The effects of suspension particle size on the performance of air-jet, ultrasonic and vibrating-mesh nebulisers
Najlah, Mohammad, Parveen, Ishrat, Alhnan, Mohamed Albed, Ahmed, Waqar, Faheem, Ahmed, Phoenix, David A., Taylor, Kevin M.G. and Elhissi, Abdelbary (2014) The effects of suspension particle size on the performance of air-jet, ultrasonic and vibrating-mesh nebulisers. International Journal of Pharmaceutics, 461 (1-2). pp. 234-241. ISSN 03785173
Item Type: | Article |
---|
Abstract
Using latex microspheres as model suspensions, the influence of suspension particle size (1, 4.5 and 10 μm) on the properties of aerosols produced using Pari LC Sprint (air-jet), Polygreen (ultrasonic), Aeroneb Pro (actively vibrating-mesh) and Omron MicroAir NE-U22 (passively vibrating-mesh) nebulisers was investigated. The performance of the Pari nebuliser was independent of latex spheres particle size. For both Polygreen and Aeroneb Pro nebulizers, total aerosol output increased when the size of latex spheres increased, with highest fine particle fraction (FPF) values being recorded. However, following nebulisation of 1 or 4.5 μm suspensions with the Polygreen device, no particles were detected in the aerosols deposited in a two-stage impinger, suggesting that the aerosols generated from this device consisted mainly of the continuous phase while the dispersed microspheres were excluded and remained in the nebuliser. The Omron nebuliser efficiently nebulised the 1 μm latex spheres, with high output rate and no particle aggregation. However, this device functioned inefficiently when delivering 4.5 or 10 μm suspensions, which was attributed to the mild vibrations of its mesh and/or the blockage of the mesh apertures by the microspheres. The Aeroneb Pro fragmented latex spheres into smaller particles, but uncontrolled aggregation occurred upon nebulisation. This study has shown that the design of the nebuliser influenced the aerosol properties using latex spheres as model suspensions. Moreover, for the recently marketed mesh nebulisers, the performance of the Aeroneb Pro device was less dependent on particle size of the suspension compared with the Omron MicroAir nebuliser.
More Information
Depositing User: Barry Hall |
Identifiers
Item ID: 6778 |
Identification Number: https://doi.org/10.1016/j.ijpharm.2013.11.022 |
ISSN: 03785173 |
URI: http://sure.sunderland.ac.uk/id/eprint/6778 | Official URL: http://www.sciencedirect.com/science/article/pii/S... |
Users with ORCIDS
Catalogue record
Date Deposited: 01 Nov 2016 09:29 |
Last Modified: 18 Dec 2019 15:40 |
Author: | Mohammad Najlah |
Author: | Ishrat Parveen |
Author: | Mohamed Albed Alhnan |
Author: | Waqar Ahmed |
Author: | Ahmed Faheem |
Author: | David A. Phoenix |
Author: | Kevin M.G. Taylor |
Author: | Abdelbary Elhissi |
University Divisions
Faculty of Health Sciences and WellbeingFaculty of Health Sciences and Wellbeing > School of Pharmacy and Pharmaceutical Sciences
Subjects
Sciences > Pharmacy and PharmacologyActions (login required)
View Item (Repository Staff Only) |