Coupled thermo-electrical dispatch strategy with AI forecasting for optimal sizing of grid-connected hybrid renewable energy systems
Kahwash, F., Barakat, Basel and Maheri, A. (2023) Coupled thermo-electrical dispatch strategy with AI forecasting for optimal sizing of grid-connected hybrid renewable energy systems. Energy Conversion and Management, 293. p. 117460. ISSN 0196-8904
Item Type: | Article |
---|
Abstract
In multi-energy systems the full utilisation of the generated energy is a challenge. Integrating heat and electricity supply at the system level design could provide an opportunity to address this challenge. In this paper we introduce and examine two coupled thermal-electrical dispatch strategies for grid-connected hybrid multi-energy systems supplying electrical and thermal demand loads. The dispatch strategy employs forecasting of energy resources and demand loads to prioritise supplying the thermal load in times of renewable surplus. Four forecasting algorithms, namely, baseline forecast, Facebook Prophet (FBP), Neural Prophet (NP), and Long Short-Term Memory model (LSTM) are implemented and used to generate annual forecast data for solar irradiance, wind speed, and thermal and electrical demand loads. To integrate forecast data within the dispatch strategy, new parameters are proposed to quantify the expected available energy within the forecast time horizon. A building complex for the Department of Education in the UK is used for conducting a system design case study. A genetic algorithm-based multi-objective optimisation with the levelised costs of electricity and heat as two objectives is conducted. The results show that the proposed dispatch algorithm produces systems with reduced levelised costs compared to the base case of using utility gas and electricity. Forecasting is particularly useful in reducing cost of heat, as it can prioritise supplying the thermal load in times of renewable surplus. LSTM proved to be the most accurate forecasting algorithm for this case, where the data has strong seasonality and trends. The main contribution of this work is to propose and demonstrate the effectiveness of tightly coupling thermo-electrical dispatch algorithms of HRES from the design stage, and how to effectively integrate forecast data within such algorithms.
|
PDF
Coupled thermo-electrical dispatch strategy with AI forecasting for optimal.pdf - Published Version Available under License Creative Commons Attribution Non-commercial No Derivatives. Download (3MB) | Preview |
More Information
Uncontrolled Keywords: Grid-connected Hybrid renewable energy system Clean heat Supervised machine learning Time series forecasting Multi-energy systems |
Depositing User: Basel Barakat |
Identifiers
Item ID: 16502 |
Identification Number: https://doi.org/10.1016/j.enconman.2023.117460 |
ISSN: 0196-8904 |
URI: http://sure.sunderland.ac.uk/id/eprint/16502 | Official URL: http://dx.doi.org/10.1016/j.enconman.2023.117460 |
Users with ORCIDS
Catalogue record
Date Deposited: 15 Aug 2023 15:00 |
Last Modified: 18 Aug 2023 07:15 |
Author: | Basel Barakat |
Author: | F. Kahwash |
Author: | A. Maheri |
University Divisions
Faculty of Technology > School of Computer ScienceSubjects
ComputingEngineering
Actions (login required)
View Item (Repository Staff Only) |