
Downloaded from: http://sure.sunderland.ac.uk/id/eprint/9835/

Usage guidelines

Please refer to the usage guidelines at http://sure.sunderland.ac.uk/policies.html or alternatively contact sure@sunderland.ac.uk.
Defining Design and Technology in an Age of Uncertainty: What we know and where are we going?

David Wooff and Dawne Bell
Change in Design and Technology entries, 2009/10 to 2014/15

Change in Design and Technology entries, 2009/10 to 2014/15 – Raw Data

<table>
<thead>
<tr>
<th>D&T subject</th>
<th>2009/10</th>
<th>2014/15</th>
<th>% change</th>
</tr>
</thead>
<tbody>
<tr>
<td>Electronic products</td>
<td>10,957</td>
<td>7,895</td>
<td>-27.9</td>
</tr>
<tr>
<td>Food technology</td>
<td>62,104</td>
<td>38,416</td>
<td>-38.1</td>
</tr>
<tr>
<td>Graphic products</td>
<td>51,355</td>
<td>31,859</td>
<td>-38.0</td>
</tr>
<tr>
<td>Resistant materials</td>
<td>67,402</td>
<td>51,096</td>
<td>-24.2</td>
</tr>
<tr>
<td>Systems and control</td>
<td>5,637</td>
<td>2,979</td>
<td>-47.2</td>
</tr>
<tr>
<td>Textiles technology</td>
<td>35,835</td>
<td>24,198</td>
<td>-32.5</td>
</tr>
<tr>
<td>Other D&T*</td>
<td>33,978</td>
<td>38,207</td>
<td>12.4</td>
</tr>
<tr>
<td>Total</td>
<td>267,268</td>
<td>194,650</td>
<td>-27.2</td>
</tr>
</tbody>
</table>

* ‘Other D&T’ includes Graphics, Motor Vehicle Studies, D&T Engineering, D&T Product Design and D&T (not specified)
How does Design and Technology compare against other subjects?

Impact of the English Baccalaureate?

<table>
<thead>
<tr>
<th>EBacc subjects</th>
<th>GCSE entries summer 2016</th>
<th>% change since 2015</th>
</tr>
</thead>
<tbody>
<tr>
<td>Computing*</td>
<td>63,670</td>
<td>84</td>
</tr>
<tr>
<td>Additional science</td>
<td>353,490</td>
<td>11</td>
</tr>
<tr>
<td>Geography</td>
<td>227,730</td>
<td>8</td>
</tr>
<tr>
<td>Science</td>
<td>384,610</td>
<td>8</td>
</tr>
<tr>
<td>History</td>
<td>243,520</td>
<td>7</td>
</tr>
<tr>
<td>Chemistry</td>
<td>131,660</td>
<td>6</td>
</tr>
<tr>
<td>Physics</td>
<td>130,620</td>
<td>5</td>
</tr>
<tr>
<td>Biology</td>
<td>133,680</td>
<td>4</td>
</tr>
<tr>
<td>Modern foreign languages and classical subjects</td>
<td>320,600</td>
<td>-3</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Non-EBacc subjects</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Physical education</td>
<td>119,680</td>
<td>3</td>
</tr>
<tr>
<td>Business studies</td>
<td>89,670</td>
<td>-2</td>
</tr>
<tr>
<td>Religious studies</td>
<td>327,990</td>
<td>-3</td>
</tr>
<tr>
<td>Drama</td>
<td>68,250</td>
<td>-4</td>
</tr>
<tr>
<td>Arts and Design subjects</td>
<td>172,350</td>
<td>-5</td>
</tr>
<tr>
<td>Design & technology</td>
<td>175,130</td>
<td>-10</td>
</tr>
<tr>
<td>Media/film/TV studies</td>
<td>51,410</td>
<td>-15</td>
</tr>
<tr>
<td>ICT*</td>
<td>74,770</td>
<td>-27</td>
</tr>
</tbody>
</table>
Design and Technology Teacher Recruitment 2011/12 – 2015/16

<table>
<thead>
<tr>
<th></th>
<th>Recruited</th>
<th>Target</th>
<th>% of Target</th>
</tr>
</thead>
<tbody>
<tr>
<td>2011/12</td>
<td>1,878</td>
<td>1,728</td>
<td>108.7%</td>
</tr>
<tr>
<td>2012/13</td>
<td>632</td>
<td>760</td>
<td>83.2%</td>
</tr>
<tr>
<td>2013/14</td>
<td>360</td>
<td>800</td>
<td>45.0%</td>
</tr>
<tr>
<td>2014/15</td>
<td>409</td>
<td>981</td>
<td>41.7%</td>
</tr>
<tr>
<td>2015/16</td>
<td>526</td>
<td>1,279</td>
<td>41.1%</td>
</tr>
</tbody>
</table>

Initial teacher training census for the academic year 2015 to 2016, England
How does Design and Technology Teacher Recruitment Compare?

