Close menu

SURE

Sunderland Repository records the research produced by the University of Sunderland including practice-based research and theses.

The effects of suspension particle size on the performance of air-jet, ultrasonic and vibrating-mesh nebulisers

Najlah, Mohammad, Parveen, Ishrat, Alhnan, Mohamed Albed, Ahmed, Waqar, Faheem, Ahmed, Phoenix, David A., Taylor, Kevin M.G. and Elhissi, Abdelbary (2014) The effects of suspension particle size on the performance of air-jet, ultrasonic and vibrating-mesh nebulisers. International Journal of Pharmaceutics, 461 (1-2). pp. 234-241. ISSN 03785173

Item Type: Article

Abstract

Using latex microspheres as model suspensions, the influence of suspension particle size (1, 4.5 and 10 μm) on the properties of aerosols produced using Pari LC Sprint (air-jet), Polygreen (ultrasonic), Aeroneb Pro (actively vibrating-mesh) and Omron MicroAir NE-U22 (passively vibrating-mesh) nebulisers was investigated. The performance of the Pari nebuliser was independent of latex spheres particle size. For both Polygreen and Aeroneb Pro nebulizers, total aerosol output increased when the size of latex spheres increased, with highest fine particle fraction (FPF) values being recorded. However, following nebulisation of 1 or 4.5 μm suspensions with the Polygreen device, no particles were detected in the aerosols deposited in a two-stage impinger, suggesting that the aerosols generated from this device consisted mainly of the continuous phase while the dispersed microspheres were excluded and remained in the nebuliser. The Omron nebuliser efficiently nebulised the 1 μm latex spheres, with high output rate and no particle aggregation. However, this device functioned inefficiently when delivering 4.5 or 10 μm suspensions, which was attributed to the mild vibrations of its mesh and/or the blockage of the mesh apertures by the microspheres. The Aeroneb Pro fragmented latex spheres into smaller particles, but uncontrolled aggregation occurred upon nebulisation. This study has shown that the design of the nebuliser influenced the aerosol properties using latex spheres as model suspensions. Moreover, for the recently marketed mesh nebulisers, the performance of the Aeroneb Pro device was less dependent on particle size of the suspension compared with the Omron MicroAir nebuliser.

Full text not available from this repository.

More Information

Depositing User: Barry Hall

Identifiers

Item ID: 6778
Identification Number: https://doi.org/10.1016/j.ijpharm.2013.11.022
ISSN: 03785173
URI: http://sure.sunderland.ac.uk/id/eprint/6778
Official URL: http://www.sciencedirect.com/science/article/pii/S...

Users with ORCIDS

Catalogue record

Date Deposited: 01 Nov 2016 09:29
Last Modified: 18 Dec 2019 15:40

Contributors

Author: Mohammad Najlah
Author: Ishrat Parveen
Author: Mohamed Albed Alhnan
Author: Waqar Ahmed
Author: Ahmed Faheem
Author: David A. Phoenix
Author: Kevin M.G. Taylor
Author: Abdelbary Elhissi

University Divisions

Faculty of Health Sciences and Wellbeing
Faculty of Health Sciences and Wellbeing > School of Pharmacy and Pharmaceutical Sciences

Subjects

Sciences > Pharmacy and Pharmacology

Actions (login required)

View Item (Repository Staff Only) View Item (Repository Staff Only)