins and the environment [7]. Further-
more, drugs that are highly selective in terms of their tar-
gets are very rare. Many patients when taking a drug will
experience unwanted side-effects as the medication may
also also interact to varying degrees with non-target pro-
teins [52]. However, this feature can be used to search for
drugs with similar side-effects that might target the defec-
tive biological functions more effectively than conventional
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drugs. Since there is wealth of freely available drug and
protein databases, drug repositioning is an ideal applica-
tion area for knowledge based systems and computational
statistics.

However, not all of the drug repositioning discoveries
are through computational intelligence techniques. Inter-
estingly, there are many examples where unanticipated
side-effects have proven to be beneficial to patients suf-
fering from unrelated problems to the original purpose of
the drug thus allowing the drugs to be re-deployed [53].
The most often cited example is Sildenafil, a drug devel-
oped by Pfizer which was intended to treat heart problems
by allowing better blood flow. It was discovered to have
a particular side-effect on the male participants, it was
later marketed as Viagra, the drug now has annual sales
in excess of $1.6 Billion [1]. Other notable drugs such as
the infamous Thalidomide that caused birth defects in the
1950s, has been redeployed to treat leprosy and multiple
myeloma [45].

A deeper understanding of the causes of disease is nec-
essary, in particular knowledge of the genetic differences
between individuals will eventually lead to improved treat-
ments [40]. This has only recently been made possible
by the development of advanced genomic and proteomic
techniques which are able to provide detailed and accu-
rate data on individual cellular processes [12]. We are
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Figure 1: Overview of system operation, showing database sources, data flow and statistical analysis

now able to determine which genes (and proteins) interact
together and form related functional groups that modify
the behavior and ultimately the health of the cell [36]. Re-
cent bioinformatic studies on cooperating modular groups
of genes have suggested that diseases themselves are net-
worked together [18]. The concept of the human disease
network or diseasome is relatively new and is now starting
to be explored as means of developing new drug products
to tackle and combat diseases [21].

Our objective is to identify drug repurposing candidates
for Alzheimer’s disease, the approach taken in this paper
is to view the problem as one of identifying and assessing
side-effects in known drugs. The system we developed is
shown in Figure 1, we obtain and examine the side-effects
of the eight most common Alzheimer’s (e.g. Donepezil,
Galantamine, Rivastigmine, Citalpram, Risperidone, Me-
manatine, Escitalopram and Aripiprazole) drugs found in
the Side Effect Resource (SIDER4) database [27]. The
drugs were compared against their chemical properties, on-
targets and off-targets which provided further information
necessary to prune down the list of potential candidate
drugs.

The other sources of information include the gene on-
tology and the disease ontology. These provide expert
level descriptions of biological functions, structures and
the genes involved in the pathways targeted by the drugs
and represent higher level knowledge. Furthermore, they
provide an indication of similarity between diseases and
links between shared genes and pathways. In this paper we
extend previous work by incorporating chemical structure
information from the Chemical European Molecular Biol-
ogy Laboratory (CHeMbL) database [9] and also knowl-
edge from the two main biological ontologies (gene and

disease ontologies) to enhance biological understanding.
Integrating ontologies within a larger system has been suc-
cessfully implemented by researchers in the past [44, 29].

The main technical challenge of our work is to integrate
the disparate sources of data and knowledge in a princi-
pled way we use matrix algebra and a modified version
of Zitniks data fusion scheme using matrix factorization,
originally developed for integrating molecular data to dis-
cover disease-to-disease associations [60]. In Figure 2 each
of the sources of data (chemical structure, protein interac-
tion, gene ontology, diseases ontology and pathway infor-
mation) are in matrix format, the ontology information is
converted into separate matrices annotating the proteins,
the overall relation matrix used for creating the complex
network is very sparse. The equations and processes are
explained in greater detail in the methods section.

The remainder of this paper is structured as follows.
Section two reviews the related work and places the nov-
elty of our methods into context; section three describes
our methodology, the data and the algorithm’s developed.
Section four highlights the results with special emphasis
on Alzheimer’s disease and we compare our results with
competing systems using other diseases. Finally, section
five presents the conclusions along with future work.

2. Related work

In recent years a variety of computational methods have
been applied to drug repositioning problems, we discuss
the features and limitations of the most important sys-
tems. The PREdicting Drug IndiCaTions (PREDICT)
system tackles the issue by building drug-to-drug sim-
ilarities and disease-to-disease indications for personal-
ized medicine [19]. The main limitation of PREDICT
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Figure 2: Matrix combination and transformation. The four main data types (protein interactions, chemical structure, ontology enrichment
and pathway data (represented by Θ1...Θ4) are integrated using matrix factorization. The large, sparse relation matrix is used to build
complex networks. The latent network is derived from the adjacency matrix holding the complex network connectivity.

is that it lacks drug-to-target information which is nec-
essary for understanding rational drug design and hence
improves accuracy. The Connectivity MAP (CMAP) sys-
tem was developed by compiling the data available from
Affymetrix genechips [12]. CMAP integrates the eXtreme
Sum (XSum) scoring algorithm which can identify drug-
interaction pairs, however the method lacks reliable vali-
dation data as some diseases had worse than random per-
formance. A different approach was taken by the Guilt
By Association (GBA) method [13]. GBA system mapped
the diseases to one logical set and mapped the drugs to an-
other set, the degree of overlap between the two sets was
determined systematically. Only a small number of drug
candidates could be verified and the false positive rate ap-
pears rather high and the system is potentially biased with
better results for older drugs. The Similarity-based LArge-
margin learning of Multiple Sources (SLAMS) method in-
tegrates several sources of data such as chemical structure
and protein targets, chemical data is integrated through
the creation of binary fingerprints [59]. SLAMS appears
to outperform many competing repositioning but the au-
thors conclude it may have a high false positive rate.

Other methods consider using graph network theory to
integrate diverse data types and and provide statistical in-
formation. Detecting motifs of bi-cliques extracted from
a drug-target-disease network can be achieved by inte-
grating disease-to-chemical associations [14]. Motifs are
statistically significant patterns of connections that repre-
sent a biologically relevant function or activity. The bi-
cliques produced appear to have a high false positive rate
through using only the complex networks structure. An-
other approach, the Heterogeneous Graph Based Inference
(HGBI) method implemented a complex network analysis
[49]. The complex network consisted of a triple layer of
interconnected nodes using protein interaction and drug
target data. The HGBI system was applied to diseases
with no known drugs and was able to perform well by

ranking drugs that have received attention in the clinical
trials literature. Computational complexity may limit the
HGBI system with the addition of further layers.

The multiple Drug information sources and multiple
Disease information sources to facilitate drug Reposition-
ing tasks (DRR) method is notable because it generates
a list of proteins to be targeted by specific drugs using
an omics based approach [57]. DDR used the Online
Mendelian Inheritance In Man (OMIM) database to pro-
vide information on gene mutations and their frequencies
to generate a candidate list of 524 Alzheimer’s disease im-
plicated proteins. Some were known from the literature
and some were speculative. DDR is probably more ac-
curate than most repositioning systems but lacks biolog-
ical knowledge. The similarity Measures and BI-Random
Walk (MBiRW) method uses an iterative procedure inte-
grating a random walk to measure similarity of drugs and
diseases [34, 35]. MBiRW incorporates novel similarity
measures and is well validated against gold standard data
but lacks target information and biologically relevant in-
formation. Other work on complex networks has revealed
further insights into why drug similarity does not always
account for identifying useful drugs for repositioning[20].
It is often the case that network evaluation of many dis-
eases and drug pairs reveals how diseases and their drugs
are clustered into neighborhoods of proximity, though it
does not have the infrastructure to explain why. Other
researchers has concentrated on applying various combi-
nations of methods [33, 41, 53, 50, 32].

