Explainable statistical learning in public health for policy development: the case of real-world suicide data

van Schaik, Paul, Peng, Yonghong, Ojelabi, Adedokun and Ling, Jonathan (2019) Explainable statistical learning in public health for policy development: the case of real-world suicide data. BMC Medical Research Methodology, 19 (1). ISSN 1471-2288

[img]
Preview
PDF
Schaik2019_BMC_ExplainableStatisticalLearning.pdf - Published Version
Available under License Creative Commons Attribution.

Download (707kB) | Preview

Search Google Scholar

Abstract

Background

In recent years, the availability of publicly available data related to public health has significantly increased. These data have substantial potential to develop public health policy; however, this requires meaningful and insightful analysis. Our aim is to demonstrate how data analysis techniques can be used to address the issues of data reduction, prediction and explanation using online available public health data, in order to provide a sound basis for informing public health policy.
Methods

Observational suicide prevention data were analysed from an existing online United Kingdom national public health database. Multi-collinearity analysis and principal-component analysis were used to reduce correlated data, followed by regression analyses for prediction and explanation of suicide.
Results

Multi-collinearity analysis was effective in reducing the indicator set of predictors by 30% and principal component analysis further reduced the set by 86%. Regression for prediction identified four significant indicator predictors of suicide behaviour (emergency hospital admissions for intentional self-harm, children leaving care, statutory homelessness and self-reported well-being/low happiness) and two main component predictors (relatedness dysfunction, and behavioural problems and mental illness). Regression for explanation identified significant moderation of a well-being predictor (low happiness) of suicide behaviour by a social factor (living alone), thereby supporting existing theory and providing insight beyond the results of regression for prediction. Two independent predictors capturing relatedness needs in social care service delivery were also identified.
Conclusions

We demonstrate the effectiveness of regression techniques in the analysis of online public health data. Regression analysis for prediction and explanation can both be appropriate for public health data analysis for a better understanding of public health outcomes. It is therefore essential to clarify the aim of the analysis (prediction accuracy or theory development) as a basis for choosing the most appropriate model. We apply these techniques to the analysis of suicide data; however, we argue that the analysis presented in this study should be applied to datasets across public health in order to improve the quality of health policy recommendations.

Item Type: Article
Subjects: Computing > Data Science
Sciences > Health Sciences
Divisions: Faculty of Health Sciences and Wellbeing
Faculty of Health Sciences and Wellbeing > FHSW Executive
Faculty of Technology
Faculty of Technology > FOT Executive
Depositing User: Jonathan Ling
Date Deposited: 05 Aug 2019 13:35
Last Modified: 18 Dec 2019 16:08
URI: http://sure.sunderland.ac.uk/id/eprint/10987
ORCID for Jonathan Ling: ORCID iD orcid.org/0000-0003-2932-4474

Actions (login required)

View Item View Item

Downloads

Downloads per month over past year