![Bar chart comparing Design and Technology Teacher Recruitment against other subjects. Design & Technology has a recruitment rate of 41%.](image-url)
Design and technology programmes of study: key stage 3
National curriculum in England

Purpose of study
Design and technology is an inspiring, rigorous and practical subject. Using creativity and imagination, pupils design and make products that solve real and relevant problems within a variety of contexts, considering their own and others’ needs, wants and values. They acquire a broad range of subject knowledge and draw on disciplines such as mathematics, science, engineering, computing and art. Pupils learn how to take risks, becoming resourceful, innovative, enterprising and capable citizens. Through the evaluation of past and present design and technology, they develop a critical understanding of its impact on daily life and the wider world. High-quality design and technology education makes an essential contribution to the creativity, culture, wealth and well-being of the nation.
New Key Stage 4 GCSE Subject Content

Design and technology
GCSE subject content
November 2015

Engineering
GCSE subject content
December 2015

Food preparation and nutrition
GCSE subject content
February 2015

Electronics
GCSE subject content
February 2016
In Summary

• Falling numbers of students opting to study design and technology

• Falling numbers of teachers training to deliver design and technology

• Significant changes to KS3 National Curriculum (Separating Food out, no specific mention of textiles technology)

• Significant changes to GCSE Specifications at KS4 (Initially Food & Nutrition and Design and technology only – now expanded to include Separate GCSE Electronics).
The Immediate Future

D&T pathways

KS4
GCSE: Food preparation & nutrition
Technical Certificate: Hospitality & catering

Mathematical, scientific and artistic skills and knowledge

KS1 & 2

KS3

16-19

A Level – L3

Food science and nutrition
Applied General Level – L3

Design & craft Engineering

Professional cookery
Professional chefs

Construction & BE Engineering

Cookery
Hospitality
Food and beverage services

Tech Level – L3

Tech Certificates / Awards – L2

D&T: product design
D&T: fashion and textiles

Construction & BE Engineering

Apprenticeships – L2 L3

KS4
GCSE: Design & Technology Engineering
Technical Certificate: CBE, Engineering, Manufacturing

edgehill.ac.uk
<table>
<thead>
<tr>
<th></th>
<th>2015-16</th>
<th>2016-17</th>
<th>2017-18</th>
<th>2018-19</th>
</tr>
</thead>
<tbody>
<tr>
<td>Yr7</td>
<td>National curriculum or other curriculum that prepares pupils for new GSCSEs</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Yr8</td>
<td>NC 14 or other curriculum that prepares pupils for new GSCSEs</td>
<td>If choosing GCSE options these must be New Food GCSE or New D&T GCSE - N.B. New D&T specifications not yet available</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Yr9</td>
<td>Options New Food GCSE or Existing D&T GCSE in RM, GP, EP, Te, S&C or PD — but not Food Technology</td>
<td>NC 2014 or other curriculum that prepares pupils for new GSCSEs</td>
<td>Options New Food GCSE or New D&T GCSE</td>
<td></td>
</tr>
<tr>
<td>Yr10</td>
<td>Existing D&T GCSEs (RM, GP, PD, Te, S&C, EP and FT)</td>
<td>New Food GCSE- 9-1 Or Existing D&T GCSE in RM, GP, EP, Te, S&C, PD</td>
<td>New Food GCSE- 9-1 Or New D&T GCSE- 9-1</td>
<td>New Food GCSE Or New D&T GCSE</td>
</tr>
</tbody>
</table>
Implications of the new Design and Technology GCSE (i)

• Pupils at Key stage 3 should be studying a D&T curriculum that enables them to progress successfully on to D&T and Food preparation and nutrition GCSEs.