The novel aspects of our work include a strong level of
biological knowledge through the use of pathway and bio-
logical information ontology integration. This provides a
level of understanding lacking in most of the existing meth-
ods and improves the repositioning process. Integration of
biological knowledge enables the users to relate drugs to
their side-effects and on/off protein targets. The disparate
sources of data are integrated through the use of matrix
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factorization. We validate our work through the analysis
of our top scoring drugs against evidence from the drug
repurposing literature and compare our method against
several of the most similar computational techniques. We
use various statistical measures to assess and rank our drug
candidates.

3. Methods

In the following discussions, reference should be made to
Figure 3 for clarification of dataflow and processing. The
stages required to produce a list of candidate drugs that
exhibit potential to be re-purposed are:

• Determine disease of interest

• Search Drugbank for main conventional drug treat-
ments

• Search SIDER4 for side-effects associated with each
drug

• Obtain list of joint side-effects common to all treat-
ments

• Use list to search SIDER4 for any drug sharing at
least 50% of these side-effects

• Obtain chemical structures, protein interactions, bio-
logical pathways for these drugs

• Annotate proteins with gene and disease ontology
terms

• Build matrices of annotations, chemical structures
and proteins and integrate matrices

• Build a complex network, calculate statistics

• Convert graph into latent network, determine effects
of latent variables

• Calculate ranking for each candidate drug

3.1. Data bases and sources of information
The initial starting point for using our system is to ob-

tain the Unified Medical Language System (UMLS) code
for the disease of interest. UMLS codes provide a unique
ID for each disease and sub-disease, and is used to inter-
rogate the DrugBank database to provide a list of known,
conventional treatments. Drugbank contains the major-
ity of drugs that are currently prescribed, or have been
withdrawn or are at the clinical trial stage [28]. This re-
source is widely used by those developing drugs, chemists,
pharmacologists and others involved in pharmaceutics re-
search. Every drug is listed with its main targets, known
off-targets along with chemical structure and other impor-
tant characteristics.

Having obtained a list of conventional drugs used to
treat the disease of interest, the SIDER4 database is ac-
cessed to give a list of side-effects for each drug [26].

SIDER4, an important repository of hundreds of drugs
and thousands of their known side-effects on humans. This
freely available database contains more than 1,430 drugs
and 58,880 side effects. The information on the drugs is
collected, from the national registries and charity organi-
sations [27]. In addition to side-effects for the 1,430 drugs
SIDER4 also has information on the frequency of their
relative occurrence in patients. It should be noted that
SIDER4 contains many more side-effects per drug than
would normally appear in the packet-insert that is included
in every drug prescription. We did not use any of the ad-
verse effect ontologies such as Ontology Adverse Effects
[22]. Although these ontologies could provide a deeper
understanding of the relationship between treatments and
side-effects, the pattern matching algorithm we used in
algorithm 1 is sufficient for our purposes.

We removed from SIDER4, 10% of the most common
side-effects that occur with most drugs such as Nausea,
Dermatitis, Rash, Vomiting, Headache, Dizziness etc as
per the work of Atias [3]. In total, 573 side-effect types
were removed. Further preprocessing replaced lengthy
drug/compound names with their drugbank identifiers.
For example (10ALPHA,13ALPHA,14BETA,17AL-
PHA)-17-HYDROXYANDROST-4-EN-3-ONE becomes
DB07768.

Our basic proposition is that shared side-effects between
the drugs used to treat a disease can be combined into a
search pattern to interrogate the SIDER4 database again
to identify candidate drugs causing similar side-effects.
The assumption is that these drugs are targeting similar
biochemical pathways (inadvertently) and therefore may
be candidates for re-purposing to the original disease. The
side-effects pertaining to the nine drugs commonly used to
treat Alzheimer’s Disease (AD), such as Donepezil, Galan-
tamine and Rivastigmine were obtained from the SIDER4
database.

Once a list of new, candidate drugs has been generated
and sorted according to their percentage side-effect sim-
ilarity, other databases can be interrogated for chemical
structure, protein targets and biological pathways relat-
ing to these drugs. These results are further enhanced by
enrichment from gene ontology and disease ontology for
biological plausibility.

The chemical structure of the candidate drugs was
downloaded from CHemBL, this database contains chemi-
cal compounds represented as text data called the Simpli-
fied Molecular Input Line Entry System (SMILES) format
[51]. We created a series of fingerprints for each drug based
on atom-pair arrangements of 2048 bits in size. We con-
sider the chemical structure of the candidate drugs useful
information to assess their suitability for repositioning.

The candidate drugs have known on-target and off-
target proteins, this knowledge is augmented by accessing
protein-to-protein interactions and drug/chemical to pro-
tein interactions found in the search tool for interactions
of chemicals (STITCH) database [38]. The Search Tool
for the Retrieval of Interacting Genes (STRING) database

4



Obtain UMLS code for 
disease of interest. E.g. 
C0002395 for Alzheimer's 

 

DRUGBANK 

List of drugs used to 
treat disease 
produced 

Produce complex 
protein networks 
for each candidate 

Determine joint side-effects 
for all drugs in list. 
If joint side-effects < 5 then 
reduce drugs in list by 50% 
and retry 

 

List of side-effects 
for each drug 
produced 

SIDER4 

Prune side-effects 
that  occur in more 
than 10% of drugs 

SIDER4 
Use joint side-effects 
to search for 
candidate drugs 

CANDIDATES 

CHemBL 

Obtain chemical 
structure data for 
each candidate 

Produce biological 
pathway network 
for all candidates 

STITCH & 
DRUGBANK 

Integrate 
models 

Enrich with GO and 
DOSE for all 
candidates 

Reactome 

Figure 3: Detailed step by step process diagram

makes use of over six million known protein-to-protein in-
teractions discovered by text mining and annotation by
human experts [46]. Additionally, a further 30,000 asso-
ciations are predicted based on similar protein character-
istics using predictive data mining. These databases con-
tains protein to chemical mappings and augments the in-
formation held in Drugbank which may not contain all the
potential drug to protein interactions.

The Reactome database is accessed to provide indica-
tions of which biological pathways are involved with the
on-target and off-target protein interactions affected by
the candidate drugs [54]. Deeper insights can be gained
into the biological functions by allowing users of the sys-
tem to relate side-effects to drugs and then to the path-
ways. Individual proteins must not be regarded in isola-
tion but seen as a system of interacting components. The
associated pathways are incorporated into the overall drug
ranking measure.

3.2. Searching for side-effect similarity

The work described in this paper extends the complex
network and pattern matching algorithms previously de-
veloped by the authors [37] to include a novel data in-
tegration method that assesses the candidate drugs, their
chemical characteristics, associated proteins and biological
pathways as described in section 3.7.

Referring to algorithm 1, lines 2-7 perform the initial-
ization of key values: to obtain the UMLS code for the
disease of interest, for the minimum number of side-effects
for a viable search to be conducted (set at ≥ 3), the num-
ber of conventional drugs currently treating this disease
is set to zero and finally a percentage value of side-effects
similarity for a candidate drug to be considered useful (set
at 50%).

Lines 8-9 obtain the drugs currently treating the disease
of interest. Lines 10-17 ensure that each conventional drug
is annotated with a list of more than three or more side-
effects, if any drug has fewer than three side-effects it is
discarded. The critical processing is performed by line 18
which creates a list of the side-effects common to all of the
conventional drugs. This list of common side-effects is used
by lines 19-25 to search SIDER4 and return any candidate
drug that has at least one side-effect in the search list. The
new list of repositioned candidate drugs is sorted by lines
26-27, in descending order and only those with greater
than 50% similarity are returned from the function call.

