Close menu

SURE

Sunderland Repository records the research produced by the University of Sunderland including practice-based research and theses.

DFAEN: Double-order knowledge fusion and attentional encoding network for texture recognition

Yang, Zhijing, Lai, Shujian, Hong, Xiaobin, Shi, Yukai, Cheng, Yongqiang and Qing, Chunmei (2022) DFAEN: Double-order knowledge fusion and attentional encoding network for texture recognition. Expert Systems with Applications, 209. ISSN 0957-4174

Item Type: Article

Abstract

Recent studies have shown that deep convolutional neural networks (CNNs) have been successfully used for texture representation and recognition. One of the most successful texture recognition methods is the deep texture encoding network (DeepTEN), which has been shown to be effective. However, this network directly uses redundant CNN features with generality and ignores the role of multiorder information during the encoding and learning processes. To address these issues, this paper proposes a double-order knowledge fusion and attentional encoding network for texture recognition (DFAEN). First, crucial texture features are encoded by an embedded attention mechanism. Second, double-order modeling is implemented in the encoding and learning stage to make full use of convolution feature information with different orders, enabling the network to focus on and learn more texture domain information. Our method can stably and effectively perform end-to-end optimization. Evaluation experiments conducted on several widely used benchmark datasets (e.g., the FMD, MINC-2500, the DTD, KTH-TISP-2b, and GTOS-mobile) show that our method clearly demonstrates superior performance to that of competing approaches.

[img]
Preview
PDF (Author version)
DFAEN- Double-Order Knowledge Fusion and Attentional Encoding Network for Texture Recognition.pdf - Accepted Version
Available under License Creative Commons Attribution Non-commercial No Derivatives.

Download (4MB) | Preview

More Information

Depositing User: Yongqiang Cheng

Identifiers

Item ID: 16818
Identification Number: https://doi.org/10.1016/j.eswa.2022.118223
ISSN: 0957-4174
URI: http://sure.sunderland.ac.uk/id/eprint/16818
Official URL: https://www.sciencedirect.com/science/article/abs/...

Users with ORCIDS

ORCID for Yongqiang Cheng: ORCID iD orcid.org/0000-0001-7282-7638

Catalogue record

Date Deposited: 21 Nov 2023 09:16
Last Modified: 05 Aug 2024 02:38

Contributors

Author: Yongqiang Cheng ORCID iD
Author: Zhijing Yang
Author: Shujian Lai
Author: Xiaobin Hong
Author: Yukai Shi
Author: Chunmei Qing

University Divisions

Faculty of Technology > School of Computer Science

Subjects

Computing > Data Science
Computing > Artificial Intelligence

Actions (login required)

View Item (Repository Staff Only) View Item (Repository Staff Only)

Downloads

Downloads per month over past year