• At the heart of the D&T GCSE is the expectation that pupils will understand and apply iterative design processes through which they explore, create and evaluate a range of outcomes. Therefore pupils should be developing these skill at Key Stage 3 even if the school does not follow the National Curriculum.

• All pupils studying D&T GCSE will need to develop technical knowledge and understanding of how electronic systems and programmable components provide functionality to products and the function of mechanical devices. So key stage 3 should prepare pupils for this.
Implications of the new Design and Technology GCSE (ii)

• Pupils will be required to produce at least one final prototype based on a design brief they develop in response to a contextual challenge set by the awarding body in the summer of year 10. It is unlikely that teachers will be able to set the same projects each year, which is often the case with the current GCSE.

• Pupils can select one material category for the production of their assessed prototype/s but will need a broader working knowledge of other material categories than in the existing GCSE.

• The separation of Key Stage 3 into separate subjects, e.g. Graphics, RM and Textiles becomes even less appropriate subject titles than previously as these subjects no-longer exist at GCSE.
Challenges in teaching the new Design and Technology GCSE

• Teachers often seeing themselves as teachers of textiles, resistant materials or graphics rather than teachers of design and technology. – *the need to teach more broadly therefore very daunting*

• Some teachers, understandably trying to fit the subject to their skills but potentially resulting in pupils not getting the right learning experience.

• Temptation by some to just avoid D&T and teach a vocational course whether it is right for the pupils or not.

• Teachings needing support to draw on and/or build skills and knowledge beyond their area of expertise

• care need to ensure teachers build confidence to enable pupils to explore materials beyond the teacher’s original expertise- *collaboration between experts needed?*
What does this look like though?

Two main elements:

Non-Exam Assessment (NEA)
* 50% Weighting
* 30 – 35 Hours Duration
* Portfolio with Photographs of final product
* Portfolio with maximum of 20 Pages
* Context set in limited range by exam boards

Examination
* 50% Weighting
* Commences with multiple choice questions
* Covers different material areas
* Design task is a modification one, not from scratch
* Significant proportion of paper (30%) mathematics based
Draft materials available

Example here of NEA Briefing sheet, sent to schools for release on the 1st June in the academic year prior to Submission.
Draft materials available

Exam Questions incorporate more than one material area.

Choose one of the materials below and give two of its characteristics or properties. An example has been completed for you.

- Polypropylene
- Foam core board
- Brass
- Mahogany
- Silk

[2 marks]

<table>
<thead>
<tr>
<th>Material</th>
<th>Characteristics/Properties</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cast iron</td>
<td>1 Brittle</td>
</tr>
<tr>
<td></td>
<td>2 Can rust if unprotected</td>
</tr>
<tr>
<td></td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>2</td>
</tr>
</tbody>
</table>
Draft materials available

Maths !!

Using the information from the table above create a bar chart showing the percentages of children who like different colours. Label your axis with the scale of your graph.

<table>
<thead>
<tr>
<th>Pastel Colours</th>
<th>Primary Colours</th>
<th>Fluorescent Colours</th>
<th>Subtle Colours</th>
</tr>
</thead>
<tbody>
<tr>
<td>% of children who like different colours</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

The diagram shows the movement of a lever which is part of a toy. If point A travels 10mm to the right, what is the distance between points B and C?

- A 10mm
- B 20mm
- C 30mm
- D 40mm

[1 mark]
How are you going to prepare students for this in your school?

Closer liaison with the mathematics department

<table>
<thead>
<tr>
<th>Mathematical skills requirements for Design and Technology</th>
</tr>
</thead>
<tbody>
<tr>
<td>M1 Arithmetic and numerical computation</td>
</tr>
<tr>
<td>Required skills</td>
</tr>
<tr>
<td>a. Recognise and use expressions in decimal and standard form.</td>
</tr>
<tr>
<td>- understand the standard application of metric units used in design and technology and apply these appropriately using standard form (also be aware that some measurements commonly retain the use of imperial units)</td>
</tr>
<tr>
<td>- use decimal and standard form appropriately when using units of mass, length, time, money and other measures</td>
</tr>
<tr>
<td>- use and apply standard form when calculating quantities of materials, cost and sizes.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>OCR GCSE (9–1) Mathematics ref.</th>
<th>GCSE (9–1) Mathematics specification (J560)</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.02a</td>
<td>Interpret and order numbers expressed in standard form. Convert numbers to and from standard form.</td>
</tr>
<tr>
<td></td>
<td>e.g. 1320 = 1.32 \times 10^3, 0.00943 = 9.43 \times 10^{-3}</td>
</tr>
<tr>
<td>3.02b</td>
<td>Use a calculator to perform calculations with numbers in standard form.</td>
</tr>
<tr>
<td>2.02a</td>
<td>Express a simple fraction as a terminating decimal or vice versa, without a calculator.</td>
</tr>
<tr>
<td></td>
<td>e.g. 0.4 = \frac{2}{5}</td>
</tr>
<tr>
<td>2.02b</td>
<td>Understand and use place value in decimals.</td>
</tr>
<tr>
<td></td>
<td>Add, subtract and multiply decimals including negative decimals.</td>
</tr>
</tbody>
</table>