Empirically, it was determined that conventional drugs
with fewer than three side-effects are generally not use-
ful as they tend to have either highly specific or overly
common side-effects. They cannot provide a rich enough
search pattern and these are pruned from the list of drugs.
The common side-effects for the remaining conventional
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Algorithm 1 Identification of drugs with similar side-effects
1: procedure SearchSideEffects(DRUGBANK,SIDER4, UMLS) . Databases used
2: do initialize
3: umls← get UMLS code for disease . e.g. C0002395 for Alzheimer’s
4: SEthreshold = 3 . A drug must have 3 or more side-effects to be useful
5: drugcount = 0 . setup for N drugs for the disease
6: SIMcutoff = 50 . > 50 percent similarity required
7: end initialize
8: DrugList← DRUGBANK[umls] . Search DRUGBANK for drugs treating this disease
9: drugcount← length(DrugList)
10: for i ≤ drugcount do
11: ise ← SIDER4[i] . For each drug get associated side-effects
12: secount[i]← length(ise) . count side-effects
13: if secount[i] > SEthreshold then
14: DrugList[i]← DrugList[i] . Update DrugList with usable drugs
15: SE[i]← ise . Save Drug side-effects
16: end if
17: end for
18: JSE ∈ SE[i] . Get Joint Side-Effects for Current drugs
19: for j ≤ DrugList[i] do
20: ReposList[j]← SIDER4 ⊂ JSE . Search SIDER4 for any new drug with these side-effects
21: Drugpercentage[j]← CalcPercentageSimilarity(ReposList[j]) .
22: if Drugpercentage[j] > SIMcutoff then
23: ReposList[j]← ReposList[j] . Create ReposList with candidate drugs
24: end if
25: end for
26: SortReposList[j]descendingorder
27: return ReposList, SE, SEcommon . Return drugs with > 50 percent similarity and their side-effects

28: end procedure

drugs are determined, this is used to search SIDER4 again
for any candidate drug having at least one side-effect in
common.

3.3. Graph theory

We use graph theoretic methods to build networks of
interacting proteins such as the drug on-targets and off-
targets (where known). These networks provide various
statistical measures describing the relationships between
the interacting proteins and the candidate drugs, with
some tentative indications of why a particular side-effect
occurs. We incorporate these statistical measures into
the overall integration mechanism, which contributes in
ranking the drugs in terms of usefulness for repositioning.
Graph creation and inferencing is usually through matrix
algebra, edge lists are converted into connectivity matri-
ces, we can define a graph G = (V, E) where the nodes
also called vertices V containing links called edges E. In
our application, we determine the relevance of protein con-
nectivity patterns using criteria from the graph theoretic
centrality statistics [17, 6].

We use a number of commonly used graph-based mea-
sures to evaluate the protein networks. The closeness
statistic (CC) provides a measure of how near each node
is to every other node in the network. Some nodes may
be more prominent than others due to their topology. The
distance d(vi, vj) from a given protein i to another j is gen-
erally characterized as the number of links in the shortest
path between them, N is the number of all proteins (nodes)
in the network. We define the closeness centrality of pro-
tein i:

CC(vi) =
N − 1∑
j d(vi, vj)

(1)

The clustering coefficient (Ci) provides a local measure
of modularity of the network in terms of shared compo-
nents and interactions for each vertex. Thus a randomly
connected network would have a very different coefficient
to a biologically cohesive network [5].

Ci =
2Li

ki(ki − 1)
(2)

Where Li defines the number of links between ki neigh-
bors of vertex i, ki is the degree (number of connections)
of node i. The coefficient Ci is bounded between 0 and 1.

The clustering coefficient for the entire graph is simply
the average of the local clustering values 〈C〉 of each vertex
Ci for all nodes i = 1, ..., N .

〈C〉 = 1

N

N∑
i=1

Ci (3)

3.4. Gene ontology
Gene ontology (GO) provides useful biological informa-

tion and it is recognized as the de facto standard for gene
product annotation [29]. For our purposes, we produce a
binary matrix of proteins annotated with the presence or
absence of terms. This enables an assessment to be made
regarding the biological plausibility of the interacting pro-
teins to observe the extent they actually cooperate in vi-
able biological functions rather than random or spurious
associations. For each protein associated with the candi-
date drugs enrichment was performed using gene ontology
(GO), the enrichment is based on similarity measures us-
ing information content techniques. The content of which
is calculated by taking the negative log probability of the
terms t appearing in the database. A number of measures
can be used to rank semantic similarity, we used the Wang
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criterion as it reflects the biological plausibility better than
other measures because of the way semantic similarity of
the GO terms are calculated, using both the locations of
the terms in the GO graph and their relations with their
ancestor terms [48].

Wang(A,B) =

∑
t∈TA∩TB

SA(t) + SB(t)

SV (A) + SV (B)
(4)

For the Wang equation, where SA(t) represents the S-
value of GO term t related to term A and SB(t) is the S-
value of GO term t related to term B, SV (A) and SV (B)
are the semantic values of GO term A and B.

3.5. Drug chemical fingerprints

The chemical data held in the large SDF file is used to
create a unique fingerprint for each drug. We used the
Tanimoto similarity coefficient was to compare the chem-
ical structure of our 77 drugs based on pairwise binary
fingerprints [11]. The Tanimoto coefficient generally gives
better results than other metrics. Equation 5 shows the
generally accepted form of the Tanimoto coefficient.

T (Na, Nb) =
Nc

Na +Nb −Nc
(5)

where: Na is the number of unique fragments in the first
compound and Nb is the number of unique fragments in
the second compound; Nc is the shared amount of overlap-
ping fragments. Thus we would expect to see drugs with
similar chemical structures to have similar properties and
medicinal effects.

3.6. Disease ontology

We integrated information from the Disease Ontology
(DO) to annotate the drug targets and other proteins to
obtain a deeper interpretation of the biological processes
and structures [30, 43]. The DO database contains knowl-
edge on 8,043 inherited, developmental and acquired hu-
man diseases. Through enrichment analysis, the R pack-
age DOSim is able to explore the biological meaning of
related genes in terms of structure, function and hierar-
chy. The concepts in DOSim are organized into a directed
acyclic graph (DAG) similar to a tree structure, the con-
cepts are linked by’ is-a’ relationships. The lower the term
or concept is positioned in the hierarchy then the more
specific the term is, higher-up terms describe higher level
or more abstract concepts. In order to identify biological
themes the Hypergeometric model is used to assess the
frequency of those semantic terms in a list and to deter-
mine whether the number of selected genes associated with
disease is larger than expected than by chance alone.

p = 1−
k−1∑
i=0

(
M
i

)(
N−M
n−i

)(
N
n

) (6)

Where N is the total number of genes present in the
distribution, M is the number of genes within that distri-
bution that are annotated (either through primary links
or secondary links) to the node of interest, n is the size of
the list of genes of interest and k is the number of genes
within that list related to the node.

3.7. Data integration
Individually, each method of data analysis provides im-

portant information in a specific area, however, our sys-
tems strength comes from the integration of these dis-
parate sources of knowledge in a principled way [8].

|| R ≈ GSGT ||2 +

4∑
t=1

tr
(
GT (t)G

)
(7)

where: R is the relation matrix used to construct the
complex network, G identifies the drugs, S is the weighting
factor for the drugs, GT is the transpose, Θ(t) represents
the matrices containing the variables for PPI, drug struc-
ture, GO, DO and pathways.

Θ
(t)

=

Θ1 0 0 0
0 Θ2 0 0
0 0 Θ3 0
0 0 0 Θ4

 , R =

 0 R12 R13 R14

R21 0 0 0
R31 0 0 0
R41 0 0 0



Similarly, the G and S block matrix factors are struc-
tured and calculated by:

G =

G1 0 0 0
0 G2 0 0
0 0 G3 0
0 0 0 G4

 , S =

 0 S12 S13 S14

S21 0 0 0
S31 0 0 0
S41 0 0 0



3.8. Model validation strategies
The large, integrated matrix network containing the

protein to protein interaction network, the chemical data,
pathway and ontologies is converted into a latent network
model. The advantages for doing so include the ability to
model latent variables in the form of vertex classes and
thus perform classification metrics such as accuracy, true
positive rate, false positive rate and allows for plotting of
ROC curves and precision-recall curves. The modeling of
variables that are generally unobserved but are likely to
play a major role in vertex connectivity is motivated by
the assumption that lack of covariate information allows
the vertices’s to be exchangeable in a principled way [24].
The disadvantage is that there are many possible configu-
rations of networks and pair-specific effects. They are both
implemented and validated through Bayesian methods us-
ing Monte Carlo Markov Chain techniques (MCMC) to
simulate from the posterior distributions the model speci-
fication [25].
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In particular we use 10-fold cross-validation to test the
goodness-of-fit, here the model is randomly divided into
ten subsets of equal size and in each cross-validation trial
one subset is taken for the test set while remaining nine
folds comprise the training set [10].

We define the latent variables Ui as a set of vectors
(Ui, . . . , UiQ)

T , these formed from the adjacency matrix
U from the complex network of protein-protein interac-
tions, the pathways and ontologies. We build several such
matrices to highlight different complexities of model (i.e.
PPI only, PPI+Pathway,PPI+Pathway+Ontology,all data
sources).

P(Y = y | X, u1, . . . , uNv
) =

∏
i<j

Pij(1− Pij)
1−yij (8)

The MCMC eigenmodel [23] and shown in equation 8,
simulates models from the relevant posterior priors, de-
scribing the influence of pairs of covariates Xij . A series of
transformations convert the elements of a diagonal matrix
giving the relative importance of each latent variable (Ui).
The product Û̂Ûᵀ holds the eigenvectors of the pairwise
latent effects. In equation 8 where Y denotes class labels,
X contains the covariates (e.g complex network connec-
tivity), the effect of the latent variables is contained in
U1...UNv

, the probabilities for each vertex pair are repre-
sented by pij . The process of generating the eigenmodels
is validated by 10-fold cross-validation.

U covariates/adjacency
U11 U12 U13 U14

U21 U22 U23 U24

U31 U32 U33 U34

U41 U42 U43 U44

 ×

Λ Latent variables
U{{11}} 0 0 0
U{{21}} U{{22}} 0 0
U{{31}} U{{32}} U{{33}} 0
U{{41}} U{{42}} U{{43}} U{{44}}

=

ÛΛ̂Ûᵀ Eigenvalues
U{11} 0 0 0
0 U{22} 0 0
0 0 U{33} 0
0 0 0 U{44}

 (9)

In equation 9 the notation of the three matrices where :
U11 indicates in U the simple index notation to access its
elements, however in Λ implies a symmetric matrix and is
expressed by multiset index notation U{{11}}. In matrix
ÛΛ̂Ûᵀ the elements are eigenvalues can be accessed by
U{11}. The cross-validated eigenmodels enable predictions
to be made on edge status to generate metrics for goodness
of fit such as accuracy and precision to be assessed.

3.9. Ranking candidate drugs

The final data analysis phase is to rank and assess the
list of candidate drugs, this is a two stage process. First,
each candidate drug is individually compared with the con-
ventional drugs using the generalized Jaccard coefficient
(equation 10) which can manage continuous values.

Scoreij =
|F (Di) ∩ F (Dj)|
|F (Di) ∪ F (Dj)|

(10)

Where: F (Dj) are the variables of interest, such as
protein interactions, pathways, ontology annotation and
chemical similarity shared between the candidate drugs
and the conventional drugs F (Di). This produces a ma-
trix containing individual values for each drug. However,
these need to be modified by the overall strength and effect
of the variables, similar to coefficients in a regression equa-
tion. The second stage calculates the actual score given to
each candidate drug by equation 11 which takes the dif-
ference for each candidate/conventional pair multiplied by
the Û̂Ûᵀ value for that variable.

DrugScorei = protein-interactionsijU{11}+
pathwaysijU{22}+

GO-similarityijU{33}+

Chem-similarityijU{44}+

DO-similarityijU{55}

(11)

The diagonal of the matrix Û̂Ûᵀ contains the eigenval-
ues which we use as coefficients for the latent variables,
these act as weights for the importance of the latent vari-
ables and are multiplied by the score index calculated from
the Jaccard matrix. The candidates are then reevaluated
using these scores and re-ranked according to their poten-
tial for repurposing.

3.10. Hardware and software platform
We implemented the system using the R language with

the RStudio programming environment, on an Intel Xenon
64-bit CPU, using dual processors (3.2GHz) with six cores,
and 128 GB of RAM. R is very extendable using pack-
ages written by other researchers [42]. We used the fol-
lowing R packages: GOSim [56], DOSim [55], Chem-
mineR[4], eigenmodel [23]. Our R code and data files are
freely available to all researchers on GitHub for download:
https://github.com/kenmcgarry/DrugSideEffects

4. Results

The first stage is to obtain the UMLS code for our dis-
ease of interest (Alzheimer’s), the code (C0002395) is used
to automatically search drugbank for the list of drugs used
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to treat Alzheimer’s disease, these are presented in table
1. We removed DB07701 as it is a new drug and lacks
important information required for our method such as an
Anatomical Therapeutic Chemical (ATC) code, commer-
cial drug name and lacks literature based evidence. The
remaining list of eight conventional treatments are used to
search SIDER4 and returns all the side-effects associated
with each drug. We then combine the side-effects jointly
for the drugs.

Table 1: List of current treatments for Alzheimer’s and known side-
effects. DB07701 is an experimental drug and is excluded from our
experiments.

Treatment Side-effects
1 Citalopram 545
2 Galantamine 50
3 Risperidone 402
4 Donepezil 152
5 Rivastigmine 230
6 Memantine 208
7 Escitalopram 545
8 Aripiprazole 544
9 DB07701 152

Figure 4 shows a Venn diagram illustrating the common
side-effects, because of graphical limitations only five of
the nine Alzheimer’s drugs can be shown. The diagram
indicates 10 common side-effects, however, using all nine
drugs gives only eight common side-effects. The decision
was made to tackle the problem by using only the side-
effects common to all eight drugs which meant that eight
side-effects were available for this study. These shared
side-effects were used to predict similar interactions which
provided a list of 77 drugs, the criteria being a 50% cut-off
point of shared side-effects. We only examined the first
25 drugs with the highest ranks. Table 2 lists all eight
side-effects.

We decided to use the overlaps between the nine drugs
as this allowed for 8 side-effects to be available for study,
this simple approach proved to be quite powerful. Initial
work on the side-effects and known-targets can be found
in [37].

Table 2: List of shared side-effects common to all nine drugs

side-effect
1 Apathy
2 Aphasia
3 Flat affect
4 Hypokinesia
5 Libido increased
6 Muscle contractions involuntary
7 Paranoia
8 Transient ischaemic attack

The side-effects are typically what would be expected
of drugs targeting the central nervous system. The drugs
are used to either to slow the progress of dementia or to
alleviate the worst symptoms of depression and anger. Al-
gorithm 1, produced the following list of drugs shown in
table 3, we have displayed the top 25 drugs based on side-
effect similarity of greater than 50%. According to the
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Figure 4: Venn diagram showing side-effects (shared and unique)
between five of the nine main Alzheimer’s drugs. 10 side-effects are
common to all five drugs, using nine drugs we obtain eight side-
effects.

Anatomical Therapeutic Chemical (ATC) codes, the ma-
jority of the drugs are ‘N’, that is to say they are intended
to target problems relating to the Nervous system.