You could try getting the Mathematics department to use Design and Technology / Food & Nutrition examples in their lessons.
How are you going to prepare students for this in your school?

Not forgetting; closer liaison with the science departments
Key Points for developing KS3 Design and Technology to support new GCSE’s

• Do the schemes of work from year 7 onwards enable pupils to:

• Solve creative real life problems- derived from a context?

• Engage in an iterative design process?

• Develop an understanding of electronic systems and programmable components that can apply when designing?

• Develop and apply their understanding of modern and smart materials?

• Fully consider environmental and ethical implications?

• Fully develop their design concept, e.g. in textiles using a toile – or are they just choosing a pattern and adjusting it when they make the final product?

• Recognise the wide range of ways in which textiles can be deployed in product design?
Key Points for developing KS3 Design and Technology to support new Food GCSE

• Do the schemes of work from year 7 onwards enable pupils to progressively develop and apply knowledge of:
 • principles of health and nutrition?
 • functional and chemical properties of food?
 • Food safety?
 • Food provenance?
The Future....?

Will design and technology survive the curriculum review?

Designed and Made in Britain? Campaigning for D&T in Schools

DESIGNED AND MADE IN BRITAIN...?

Design and Technology in schools is critical to the UK’s future success.

Act Now!

BACC FOR THE FUTURE
Lord Baker warns of EBacc’s damaging 1904 curriculum

The architect of the national curriculum says the current EBacc is ‘regressive’, ‘severely limits learning’, ignores the skills needed for today’s workforce, and fails poorer students.
Lord Baker proposes that the broader EBacc would include:

• English.
• Maths.
• Two science GCSEs – one of which could be computer science.
• A creative GCSE from a list which would include art and design, music, dance and drama.
• A humanities GCSE from a list which would include history, geography, religious education and foreign languages.
• A Design and Technology GCSE or an approved technical award. Examples include the Cambridge National Certificate in Engineering and the Pearson BTEC First Award in Construction and the Built Environment.
Locally, suggested strategies include:

- Celebrating successes, achievement walls, letters home etc..
- Extending links into other subjects to help contextualise them in Design and Technology (beyond maths and science as indicated in new GCSE Specifications)
- Inviting middle and senior leaders (and governors?) into your departments
- Links to the local community /businesses
- Shared learning opportunities (parents and pupils doing basic food hygiene certificate together afterschool)
- Raising profile of subject in school – hard sell at options /open evening
- Using STEM ambassadors and other invited guests and speakers
- Embracing change and being proactive
- Review projects, exemplar materials and work booklets – are they current?

Suggestions collated from HOD’s / HOF’s – July 2016
Final Thoughts

There will always be change, and as a subject; Design and Technology is a relatively new one. Arguably we have weakly defined boundaries, and work in a subject that is an “educational construct”, that is to say – where does Resistant Materials, Graphic Products or even Design and Technology exist outside of education? The best aspects of our subject use challenge, innovation, creativity and enquiry to stimulate and engage pupils in designing and making products, items and artefacts to make life better for someone else, whilst being ethical and mindful of the world around us. We may not always exist as “Design and Technology”, but the essence of what we do, and what we bring to the curriculum, is unique – and we would suggest it is to that which we should look for security in the future.
Open Invite:
Emeritus Professor Richard Kimbell
Goldsmith’s University
Reflections on 30 Years in Design and Technology
MONDAY 16th MARCH 2017 16:00 – 17:00

To Book a place please email: educationresearch@edgehill.ac.uk