Some of the drugs have been used to treat the symp-
toms of Alzheimer’s disease such as depression, anxiety
etc. Some have actually been used with a view to halt the
degenerative process. The candidate drugs at the lower
end of our similarity scale such as Tramadol, an analgesic
drug, affects the peripheral and central nervous system
[39]. Tramadol, an opioid is mainly used to treat pain, in
terms of Alzheimer’s, patients are advised to avoid it, as
it appears to worsen the condition. This is as it has anti-
cholinergic side effects. It causes serious side effects like
serotonin syndrome, this is due to the influx of the neu-
rotransmitter serotonin and then it inhibits the reuptake
of serotonin, which can cause toxic levels. This could be
a possible reason for tramadol worsening the condition of
Alzheimer sufferers. Side effects like confusion and agita-
tion worsen for Alzheimer patients on tramadol, the effects
seem to be severe in the elderly [47].

Zolpidem actually appears to be implicated with causing
dementia when underlying diseases, such as hypertension
and diabetes after controlling for potential confounders,
such as age, sex, coronary artery disease, diabetes and
anti-hypertension drugs are taken into account. In table 4
for 10 of our candidate drugs we have presented for each
drug up to five of the original diseases and symptoms they
were designed to treat. On average each drug was used to
treat 21 diseases/indications, the minimum was one dis-
ease and the maximum value was 88 diseases.

4.1. Analysis of the chemical structures and protein targets
A computational model was built using the chemical

data from drugbank, this indicates the connectivity pat-
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Table 3: Drugs with > 50% similarity. Where * may actually cause/exacerbate dementia related problems in some cases.

Drugname NoSideEffects Similarity(%) drugbankid atc_codes Repositioned?
1 Ropinirole 418.00 100.00 DB00268 N04BC04 Y
2 Bupropion 288.00 87.50 DB01156 N06AX12 Y
3 Pramipexole 398.00 87.50 DB00413 N04BC05 Y
4 Quetiapine 188.00 87.50 DB01224 N05AH04 Y
5 Selegiline 216.00 87.50 DB01037 N04BD01 Y
6 Sertraline 208.00 87.50 DB01104 N06AB06 Y
7 Topiramate 301.00 87.50 DB00273 N03AX11 Y
8 Venlafaxine 338.00 87.50 DB00285 N06AX16 Y
9 Gabapentin 272.00 75.00 DB00996 N03AX12 Y
10 Lamotrigine 152.00 75.00 DB00555 N03AX09 Y
11 Mirtazapine 153.00 75.00 DB00370 N06AX11 Y*
12 Oxcarbazepine 123.00 75.00 DB00776 N03AF02 Y
13 Pregabalin 561.00 75.00 DB00230 N03AX16 N*
14 Cevimeline 241.00 62.50 DB00185 N07AX03 N
15 Clomipramine 221.00 62.50 DB01242 N06AA04 Y
16 Fluvoxamine 221.00 62.50 DB00176 N06AB08 Y
17 Mycophenolate 262.00 62.50 DB00688 L04AA06 N
18 Paroxetine 362.00 62.50 DB00715 N06AB05 N*
19 Pergolide 156.00 62.50 DB01186 N04BC02 N
20 Rasagiline 131.00 62.50 DB01367 N04BD02 Y
21 Riluzole 196.00 62.50 DB00740 N07XX02 Y
22 Tiagabine 102.00 62.50 DB00906 N03AG06 N
23 Tolcapone 101.00 62.50 DB00323 N04BX01 N
24 Tramadol 373.00 62.50 DB00193 N02AX02 N
25 Zolpidem 129.00 62.50 DB00425 N05CF02 Y*

Table 4: Top 10 candidate drugs and the problems/symptoms they were designed to treat

Drug Disease/indications
Ropinirole Hypotension, Muscle rigidity, Parkinson’s disease, Restless legs syndrome, Tachycardia
Bupropion Mental disorder, Depression, Dysthymic disorder, Fatigue, Asthenia
Pramipexole Parkinsonism, Parkinson’s disease, Restless legs syndrome
Quetiapine Mental disorder, Bipolar disorder, Bipolar I disorder, Psychotic disorder, Depression
Selegiline Fatigue, Asthenia, Feeling guilty, Major depression, Parkinson’s disease
Sertraline Agoraphobia, Anger, Anxiety, Depression, Dysthymic disorder
Topiramate Bipolar disorder, Cluster headache, Migraine, Epilepsy, Partial seizures
Venlafaxine Agoraphobia, Anxiety, Chest pain, Depersonalisation, Depression
Gabapentin Ataxia, Diabetes mellitus, Dizziness, Epilepsy, Erythema multiforme, Fatigue
Lamotrigine Bipolar disorder, Dysmenorrhoea, Epilepsy, Grand mal convulsion, Parkinson’s disease

terns linking drug to target receptors. We downloaded the
relevant structure data files (SDF) for the 77 drugs (69
candidate drugs and 8 current drugs) using their drugbank
identifiers, The atom-pairs are converted into molecular
fingerprints and these are clustered.

We created a chemical fingerprint for each of the drugs,
we chose 2048 atom-pairs although it is possible to use
a structure containing 4096 most common atom pairs in
DrugBank. The pairwise distances are calculated for all 77
entries (69 candidate drugs and 8 current drugs) between
the given fingerprints and then fit a Beta distribution to
the resulting Tanimoto scores, conditioned on the number
of set bits in each fingerprint. The highest matching drug
is similarity is Pergolide with a 35% commonality. The ma-
jority of drugs have between 32% and 25% chemical sim-
ilarity. Since these all these candidate drugs had similar
side-effects and since their chemical composition is quite
different, we can conclude that chemical similarity alone
should not be used to seek out drugs for re-purposing.

Using hierarchical clustering on the drug similarity ma-
trix provides a little bit more information. Through a pro-
cess trial and error we deduced that there are 10 clusters.
The validity of clusters in terms of composition is more or
less confirmed by the similarity matrix. However, analysis
of the chemical similarity matrix does not provide a full

explanation and further integration of data is needed.
The silhouette plot in Figure 5b indicates that the ma-

jority of the drug clusters are reasonably good in terms of
quality of fit. Values near one (unity) indicates that the
observation is well placed in its cluster; values near zero
show that it’s likely that an observation should belong to
some other cluster.

• 0.71-1.0 - A strong structure has been found

• 0.51-0.70 - A reasonable structure has been found

• 0.26-0.50 - The structure is weak and could be artifi-
cial

• < 0.25 No substantial structure has been found

The chemical information must be collated with higher
level biological knowledge and known protein interactions
for a deeper and more accurate indication of the usefulness
of the candidate drugs. However, we examine the next set
of results from a drug centric viewpoint.

4.2. Complex network analysis of drug to protein connec-
tivity patterns and biological pathways

Drug to protein target interaction patterns represent
important biological functions and signaling mechanisms.
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Figure 5: Clustering the 69 candidate drugs and eight conventional treatment drugs (n=77), 10 clusters are identified based on the chemical
similarity matrix. The silhouette plot indicates goodness of fit

The drugs designed to combat diseases are targeted at spe-
cific proteins but unfortunately also affect off-targets and
create side-effects. Furthermore, proteins tend to operate
together in modules that perform specific functions and
that proteins can belong to several modules. It is there-
fore essential to build up a complete profile of the drugs
and their interaction partners.

Diagrams are of limited use when displaying connectiv-
ity patterns of complex networks, even the small networks
can easily become incomprehensible and visually are of
limited use. The network statistics based on the values of
hubness, closeness and betweeness provide a deeper under-
standing of the connectivity patterns than a visual assess-
ment. The protein targets and known protein interactions
of the 25 drugs were identified, downloaded from the rel-
evant database (STITCH) and complex network analysis
was applied to the subsequent network structures. We cre-
ated 25 separate protein-to-drug interaction networks and
calculated the relevant statistics for each and then com-
bined the 25 networks into one large interaction network
and recalculated the statistics.

The statistics for the top 25 drug networks is shown
in table 5, every network has individual values for each
protein (not shown) in terms of hubness and betweenness.
The number of edges, number nodes, the modularity, and
average path will be identical for each protein in a given
network. It should be stated that these networks are both

off and on-targets and the data is from STITCH. In Figure
8 we display the drug network patterns, where drugs are
denoted by triangle and proteins by circles. Protein targets
colored in yellow are common to two or more drugs. The
protein targets that have common drugs implies they affect
common pathways, this will be the reason for the common
or shared side-effects.

The pathways presented in table 6 show 20 of the 50
pathways identified, these play a role in a number of impor-
tant cellular and metabolic processes, when this pathway
annotation is integrated with the other drug-to-protein
networks we are able to discern a number of overlapping
functions and processes. Observing the enrichment pro-
cess we can see that proteins implicated with the same
disease (and related diseases) are more predisposed to in-
teract with each other rather than interact with other pro-
teins. These proteins also have common GO terms and
are likely to be located in the same tissues. Proximity,
in protein-protein networks as borne out by the network
statistics is an important factor. Disease genes appear to
high degree but low clustering coefficients.

Although drugs act at the level of protein/enzyme in-
teractions, their overall effect is to modify the cells pro-
cesses or signaling mechanisms that comprise important
biological pathways. A biological pathway can be de-
scribed as a collection of ordered, discrete actions among
molecules that can breakdown proteins or assemble them
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Table 5: Complex network statistics for the 25 candidate drug networks (individually), sorted by betweenness

modularity avepath nedges nverts transit degree diameter clos between dens hubness
pramipexole 0.245 1.9 72.0 23 0.6 2.000 3.000 0.022 0.000 0.285 0.126
quetiapine 0.055 1.4 131.0 21 0.7 2.000 3.000 0.023 0.000 0.624 0.109
bupropion 0.231 1.8 72.0 21 0.7 11.000 3.000 0.034 10.725 0.343 0.406
pregabalin 0.030 1.5 13.0 8 0.6 7.000 2.000 0.143 13.333 0.464 1.000
rasagiline 0.114 1.5 33.0 12 0.6 11.000 2.000 0.091 17.817 0.500 1.000
tolcapone 0.079 1.6 14.0 9 0.4 8.000 2.000 0.125 19.000 0.389 1.000
cevimeline 0.086 1.8 46.0 15 0.7 6.000 4.000 0.045 27.179 0.438 0.511
tiagabine 0.166 1.8 13.0 11 0.2 10.000 2.000 0.100 40.500 0.236 1.000

oxcarbazepine 0.221 1.7 24.0 14 0.3 13.000 2.000 0.077 61.500 0.264 1.000
tramadol 0.257 1.8 21.0 14 0.3 13.000 2.000 0.077 68.000 0.231 1.000
zolpidem 0.035 1.4 160.0 24 1.0 23.000 2.000 0.043 116.000 0.580 1.000
selegiline 0.220 1.9 152.0 36 0.4 26.000 4.000 0.023 190.501 0.241 1.000
ropinirole 0.361 1.7 77.0 25 0.6 24.000 2.000 0.042 209.833 0.257 1.000
paroxetine 0.319 1.8 127.0 33 0.5 32.000 2.000 0.031 301.926 0.241 1.000

mycophenolate 0.424 1.8 88.0 30 0.5 29.000 2.000 0.034 325.793 0.202 1.000
pergolide 0.358 1.8 123.0 33 0.6 32.000 2.000 0.031 352.400 0.233 1.000
riluzole 0.333 1.8 72.0 31 0.3 30.000 2.000 0.033 357.500 0.155 1.000

gabapentin 0.367 1.8 78.0 32 0.3 31.000 2.000 0.032 387.317 0.157 1.000
topiramate 0.367 1.9 68.0 34 0.2 33.000 2.000 0.030 472.843 0.121 1.000
lamotrigine 0.427 1.8 127.0 40 0.4 39.000 2.000 0.026 590.368 0.163 1.000
fluvoxamine 0.363 1.9 81.0 39 0.2 38.000 2.000 0.026 622.633 0.109 1.000
venlafaxine 0.230 1.9 82.0 39 0.2 38.000 2.000 0.026 627.945 0.111 1.000

clomipramin 0.396 1.8 183.0 49 0.4 48.000 2.000 0.021 879.129 0.156 1.000
sertraline 0.356 1.9 153.0 49 0.4 48.000 2.000 0.021 912.696 0.130 1.000

mirtazapine 0.442 1.8 214.0 51 0.5 50.000 2.000 0.020 943.046 0.168 1.000

Table 6: Shared pathways based on common proteins targeted drugs,
all p-values associated with gene/ratio are statistically significant at
<0.05

ID Description GeneRatio
HSA-375280 Amine ligand-binding receptors 29/170
HSA-112315 Transmission across Chemical Synapses 39/170
HSA-211859 Biological oxidations 38/170
HSA-112316 Neuronal System 43/170
HSA-211981 Xenobiotics 16/170
HSA-211945 Phase 1 - Functionalization of compounds 25/170
HSA-112314 Neurotransmitter Receptor Transmission 26/170
HSA-373076 Class A/1 (Rhodopsin-like receptors) 35/170
HSA-211897 Cytochrome P450 - arranged by substrate 19/170
HSA-975298 Ligand-gated ion channel transport 13/170
HSA-390666 Serotonin receptors 10/170
HSA-629594 Highly calcium permeable receptors 10/170
HSA-500792 GPCR ligand binding 37/170
HSA-425407 SLC-mediated transmembrane transport 29/170
HSA-181431 Acetylcholine Binding Events 10/170

in the cell. Such a pathway can trigger the assembly of
new molecules by turning genes on and off. There are sev-
eral types of pathways that control metabolism, signaling
cascades, transport and otherwise generally control the be-
havior and actions of the cell in response to stimuli. The
normal healthy body requires the coordination of many
biological pathways, the majority of diseases involve the
malfunction of proteins that cooperate in pathways. In
fact 30% of drugs operate on one type of protein called
G-protein-coupled receptors (GPCRS).

4.3. Disease similarity analysis using the gene and disease
ontology

For each of the 77 drugs we note the disease/symptoms
each one is targeted against and produce a correlation
matrix from the terms annotating each disease from the
disease ontology. Observing the correlation values (using
Wang similarity measure) we can see the terms are reason-
ably similar between Parkinson’s and Alzheimer’s disease.
In Figure 7 the main types of diseases treated by the 77

drugs are shown. The similarity measure is constrained
to lie between 0 and 1, with 1 being the highest level of
similarity. Ignoring the diagonal, the highest measure is
between psychosis and schizophrenia (0.64) and between
Parkinson’s and Alzheimer’s (0.44), depression and psy-
chosis (0.39), followed by epilepsy and Alzheimer’s (0.35).
Estimation of correlational strength is based on Cohen’s
measures where very high 0.9 - 1.0; high 0.7 - 0.9; moderate
0.5 - 0.7 ; low 0.3 - 0.5.

Overall, we find 48 DO terms used to describe the dis-
eases in a hierarchy. Through extensive cross-mapping
of DO terms to standard clinical and medical terminolo-
gies such as the Medical Subject Headings (MeSH), the
International Classification of Diseases (ICD), System-
atized Nomenclature of Medicine (SNOMED) and Online
Mendelian Inheritance in Man (OMIM), can reflect the
current knowledge of human diseases and their associa-
tions with phenotype, environment and genetics. In table
7 the 48 terms assigned to the 10 diseases are shown, in
addition to exact matches the Wang measure also assesses
the semantic similarity.

The protein networks can be further enhanced by in-
tegrating known biological knowledge from gene ontology
[2, 15]. This information illuminates biological pathways,
signaling mechanisms, genes, associated diseases that the
proteins are involved in and indicates where the drug of
interest is active. The information is important since the
drug will often interact with off-targets, identifying these
interactions will often lead to an explanation of why a drug
has particular side-effects.

In table 8 a sample of GO terms assigned to the proteins
affected by the candidate drugs is presented. The terms
are as we would expect given they relate mainly to the
central nervous systems and neuronal functioning. The
proteins are a mixture of planned targets and off-targets,
that is to say the drugs have inadvertently targeted some
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Figure 6: The ROC and PR curves for the goodness of fit of the complex latent network model. The red curve represents the combined
protein-interactions+ontology+pathways. The blue curve is the protein-interactions + pathways, the green curve is the protein-interactions
alone

proteins. This is part of the reason why side-effects occur.

4.4. Data integration, model accuracy and drug scoring

The sources of data are merged in a principled way using
the matrix factorization scheme scheme described in equa-
tion 7. Based on the linear equation the sources of data
were each allocated a coefficient (similar to regression) and
a matrix was produced for each drug and latent variable in
the network. The diagonal contains the combined eigen-
value for each drug, the Jaccard index was calculated for
variable also and used as a weight or coefficient. This was
used to reevaluate the initial list of candidate drugs as de-
termined by side-effect similarity alone. Referring to table
9, the initial ranking (table 3) determined by side-effect
similarity alone has changed somewhat. Ropinirole is still
the top scoring drug but the positions of the majority of
the drugs has changed and the last three drugs were not
on the original list of 25 having moved up the list.

As a measure of confidence, we validated our findings
from the latent network [25]. In the left hand-side of Figure
6 we plot the ROC curves for the latent network. We use
eigenmodels with 5-fold cross-validation using MCMC to
simulate the posterior distributions. We take the typical
values of 10,000 for burn-in and 1,000 for inferencing. This
allows us to model the effects of using: 1. protein and drug
interactions alone, 2. protein interactions + pathways, 3.
protein interactions + pathways + level 2 ontology. The
Area under the Curve (AUC) for the three models are
75%, 88% and 93% respectively. Increasing the amount
of information provides the complex network with greater,
internal robustness.

Generally, all complex networks can be validated like
classifiers either between networks (comparing different
networks) or within a single network (predicting internal

connections) [25]. The latent network is validated by clas-
sifying the connections as belonging to individual nodes
in the graph. Several subsets are sampled through 5-
fold cross-validation, at each step the non-sampled sec-
tion of the network is predicted and class accuracy deter-
mined and displayed using receiver operating characteris-
tic curves (ROC) and precision-recall (PR) curves. The
ROC is based on evaluating the tradeoffs between speci-
ficity and sensitivity. Specificity is the probability of pre-
dicting that a link exists between two nodes given the cor-
rect situation is indeed a link, whereas sensitivity is the
probability of predicting no link exists between two nodes
given the true state is indeed no such link exists.

In Figure 6 the precision-recall (PR) curves are pre-
sented, these diagrams indicate the precision values for
corresponding sensitivity (recall) values. The PR plot
presents a global evaluation of the network model. Should
a high area under the curve exists, this represents both
high recall and high precision. High precision implies a
low false positive rate, and high recall suggests a low false
negative rate. Large values for both criteria, indicate that
the classifier is providing good results (high precision), as
well as returning a majority of all positive results (high
recall).

4.5. Comparison with other drug repositioning techniques

In table 10 we compare our results with three competing
methods from the literature, Zhang [59], Wang [49] and
Gottlieb [19]. With the exception of Wang, all the authors
have provided a ranking.

Our highest ranking drug is Ropinirole and does not ap-
pear in the other systems. Selegiline appears as the top
drug for Zhang’s system and is ranked as 4th top drug
for our system. The highest ranked drug for the Wang
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Table 7: 48 DO terms assigned to the diseases

1 degenerative disease 25 syndrome
2 rheumatism 26 disease
3 psychotic disorder 27 delirium, dementia, cognitive disorder
4 Movement disorder 28 cerebral degeneration
5 organic brain syndrome 29 organic psychosis
6 central nervous system disease 30 Tauopathies
7 neurodegenerative disorder 31 dementia
8 Parkinsonian disorder 32 endogenous depression
9 body system disease 33 episodic mood disorder
10 musculoskeletal system disease 34 mental depression
11 nervous system disease 35 Autonomic nervous system disorder
12 peripheral nervous system disease 36 peptic ulcer
13 hereditary degenerative disease of central nervous system 37 gastrointestinal system disease
14 neuromuscular disease 38 disease by infectious agent
15 neuropathy 39 opportunistic mycosis
16 disease of biological process 40 lentivirus infectious disease
17 disease of behavior 41 viral infectious disease
18 disease of anatomical entity 42 AIDS-related opportunistic infectious disease
19 Muscle, ligament and fascia disorder 43 RNA virus infectious disease
20 myopathy 44 HIV infectious disease
21 soft tissue disease 45 retroviridae infectious disease
22 tissue disease 46 fungal infectious disease
23 brain disease 47 reproductive system disease
24 basal ganglia disease 48 female reproductive system disorder
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Figure 7: Disease ontology similarity matrix, the correlations are
based ‘off the diagonal’ and take on values between 0 and 1.

system is Lorazepam, which does not appear in any of
the other systems. The top ranked drug for Gottlieb sys-
tem is Amantadine, this is ranked by our system as 34th
and by Zhang’s system as 3rd ranked. Interestingly, Car-
bidopa was filtered out of our system since we did not
have access to its ATC code - Zhang’s system places this
drug as ranked 2nd and Gottlieb’s system places it as 8th.
However, upon replacing it back in our database and re-
running the tests (ignoring chemical structure and lack of
ATC code) Carbidopa is picked up by our system with

Table 8: Example of GO Biological Process terms related to the on-
target proteins for all candidate drugs. All p-values associated with
gene/ratio are statistically significant at <0.05

GO: ID Description GeneRatio
375280 Amine ligand-binding receptors 30/156
211981 Xenobiotics 15/156
112315 Transmission across Chemical Synapses 36/156
112316 Neuronal System 39/156
211945 Functionalization of compounds 23/156
211859 Biological oxidations 29/156
211897 Cytochrome P450 - arranged by substrate type 19/156
112314 Neurotransmitter Receptor Binding 26/156
373076 Class A/1 (Rhodopsin-like receptors) 36/156
975298 Ligand-gated ion channel transport 13/156

a raw side-effect similarity score of 28%. The only other
occurrence of drugs appearing in our system as Wang’s is
Pergolide. An earlier version of our system had a greater
similarity with Wang’s candidate drugs, however when we
filtered out drugs with many common side-effects, and fo-
cused on fewer, more specific side-effects, Olanzapine and
other drugs disappeared from our list.

4.6. Analyzing other diseases
In order to be assured of the robustness of our approach

we tackle several other diseases using our system. Re-
ferring to the related work we analyze three other diseases
that have been investigated for the potential to re-purpose
current drugs. These results are displayed in table 11.

We examined Rheumatoid Arthritis and compared our
results with Zhang [58], who obtained different results to
us but we both had identified Imatinib as a potential candi-
date that had received attention from a clinical trial. The
next disease was Systemic Lupus Erythematosus, which we
compared with Zhang’s other work [59]. Our third scoring
drug is in fact a class of drugs (Conjugated Estrogens) of
which Leflunomide is an example identified by Zhang, this
appears in our lists but with a similarity of 33% and would
not technically be considered. We compared the results of
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Figure 8: Drug network view of proteins and diseases, drugs are denoted by triangle and proteins by circles. Protein targets colored in yellow
are common to two or more drugs

Table 9: Final ranked list of candidate drugs for Alzheimer’s disease

drugbank_id name atc_codes score
1 DB00268 Ropinirole N04BC04 0.71
2 DB00413 Pramipexole N04BC05 0.70
3 DB00273 Topiramate N03AX11 0.70
4 DB01037 Selegiline N04BD01 0.70
5 DB01156 Bupropion N06AX12 0.68
6 DB00285 Venlafaxine N06AX16 0.67
7 DB01104 Sertraline N06AB06 0.64
8 DB01224 Quetiapine N05AH04 0.56
9 DB00230 Pregabalin N03AX16 0.56
10 DB00776 Oxcarbazepine N03AF02 0.56
11 DB00555 Lamotrigine N03AX09 0.45
12 DB00996 Gabapentin N03AX12 0.45
13 DB00370 Mirtazapine N06AX11 0.45
14 DB00323 Tolcapone N04BX01 0.32
15 DB01367 Rasagiline N04BD02 0.32
16 DB00906 Tiagabine N03AG06 0.32
17 DB00185 Cevimeline N07AX03 0.31
18 DB00740 Riluzole N07XX02 0.31
19 DB00425 Zolpidem N05CF02 0.28
20 DB00193 Tramadol N02AX02 0.28
21 DB01186 Pergolide N04BC02 0.27
22 DB01242 Clomipramine N06AA04 0.26
23 DB00688 Mycophenolate mofetil L04AA06 0.25
24 DB00176 Fluvoxamine N06AB08 0.23
25 DB00715 Paroxetine N06AB05 0.23

Non Small Cell Lung Cancer (NSCLC) with those of Wang
[49]. Virtually all of our top ranked drugs had been the at-
tention of multiple clinical trials. Out of Wang’s top drugs;
Cisplatin, Carboplatin, Methotrexate and Temozolomide,
only Cisplatin and Temozolomide were identified by our
system at 33% similarity.

5. Discussion

Empirically, by using a smaller number of highly specific
side-effects we discovered a more valid (based on evaluat-
ing the literature) list of drugs for repurposing. There is
however, a trade-off between the number of current drugs
used in the initial search and the potential for returning
either many or very few side-effects. Our system requires
diseases with at least two drugs as a certain ‘critical mass’
of common side-effects (for the disease) need to be present.

Furthermore, if the initial side-effect database is not pre-
processed by removal of common side-effects then many
useless candidate drugs will be returned in the search, as
common side-effects such as dizziness and nausea are ex-
perienced by almost all drugs and thus are unhelpful. On
the other hand, using more than 10-15 drugs in the initial
side-effect search is unlikely to lead to side-effects common
to all. Our top scoring drug (Ropinirole) is used to treat
Parkinson’s, restless legs and shaking conditions. It is a
dopamine receptor agonist drug and there is research to
suggest it has a neuro-protective effect. We used the re-
search literature to verify if the candidate drugs identified
by our system had any potential for repositioning. Several,
in addition to Ropinirole have been the subject of clinical
trials but the results have been mixed.

We conducted several literature based comparisons be-
tween our system and the related methods. The differences
uncovered between the various drug re-purposing systems
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Table 10: Comparison of various methods for top ranked drugs

McGarry Zhang(2014) Wang(2014) Gottlieb(2011)
Ropinirole (0.81 ) Selegiline (0.70) Lorazepam Amantadine (0.99)
Pramipexole (0.66) Carbidopa 0.69) Alprazolam Ipratropium bromide(0.97)
Topiramate (0.66) Amantadine (0.68) Clonazepam Divalproex Sodium (0.95)
Selegiline (0.65) Procyclidine (0.68) Diazepam Procyclidine (0.92)
Bupropion (0.64) Valproic Acid (0.67) Escitalpram Scopolamine (0.92)
Venlafaxine (0.60) Metformin (0.65) Ziprasidone Trihexyphenidyl (0.91)
Sertraline (0.58) Bexarotene (0.64) Risperidone Benzatropine (0.90)
Quetiapine (0.57) Neostigmine (0.63) Pergolide Carbidopa (0.88)
Pregabalin (0.56) Galantamine (0.63) Olanzapine Neostigmine (0.88)
Oxcarbazepine (0.56) Nilvadipine (0.61) Bromocriptine Scopolamine (0.86)

Table 11: Other diseases, details of trials from https://clinicaltrials.gov/

Disease Candidate drugs Reposition evidence
Rheumatoid arthritis (RA) Alosetron None
(C0003873) Cevimeline None

Citalopram NCT01154647 proposed in 2010 for RA
Escitalopram None
Imatinib NCT00154336 proposed 2005

Systemic Lupus Erythematosus (SLE) Aripiprazole None
(C0024141) Carbamazepine None

Conjugated Estrogens NCT00392093 proposed in 2006 for SLE
Conjugated Estrogens NCT00006133 proposed in 2000 for SLE
Conjugated Estrogens NCT00000419 proposed in 1999 for SLE

Non Small Cell Lung Cancer (NSCLC) Bortezomib NCT00714246 proposed in 2008 for NSCLC
(C0007131) Carfilzomib NCT01941316 proposed in 2013 for NSCLC

Lenalidomid None
Pazopanib NCT00367679 proposed in 2013 for NSCLC
Abiraterone NCT01884285 proposed in 2013 for NSCLC

simply reflects the different methods of data integration
and types of data used. Although, no methods produced
exactly the same list of candidates, their top scoring candi-
dates were drugs that had been the focus of clinical trials.
Indeed, the various algorithms must be considered com-
plementary in terms of candidate identification.

The use of ontology’s has provided our system with
knowledge at a higher level than protein interactions and
chemical structures. The information provided by the on-
tology’s help reduce the false positive rate (FPR), as seen
by the ROC/PR, without this information the FPR tends
to increase with unsuitable drugs being identified as po-
tential candidates.

6. Conclusions

Drug repositioning is a viable and useful process to aug-
ment and complement the work already accomplished in
drug development. We have presented a novel method that
can successfully identify useful candidates for drug repo-
sitioning by integrating high level knowledge from several
ontology’s, this ability is currently lacking in most compet-
ing methods. We have validated its predictive ability by
cross-validation and have used several disease case studies.
For the case study investigating Alzheimer’s disease, the
majority of the 25 candidate drugs exhibited the potential
to be repurposed as a treatment for Alzheimer’s. A few
have been tested clinically and the results confirm they can
reduce the level of new plaque formation. About three or
four candidate drugs are actually implicated in causing/ex-
acerbating dementia. Clearly, these drugs are targeting
the correct pathways/mechanisms but their drug to pro-
tein interactions are harmful. Other drugs examined in

research and clinical trials, exhibited the potential to im-
prove behavioral psychosis, agitation and other behavioral
symptoms associated with Alzheimer’s.

Some of the drugs we examined are in early research
stages or have only been tested in animal models, or have
just entered clinical trials. Our methods have a number
of limitations we hope to address in future work. For
example, the process of detecting common side-effects is
achieved through an iterative process of randomly splitting
the list of current treatment drugs by 50% if no common
side-effects are found. An optimization solution using a
search algorithm or meta-heuristic would improve this pro-
cess. A likely avenue for future work would be to model
and predict potential side-effects for new and experimental
drugs using additional resources such as the Ontology for
Adverse Effects. We also intend to improve the expert sys-
tem front-end, providing a more conventional explanation
facility to describe the joint pathways and shared target
proteins. Despite the limitations, the majority of the re-
search studies examined supported our hypothesis of using
side-effects to identify candidate drugs for the first stage
in drug repurposing.
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